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Monotonicity in Time and Stationary
Solutions for a Quasilinear Heat Equation
with Source

VICTOR A. GALAKTIONOV and SERGEY A. POSASHKOV

ABSTRACT. We consider the Cauchy problem for the quasilincar parabolic heat
equation with source v, = A '+ in R¥x (0,1, 6>>0. 8> 1 arc fixed constants.
with nonnegative bounded symmetric initial function. Two properties of monotone
behaviours of the solution w(]x], 1) for x=0 arc investigated. 1. Monotonicity of
large solutions: there cxists a constant M, >0 such that if w(0, )= M, for some
HE[0, T), then 1, (0, )=0 for all r €[4y, T). 2. (0. 1) does not decrease in (0. 7). 1t is
shown that sufficient conditions for these properties arc quite different for five cases:
) 1<B<e+ 1, 1)) B=0o+1, ii} o+ I1<B<LH., v} B=F., v) B> f.. where
Bo=(oF+ I} N+2/(N—2) for N>2 (B.=o for N=1.2) is the critical Sobolev
exponent. )

1. INTRODUCTION. MAIN RESULTS

In this paper we consider the Cauchy problem for the quasilinear
parabolic heat equation with source ‘

u,=AuH -y in RYx(0,D (1)

uix,0)=uy () =0 in R¥Y {2)

where ¢>0 and 8>1 are fixed constants. Equation (1) is well-known
the heat conduction and combustion in a medium, where the heat
conductivity coefficient & (u)={(o+1)e* and the power of the energy

emission Q{u)=uP depend upon the temperature of the medium
u=u{x, t)=0.
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We shall assume the initial function (2) satisfies the following hypotheses:
o=y ()0 . RY r=|x|; M, =sup uy<loc:
uy () 18 the continuous function in R} =(0,ee), (3
(0 k) () =0,

Under these hypotheses, there exists the unique weak local (in time)
solution u=uwu(r, ¢} of the problem (1), (2). which is nonnegative continuous
functionin RYx (0, T), where T€(0,ec]is a [inite or an infinite existence time.
See a full list of relercnees given in [11]. Notice that u(r, 1) is the classical
solution at any point (r, £) where w(r, 1) is strictly positive,

“I'he main results of the paper are devoted to the analysis of the behaviour
with time of the temperature at the singie point x=0. This yields the
conditions on the initial temperature for the ignition of the combustion
process at the single point x=1{.

We shall consider two types of the monotone behaviours of # (0, 1).
Property (ML) (Monoronicity of the Large sofution): there exists a

constant A, >0, depending on the initial {unction, such that if (0. 1,) = M,
for some 1, €[0, 7). then

w, (0.0 =0 for all 1€[1, 7). (4)

Property (M) (Monotonicity for arbitrary 1):
t (0, ¢y doesn’™t decrease in {0, 7). (5)
We show that above propertics (ML) and (M) depend on the initial
function &y, the dimension of the space V= | and exponents o, § of equation
(1). These properties are quite different Lor flive cases: 1) 1<{8<la+1, 1)
B=o+ 1 i) o+ 1<<B<LB.. iv) B=£., v) B> B.. where
B.=(o+ 1y (N+2)/(N-2)lar N>2 (8. = for N=1,2) (6)

is the critical Sobolev exponent for the nonlinear elliptic operatorin the right-
hand side of {1).

Let B, = {r<{g} be the ball in RY of a radius £>0 with the boundary
S.={r=¢e}. D,= R"\ B, and denote

I (r)=cor=A=2 200D [ >0,
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N(N=-2)71 =2 4o+
(= [————] (N>2);

4

hir)=c r~2B=6TNl [or r >0,

(7
(-=[";—'—ng-: B S
Nowolr) = oo r=21B=1sF D] for >0,
2o+ D[B(N=2)— N(o+ 1)] ) -111B—@+]
Cw:{ =t T } '
(B>(@+NN/(N=2) for N>2).
We now state the main results of the paper.
Theorem 1 (1 <B<g-+/). Let I<<B<o+ [ and let (3) holds. Then
(1) If uy(r) satisfies
there exists a large constant R>0 such that uf™' is _
uniformly Lipschitz continuous in Dy, ®
then (M1.) holds.
(i) If u§t'(r}e C and
™)) | =0 (rB¥ot et 1=R) g5 r—teo, 9
then (ML) holds.
(i} If ugt'(r)e C! and
TS Fullr) (IN>0 i {r> 010> 01, (10)

then (M) holds.

Theorem 2(B=0a+/1} Let B=o+ ] and ler (3) holds. Then

(1} If uy(r) satisfies
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there exists small enough €20 such that
uf ™ is Lipschitz continuous in {zy—e<r<z,}, o
where 2,01 is the first zero of Bessel funciion iy sy, then (ML) holds.
(i) If ug™ (r)e C' and
WS ) () rfN>0 in {0<<r <<z} 1y > 01, {12)
then (M) holds.

(11) If 1wy (v} is the nondecreasing function in {0<r<z\}, then (M) holds.

Theorem 3 (o + /<<B<B.). Let o+1<B<B. and let (3) holds. Then

() If for some smalf £ >0

ul™ (r) is Lipschitz continuous in B,, (13)
then (ML) holds,
(i) If u§™ (r)e C' and
(™ () Fuf (1) r/N>00in {r> 010y > 04, (14)
then (M) holds. o

(iii} If wy (r) is the nondecreasing funcrion in {r<_l)},
where

1= ¢, (1 (0 ))~1B=toF+ 0112 (15)

and ¢, = ¢, (a, 8, N) is some positive constant, then (M) holds.

(iv) If wy(r) is the nondecreasing funciion in {r>> 0wy (r)<hi(¢)}, then
(M) holds. '

(v) Letlo=sup{a>0 | w,(r}is the nondecreasing function for r (0, a)} > ().
Then (ML) holds for

My = (1Bt o1
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Theorem 4 (B=B.). Let B=B. for N=3 and let (3) holds. Then
(i} If uy(r) satisfies (13) for some €20 and
Ur)(r)>()./l()r ah’r>0. (!6)

there exists constant my >0 such that
(167
U (r) > 1y - r=(N=20F 1) for anv large r >0,
then (ML) holds.
(ii) Assertion (ii} of Theorem 3 is valid.

(iii) if wy(r) is the nondecreasing function in {r>0| wua (r)<h* (r)}, then
(M) holds.

Theorem 5 (B> B.). Let B> B, for N=3 and let (3) holds. Then

(i) Let wuy(r)=ha.(r} for a unique point r=r.>>0, uyeC' in a small
neighbourhood of r=rs and wy(r-)>hio (r:). Let for any sufficiently small
e>0 theset [r>0||uy(rlho(ri— 1| <el be a finite connected interval
containing the point r=r«. Then (ML) holds.

{ii) Assertion (ii} of Theorem 3 is valid.

(iii) If wy(r) is the nondecreusing function in fr>>0| u,(r)< h (r)}, then
(M) holds.

Proofs of Theorems 1-5 are based on intersection comparison of the
solution u(r, t} with the set of the stationary solutions {7}, Therefore, we
begin with the analysis of the set {U].

2. SOME PROPERTIES OF THE SET OF THE

STATIONARY SOLUTIONS

We now describe some well-known properties of the stationary solutions
U (r; A) satisfying

AUt + U= 1= (V=1 (Uoth),), + UB=0 for r>>0,
U(0: )= A>0, (17)
U, (0;A) =0,

where A >0 is an arbitrary fixed constant,
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One can see that equation (17) is invariant under the sell-similar
transformation and hence

D d)=AUrA D), m=[B—{o+ 1]/2, for any fixed A>0,  (18)

It is well-known (see e.g. [10]) that {for 8= 8. any solution of {17) is strictly
positive {or all r>>0 and U(ee:A\)=0. For [<{B<A. the function U(r:A)
vanishes at some point r=/(A), where

N = (19)
(e, 8, M=M{1>0 1s given in (15). In this case we let U(r;A)=0 for
r>[(A). For = 8, we formally let {(A)=tco.

Thus, for 8> 1 we have introduced one parametric set of the stationary
solutions { U(r N): A= 0} (U{r;0)=0). In all cases for arbitrary fixed A>0
U (r; A) is the monotone decreasing funcuion in the domain of positivity. The
function U(r: A} is the continuous function with respect to r and A. From
well-known properties of solution of the Cauchy problem for the ordinary
differential equation (17) we get that there exists the continuous dependence
on A of the solution U(r;A) in any compact from R! and the derivative
(U7, in any compact from the domain w (A)—[0./{\)) of positivity of the
stationary solution.

The case Be (1, 0+1). For B€(l.o+1} from (19) it follows that
/(A) —-Foe monotone as A — +eo, (20
Identity (18) vields the following conditions
UriA) — + oo uniformly in [0, //2] as A — + oo, (21)
(U1, {r; A\) — — o uniformly in [//2./] as A — + . {22)
Introduce for a fixed constant M2>0 the set g(A, M)={r>>0|
O<TU (r:A)<<M}. From (18). (19) one can obtain the following estimates:
if re g(A. M) then
r=HAN (I+ao(l))—ocas A —oo,
(227)
|(Ua+|)r (r: )] =&y priBtet N 2 (1 4+ (1)) — oo as A — o0,
where &, =k, (v. 8, N) >0 is some constant.

The case §=oc+ I. In this case equation (17) has the explicit solution

Ui Z Ug(n Ay = MEU(N/ 22" S (), r€[0, 23) (23)
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where y=(N—2)/2, I'(N/2) is Euler’s Gamma {unction, zy s the [irst zero of
Bessel function J,{r) (U(zx: A)=0).

For any fixed arbitrary small e >0
Us—tee uniformly in r €0, zy—£] as A — -+ oo, (24)
(U2, — —oo uniformly in r&[zy—e, zy) as X—-+oo. (25)
The case B€ (o+1, B.). Then it fellows from (19) that
{{A)— 0 monotone as A — + oo, (26)
and properties (21), (22) are also valid.

The case B=BAN=23). It 1s well-known [12] that for 3=8., N=3,
equation (17) admits the explicit strictly positive solution

N(N-2) {¥=2} Aa+1)
UriA)=A- [ N (N — 2)+ \éto 1 (N=21 2 ] (27)
for r>0. It has the following properties:
Ulr Ay=cg A=t p= (V=201 (T o (1)) as r— oo, (28)
where ¢; =[N (N=2)]\¥-2 2ot 1),
U(r; A)— 0 uniformly in any set [8, +o0) ag A — oo,
(LOFD (r Ay — —oo unifor;nly in any set t29)

1r=>0m < U AN=my ) as A—oo,
where 8, 11, <Umy are arbitrary fixed positive constants.
The case B> B.. N=3. Then U(r:A\)>0 for any r >0, U/{+o0: A)=0 and
there hold [10]

U(r; A) = ha (1) (1 0 (1)),
(30)
UMy =he(n (It o(l) as r—+ee,

where the function A..{r) is given by (7). From (18). (30) one can casily verify
that (or any fixed 8 >0

UM e (r) - 1. (3H
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Ur:A) o (r)—1 uniformly in any sct [§,+o2) as A — oo,
The estimates of U(r, A). The first estimate holds for arbitrary 5> 1. By

using monotonicity of the function U{r;A) for r>>0 we obtain the following
inequality

PN YUt ), == UEZ=— M or k20,
Integrating twice this inequality yiclds the lower estimate

U(r: M= U = A (1 — 2 )l for 120, {(32)
where ry=r; (A)=(2N)! 2-A-[B=toi ]2,

By integrating equation (17) and by using the monotonicity of the
function U(r; X) for #2500 we get the fellowing inequality:

(L), + Uﬂﬁr < for r>0. (33)

The second estimate lor g€ (o+ 1, + o) we shall derive by integrating (33).
Then we have for r > '

L}

r[B—(o+1)] ]—Iflﬁ—to'ﬂn
2N (1)

Uirn= [A-“’—‘“*“'I-F
and hence
U \)=h(n,r>0, for any {ixed A >0, (34)
where A (r) is given in (7).
The tangent curve. Upper estimate (34) implies that for any 82> o+ 1 there

exists the tangent curve L= L (r) of the set { U{r; A} and the following upper
estimale

L(r)=sup UGN =h(r) for r>0 (35)

holds. Moreover, from (32) for 8> o+ 1 we obtain the lower estimaté of £.{(r):

Lir)= L_(r)E;s;l;R U_{riAy=c¢y =2 1B=tot Dl for 20, (36)

where

_ B_(o+|) l(a%l)[2N(0+|)]I[B—ta+l)]
C“*[ B ] 8
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For = f, the tangent curve can be calculated explicitly:
L{ry=h*(r) for r>0,

where the function A* (r) is determined by (7).

3. INTERSECTION COMPARISON

1. Let w{(X)={0,/(\)) be the domain of positivity of the function U{r; A)
for fixed A >0 (w(A)=[0,+ 2} for = 4,). Let N(r;\) for lixed r[0, 1) be
the number of intersections of the functions w(r. 1) and U{r; A) in w(A) (sce
e.g. [6]—[8], [15]) or, which is the same, the number of sign changes of the
difference w{r, 1) — Uf{r; A) [1], [14], [16]. This implies that the functions
u(r,1)and U(r,A) are positive in a small neighbourhood of any intersection.
Since the solutions u (¥, 1) and U{r; A) are classical there, each intersection is
an 1solated point for any fixed + >0 [1], [13], [16]. Without loss of generality
we shall assume that for r=0 and for all A>0 there exist only points of
intersection, and N (0; A) <+ oo,

- The following Lemma ! is well-known for classical solutions, see [1], [6].
[71. [13]-[16]: for weak solutions ol degenerate equations see results in [8],

[15].
Lemma 1. Fix arbitrary N>0. Let (3) holds and N{0:\)<eo, Then
NS N@ )T IFN@©O: A= for some fixed N> u, (0), then
N A= for any 1e(0, T), (37)
Proof. Below we use the standard technique of construction of the weak
solution of the Cauchy problem (1), (2) [I[]. Fix an arbitrary small ¢ >0 and

denote

ty, (x)=max {uy{r), e} >0 for r=0. (38)
Clearly, wg, (x)— 1, (r) as € — 0 uniformly in R¥. The Cauchy problem for (1)
with initial function (38) has the unique classical strictly positive solution

t, (v, ()=¢ In RYx (0. 7)) [3]. Moreover (see [11] and references therein)

. (r,ty—~u(r,)ase—0 (39)

uniformly in any compact set from R¥x (0, 7).
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Let M. (r; M) Tor fixed 1 €0, T) be the number of the points of intersection
of the solutions w.{r.r) and U(r;A) in w(A). One can scc that N (0;A)=
N (0: M)+ 1 (one additional point of intersection «given» in the right-hand
side of the last inequality can arise on the boundary r=/(A) ol w(A)).
Consider for arbitrary lixed /£(0, 7) the domain QN =w(M)x{, ). I is
well-know that N, (r; A) is not greater than the number ol the sign changes of
the dilference w, (¥, £; M) =, (r, t}— U{r; A) on the parabolic boundary of {X(7)
(11, [13). [14], [16]. Since w, (/(A), >0 for all 1€(0, T} we get the inequality

N AN =N (N for 1€(0, 7).
From (39) by using the continuity of «(r, 1) we can conclude that
N V=N (A for any small e >0,

and hence N M Y=< N(0;A) 1.

[f A=y (0) and MN{O; A)=0or I, then it is easily seen that ¥, (0; A)y=1 for
any small £ 2> 0, Then in both cases we have N (1 A) = I for all r£(0, 7), which
completes the proof.

2. Comparison with the set of the stationary solutions. The following
two Lemmas 2, 3 are based on the analysis of the number of intersection of
the imtial function w4, {(#) with the set {{/(r A)} of the stationary solutions.
These Lemmas vicld the sufficient conditions for the properties (ML) and
(M)

Lemma 2 (property (ML))). Let (3) holds and there exisis A\«>> M| such
that

NO;N)=1 for all A> .. (40)

Then (ML) holds with M, =\,

Lemma 3 (properiy (M)). Let (3) holds and
NAO A= for all X2 Ny=1,(0),
(41)
w, (r)= Ui hy) in RL.

Then (M) holds.
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Proof of Lemma 2. Lt w2 {U(r: A)} and (40) is valid for some A.. Fix
arbitrary A > M. Let 4 (0, r,) = A for some ¢, € (0, T) such that u(0. /)<< for
all 1€(0,1,). We shall show that (sec also [4], [15. Chapter IV])

u(r, )= U(r;N) for all =0, (42)

Suppose (42) is not valid. Then from (40) and Lemma | it follows that
N A1

Consider the first case when N(£,; A)=0. Then w(r, 1)< U(riA) in w ().
Hence, without loss of generality we may assume supp u(r, £,) T w(A). Since
by well-known properties of the interface [11] supp w, C supp u(r.¢,) and
hence by Lemma | we have N(0: A)y=0. Therefore, uy(r) <= U(r;N) 1n w(X)
and w({(A), )=0 for 1€[0.7,]. Then by the strong maximum principle [3.
Chapter 1], applied for u(r, ¢) in the domain of positivity near the origin, we
get w (0, 2,)<<U(0; N\), whence the contradiction.

Consider the sccond case when N(r,; Ay=1, i.e. there exists one sign
change of the dilference wir, r,; \)=u(r. 1,)— U(ri A) in w{A). Then by using
the continuity of U/{r;A) with rcspect to A we get that there exists some
sufficiently small |e] > 0. A+ &> A+, such that the differcnce w(r, £,; A) has at
least two sign changes in w(A+¢g) and N(f,: A+e)=2. See the similar
analysis in [6-8], [15, p. 384]. This contradicts {37) and (40).

Thus, (42) is valid. Then by the comparison theorem u(r, 1)= U(r; A) in
w(A) lorallre(,, 7). Since u (0, t,)=r=U{;A)>0 and (0, 1= X for any
te{f,. 7) we obtain the inequality u, (0.1,)=0 and hence (ML) s valid
because A > A. is arbitrary.

Proof of Lemma 3. Since 1, (r)= U(r;Ay) in R by the comparison
theorem w(r, )= U (r. Ay) in RLX(O, 7). This implies that u(r, #) doesn™
decrease with time for =0 at any point r=r., where wy(r) = U(rs Ap) 220, In
particular, at the point r =0. The end of the proof is quite similar to the proof
of Lemma 2 with Ax=A,.

4, PROOFS OF THEOREMS 1-5

Proofs of Theorems -5 are based on the properties of the set of the
stationary solution and on Lemmas 2 and 3.

Proof of Theorem 1. (1) From (20)—{22) and (8) it follows that there
exists some sufficiently large A=A (R)>0 such that N(O: M) =1 for all
A Av. Then by Lemma 2 (i) holds.
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Notice that, roughly speaking, for 8= (1, o+ 1) the property (ML) doesnt
depend on the behaviour of the initial function w; (#) in a neighbourhood of
origin.

(i1} Estimates (227) with M = M, (see (3)) and the condition (9} imply that

for any sufficiently large A >0 the inequality ¥ (0; A)=1 holds. Hence by
Lemma 2 (i1) is valid.

(ii1) From estimate (33) and condition (10) we get the ordinary differential
inequality of the first order for the dilference z(rj=uy(r)— U(r; Ay).
A=ty (M) > 0:

(a(r)z),+hr)z>0 in w(A)Y N fuy>04, z(0)=0,

where a(r} and b (r) are some smooth nonnegative functions. Then by the

R.. Morcover. il for A > A, there exists some point of intersection r=r. of the
functions w, (r) and U{riA) in w(A), then (uy), (r=)> U, (r.: A}, This implies
that wy (ry= U(r, A) for all r > r. and hence N (0; A)=2 I, Then by Lemma 3 (i11)
is valid.

From (i) we have

Corollary 1. lLer BE(I, a+1) (3) holds and let u,(r) be a compactly
supported function. Then (ML) holds.

Proof of Theorem 2. (i) This is similar 1o the proof of (1) of Theorem 1.
Explicit solution (23) and properties given in (24), {25) are used,

Note that for B=0c -+ the property (ML) at the origin depends on the
behaviour of wy in a small elt neighbourhood of the point r= zy.

(i1} Sce the proof of (i) of Theorem 1.

(i) Denote Ay=14(0). Then w, (r)>> U, Ag)= Uslr Ay) for all r&(0, zy
since wy(r) is nondecreasing function in ({0, z4). Since U, {(r: A)<<0. re(0.zy).
forany A>Ajyand U{r,A\)=0lorr=z,. we get N(0; A)=1 and L.emma 3 can
be used.

The assertion (1) vields

Corollary 2. lLer B=oc+ 1, (3) holds and ler w,(r} be a compacily
suppoted function such thar sup {r> 0w, (r) > 03<zy. Then (ML) is valid.
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Proof of Theorem 3. (i) Properties (21), (22), (26) and the condition (13)
guarantee the inequality ¥ (0;A)==1 for all sufficiently large A >0. Hence
Lemma 2 can be applied. Therefore, the property (ML) depends on the
behaviour of the initial function near r=0.

(i1} See the proof of (iil) of Theorem I,

(1) Since U, (r; A)<<0 in w(A), which is the domain of positivity of the
function U{r; A), from (15), {18), (19) we get that u, (0)= U(0; wy(0)) and
1 (r)>> Utr; uy (0)) for r< (0, §y). From (26) we obtain the inequality N{0;A) =1
for all A= u(0). Now one can use Lemma 3.

(iv) Since i (r)=sup U(r; A) (see (35)) and 1, (r} is nondecreasing function
A>0 :

in {r>0]u(r)<h(r)} we get that uy(r)=U(r;uy(0)) for all r>0 and
N{O;A)=1 for all A>>1,(0). Then by Lemma 3 (iv) holds.

(v) See (19), (260) and the proof of (i) of this Theorem.

Proof of Theorem 4. (i) Choose § =¢ (see (13)). Then from (13) and (29)
for all sufficiently large A >0 there exists unique intersection of the functions
ug(ryand U(r; A) in (0, 8). By using (16), (16’), (28), (29) we get that there are
no Eoints of intersection in [6,e0), i.e. N(O;A}y=1 for large A>0. Hence,
{ML) holds.

(it} See the proof of assertion (1) of Theorem 1. Notice that for =8,
under hypaothesis (14) the initial function should be strictly positive,

(iii) See the proof of (iv) of Theorem 3.

Proof of Theorem 5. (i) Fix small §2>0 such that s..(8) > 2M,. By using
(31} for any large A >0 we can choose sulficientiy small ¢>>0 such that

U A (N — 11 <ty U r N () — 1] <e (43)

in [§,00), Since 1€ C' in the neighbourhood of umque point r=r., where
Uy (re )= hoa(rs) and g (re) > ho (1), from (43) for small £ 2> 0 and for all large
A>>0 it follows that there exists a unique intersection of the functions w, (1)
and U(r.A) in the connected interval { r >0 |uy(r)/ he (r)— 1 <<e}. Then by
LLemma 2 (ML) is valid.

(1) See the proof of (iii) of Theorem 1.

(i) See the proof of (iv) of Thecorem 3.
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