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ABSTRACT. In ¿bis work, we prove Unt every closed, orientable 3-manifoid M’
which isa two-fo¡d covermog of 53 branched overa ¡ink, has type sux. Thms imp¡ies that
M3 is the quotiení of ihe universal pseudocomplex K(4, 6) by the action of a frnmte
índex subgroup of a fuchsian group wmth presentation.

S(4,6)=Ca,, a
2, a3, a4/aí

3=a
2

3=a
3

3=a
4

3=aí a
2a3a4= 1>

Moreover, the sanie resu¡í is proved to be true in case M
3 being an unbranched

covermng of a two-fold branched covering of 53~

1. INTRODUCTION

To every closed, orieotab¡e, P. L. a-maoufold M~, A. Costa associated an
even unteger í (M’9, ihe so called «iype» of M~; ihe umportance of this new
xnvariant br manufolds ¡ies in iis relation with ibe existence of unuversal
pseudocornptexes (whose geometrical siructure is described in [C]).

Proposition 1. [C] — Leí M~ be a closed, orieaíable n-nian¿fo/d. If
t(M~)=2it, M~ is tite quorienr of tite universal pseudocomplexK(n+ 1, 2h),
by tite acr ion ofafinite íadex subgroup ofafucitsían group withpresearation
S(a+1, 2it)=<a

1, a2 a,,+¡/aíh=a,,h= ... =a,,±1~=a1a2... O,,±i= 1>.

Recent¡y. A. Costa aod L. Grasse¡¡i computed the type of every closed
orleotable n-nianifold, With n # 3, and obtained the followung resu¡ts about
ihe type of 3-niaoufotds.
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Proposit¡on 2. [Co O] — (a) Let M,~ be tite orientable surface ofgenus g.
Titen,

2 ¿ff g=0t(MP=I
otiterwíse

(b) Let M3 be an oríentable 3-maa¿fold. Titen,

2 ¿ff M½S3
6or ~ !vPisalensspaceL(p,q)

8 otiterwíse

(c) ¡Jet giJ~ be an oríentable n-man¿fold, wí¡h n=4.Titen.

¿ff ~

t(Mn)={ : otiterwise

Thus, it is an open probleoi to find whether ihe type of a given 3-rnanifo¡d
M3, duffereot from S3 and L(p, q), is 6 or 8 (on¡y t(S1xS2)=6 is durect¡y
computed).

In thus paper, We give a partial aoswer, by provung that, ¿fM3 isa rwo-fold
coveriag of 53 branched over a link, or ¿fM3 is an unbrancited coveringspace
of a íwo-fold brancitedcovering of 53, M3#S3, M3# L(p, q), riten ¡ (M3)rz6
(Proposutions 6 and 8).

As a consequence, WC obtain the possibiliiy of «represeoting» every tWo-
fold branched covering of 53 by means of a finite undex subgroup of ihe
fuchsiao group 5(4,6) =<aí, a

2, a3, a4/aí
3 = a

2
3 =a) = a? = ala

2 a3 a4 = 1>
(Corollary 7).

Moreover, a well-known resutí originally proved by Viro (L~~1, [Bffj, IITI,
[CG2]) a¡IoWs to assert, as a particular case of Corollary 7, that the group
5(4,6) is «unuversal» With respect to alí c¡osed, orientable 3-rnaoifo¡ds of
Heegaard genus tWo.

2. PRELIMINARIES AND NOTATIONS

Ibis paper, ¡ike [¿72]and [CYoG], that introduce and movestugate the new
invarxaot «type» for P. L.-nianifotds, bases itself on ihe possibility of
representung a large ctass of polyhedra, inc¡udung P. L.-maoifolds, by means
of edge-co¡oured graphs (see [BM], [FaO], (7 1’] aod their bibliography).
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An (a+l)-coloured graph is a pair (Ity), F=(V(P), E(I’)) beung a
multigraph (i. e. íoops are forbiciden, buí niultiple edges are al¡oWed) regular
of degree n+ 1, and y: E(F) —. A., = [0, ¡ ,..., aj being a proper ecige-colo-
ration of F (i.e. y(e)#y(f> for every pair e,f of adjacent edges). Por sake of
conciseoess, we sha¡l ofien denote the (a+ 1)-coloured graph (F, y) siniply by
ihe symbol 1’ of lis underlying multigraph.

Por each ACA,,, we set f’Á=(V(r), y~ (A)); each conoected connponeot
of ~A us said tobe a A-residue of E. Note that every {i, J}-residue of 1’ (i, JE A,,)
xs a cyc¡e whose edges are ahernaíively coloured by i and 1; ihe (eveo) number
of ihese eciges is ca¡¡ed the valence of the fi, j}-residue.

A 2-ceil embeddung [kV]f: 1 FI — F of an (n+l)-coloured graph (1’, y) mio
a closed surface F, is said to be regular if ihere exists a cyclic permuiation

e,,) of A,, such that each region of f(i.e. each connected coniponent
of F—f(IFI) is bouoded by the iniage of an [e1,e;±íjI-residueof F(íc7,,~1).

Actually, for every (n+l)-coloured graph (E, y) and for every pair (e, r’)
of cyclie perniutations (tw

1 being the inverse of e), there exists a uoique
regular enibedding of (E,y) ioto a closed surface F~; moreover, F, is
oruentable uff E is bupartite (see [O]).

Definition 1. Tite ¿ype rÁf’) of att (n+1,)-coloured graph (E, A) with
respecr to rite cyclíc permutation e of A,,, is tite less cornmon multíple of rite
valences of al! fe

1, g,+ij-residues of(f’, y), íE Z,,.

Defrnition 2. Tite rype T(F) ofan (n+1)-colouredgraph (E,y)is deflaed
by:

X (A,,) being tite set of al/ cyclíc perniura¡íons of A,,.

Every (n + ¡ )-co¡oured graph (E, y) provides precuse instructions for
constructing an a-dimensional pseudocomplex [HW] K(YD, which is said to
be represented by E: ihe n-siniplexes of K(E) are un bijection with the vertices
of E, while the identifications between íthe (n— 1)-dumensional faces are
indicated by the coloured eciges of E (see [FO 0] for the detailed construc-
tion). By abuse of language, WC Wull obten say thai (E, y) represeots ¡ K(F)I
and every homeoniorphic space, too.

A crysralliza¡íon of a c¡osed n-rnaoifold M~ is an (n + ¡)-co¡oured graph
(E, y) representing M~ such thai E; is connected for each íE A,, (Where
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¡= zX., .—{i}). A theorem of [P] ensures the existence, for every closed a-
manifo¡d M~, of c?ystallizatuons of M”(aod heoce of (n+l)-co¡oured graphs
representing Ma); moreover, ib (1’, y) represenis M0, then Mt is orientable uf
and only ~f fi isbipartute.

Definition 3. Tite type ¡ (Ma) of a closed a-nianfold M~ is deflaed by:

t(M~)=mun [i-(P) ¡ (1’,y) represenís M”j.

3. TWO-SYMMETRIC CRYSTALLIZATIONS

Jo [E’], Perri describes ao algorithrn for constructing a crystallizatioo F(L)
of the (closed, oruentable) 3-rnanifo¡d Whlch is the (cyc¡ic) two-fo¡d covering
space of S~ branehed over a lunk S~ startung fi-orn a given bricige-presentation
11 of 2’; the construction Works as folloWs.

LetL=(B
1,..., Bg;bi bg) be the guveo g-bridge presentation of -k B,

beung ihe bridges and b, being ihe arcs (for basic knot theory, see, for
exaniple, [BZ]). If ir is ihe p¡ane contauoing alí arcs b,, denote by a, ihe
projection of B,on ir; ¡>=(~í a,,; b~ b,,) is said tobe dxc planar projee-
boa of L. We cao alWays assurne that P is connected; otherWise, it cao be
made lo be connected by isotopuog arcs of P to pass «in and out» under
bruciges of differeoí components. For every iEN,,=fI gj, draW an ellupse
E, on ir haviog the bricige-projection a, as pruncipa¡ axis and intersecting the
arcs of ¡‘un exact¡y 2(it,+1) poiots P/ P~(h,+l>, Where it, 1$ the number of
undercrossings of B,. Let V be the set of al! the points Pfl j= 1 2(/i,+ 1),
i= 1 ,..., g. The elemeots of y subdivide the ares of Pinto edges; ¡et C (resp.
D) be the set of ihese eciges Whmch are interna¡ (resp. external) to the ellipses.
The e¡emenís of V subdivide the e¡lipses mio eciges, too: let F be ihe set of
these eciges. Colour the edges lo D by 2 and colour the edges of ihe ellupse E~
a¡teroatuvely by O aod 1; then, complete the co¡oratuon 00 E’ by and O aoci 1
so that Cadi reguon of the planar 2-ecli embedding of FU O is bounded hy
edges of on¡y two co¡ours. Let a be the unvo¡utmon on y Which exehanges the
end-points of the edges of C aoci fixes ihe end-points of the bridge-projections
of P; leí 8 be ihe unvolution on V Which exehanges ihe eod-pounts of the edges
of D. Draw a further set D’ of edges, each connecting a pair of e¡emeots of V
corresponding under the involution a ¿a, and fina¡ly colour al¡ ihese edges
by 3.

If Fis the graph Whuch has Vas vertex-seí aoci D U D’U Fas edge-set, and
ib y is ihe described ecige-coloration 00 fi, then (fi, ‘y) = F(L) is proved to be
a crystaiiuzation of dxc íwo-fold covering space of 53 branched over the ¡ink
2’. Note thai the iovo¡utioo a, which niay be thought of as an axial symnietry
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on ihe plane ir, exehanges co¡our O (resp. 2) with co¡our 1 (resp. 3) un F(L);
for this reason, ihe crystalluzations F(L) resulting from Ferri’s constructuon
are saud to be 2-syrnnieíric.

In [CG2] every closed orientable 3-manifold M
3 of Heegaard genus two

is proved to admit a 2-symnietric crystallizatuon; this leaded to an easy proof
of the foilowing we¡¡-known result.

Propos¡t¡on 3. [Vi] [Rl?] [7][CG
2]— Every closed, orientable 3-nianí-

foid M
3 of lieegaard genus uvo is a ívvo-fold covering space of S3 branched

over a link.

4. COMPUTING THE TYPE OF TWO-FOLD
BRANCHED COVERINGS OF S3

Leí P=(a~ ,..., a~; b
1 bg) be the planar projection ofag-bridgc presen-

tation 11 of a link ..2~ a, beung ihe bridge-projections aoci b, being the arcs; leí
ir be dic plane contaioing P. The connected co¡npooents of n—P are said lo be
ihe regions of 1’; note thai every region of Fis alternatuvely bounded by pieces
of bridge-projectioos and pieces of arcs of L. We shall calI edge to such pieces
of bridge-projectuoos and arcs.

Definition 4. Tite valence of a region 11 of Fis tite (even) nuniber of its
boundary-edges.

Definition 5. Pie valence of tite planarprojecrion Fis rite less coninion
niultz»le of tite valences of di regions of P.

Proposition 4. Every /iak 2’ admits a brídge-presenratioa E witose
planarprojecrion A has valeace six.

In order to prove Prop. 4, we need the followiog lemnia.

Lemma 5. Let P be the planar projecr ion of a brídge-presearaííon of a
link 2’ Lcr O(P) be tite pseudograpit witich itas a verrex vÉ,~ for every region
RofF, andn=Oedgesbetweenv,< andv~., ¿fOl? atid dR’ conram a cotnnion
pieces of bridge-projections.

Pien: a) 0(P) is a niultigrapit (i.e. ir con¡aías no loop);

b) 0(P) is conaecred.
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Proof.

a) Let us suppose 0(F) to contamo a ioop based on the vertex VR. This
nieans that the region 11 of P conta¡os a puece of bridge projection, & say,
tWice in uts boundary; ihus, chosen an unner point A0 of &, it us possible to
draW un ir a closed simple curve u(~Sí) Whosé pounts belong lo RULAOII . On
the other haod, the projectuon mo P of the componení of the ¡iok 2’
cootaining & is a closed curve T in ir whose double points, ib any, are also
double points of P. Then, u intersects r only io the regular point A0, aoci ihis
is an absurd.

b) Let us suppose 0(P) to be nol connected. Leí 0’ be a connected
componeot of 0(P) oot cootauning the vertex v,~ 1? beiog the uo¡imuted
region of 1’; let ~R be an arbitrary vertex of 0’. IL R1 ,..., 11, are ihe regions of
P such thai. for ic{ ¡ ,..., t ji, va., is adjacent to v~ in 0’, attach each R1, one at
a time, to R0, by nieaos of ihe conimon pmeces of bridge-projectioos iii themr
bouodaries; then, repeat the same process for every attached region, and so
on, until exhaustung ah reguons 11 such thai ‘QRE V(G9. Sunce every region us
a 2-bali and P is p¡aoar, at every stage a 2-bali (possibly Wuth holes) is
obtained; leí D

2 be the 2-bal¡ (With holes) Which results at ihe ernd of ihe
process. It is easy to check that 3J32 is the projection lo P of a componení of
Ihe ¡iok &~ Whuch contains no piece of bridge-projectmoos; this cootradicts ihe
hypothesis thai 2’ is bridge-presented, smnce every component of the link
must contain both bridges and arcs. U

Proof of Prop. 4.

The proof consisísun the fo¡¡oWung tWo steps.

la s¡ep: We wihI prove that S<>admits a bricige-presentation 11* such thai
the maximum amoog ihe va¡ences of the regions of uts planar projection 1»
us=6;

2nd step: Startiog from U, we wil¡ produce the requured brucige-
preseritatuon L of S¿1

/s¡ step.

Leí P be the (conoected) planar projection of a given bridge-presentation
11 of .S=~suppose that the maxumum among the valences of die reguons of 1’
ís rn>6 (otherWise, start wmth ihe 2nd step). Leí R be a region of P haviog
valeoce ni, and leí &í, 13 &,,,¡í, /3m/2 be ihe sequence of its boundary-edges,
consistení Wmth a fuxed orientation of ir, a~ being pieces of bridge-projectuons
aoci /3, being pmeces of arcs of L. (Pug. 1) First of ah, isotope /33 lo pass «jo aud
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Fug. ¡
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out» under a1, so that 11 gmves rise lo a reguon 11’ of valence sux (bouoded by
a, ¡3, &2, ¡~2, &3, ¡33) aoci aregion R”of valence rn---4; note thai tSe move acicis
a new piece of are /3 to the bouodary QQ of the regioo Q(#R) of)’ cootaining
a~ and a new piece of bridge-projectioo ¿1 lo the boundary 07 of the region
Z(# R) of Pcontainiog ¡%. Thus, at thus stage, the reguons Q aoci 7 have their
valence uncreased. (Fig. 2) Hoxvever, lemnia 5 (b) ensures ihe existence of a
sequence Qí, Q2 Qh ofregioos of P,suchthaí Qí~Q’ Qh~Z, andc9Q1and
~.Q,±í contain ihe sarne piece of bridge-projection &¡, for each iE¡ 1 it—J);
moreover, mt can be assumed thai the va¡ence y (Qe) of the reguon Q is
different from two, for each iEf 1 it—lji, and, if v(Z)>6, that the brmdge-
projection &h1 was not adjacent in Pto tSe piece of ~rc ¡33. Then, br each
íE{ 1v.., h~~l ji, isotopethepiece of are /31(wuth j%~fl~ unaQ1to pass «in and
out» under the piece of bridge-projectuon d,, so that a new 2iece of are fi1+1 is
added to ~Q,± and Q~ gmves rise to a «central» region Q~ of va¡ence four
(cootamnung d, in its boundary) and two regions_Q,’, Q of valence oot greater
ihan v(Q4 Pina¡ly, isotope the puece of are flh un az lo pass «~n aoci out»
under &. (Fig. 3) Note thai tSe aboye sequence of moves, besudes strictly
lowering ihe valence of 11, has increased the valeoce of no reguon of 1’. Hence,
a (finite) mteratmon obviously ¡eads to a planar projection 1» of 2’ such that
tSe rnaximum among tSe valences of lis regions is =6.

2nd step.

Let L* be a bricige-presentation of £( such that the oiaxumuni aniong the
valences of tSe regioos of uts planar projection P’~ u~=6.In order lo obtain
Ihe requured bricige-presentatuon 11 of 2’, it us necessary to «adjust» a¡¡ regioos
of 13* having valence four, in order to generate regions of valeoce two or six
oo¡y.

Pirst of alí, note that two reguons R, Q of ¡>41 havung valence four may
obtaun, together, va¡eoce six, if they are in one of ihe folloxviog situations:

a) OR aoci QQ contain the sanie puece of bricige-projection &;

b) 611 and QQ contain the same pmece of are /3;

c) dR and QQ cootain the sanie vertex A (u.e. ao edge /3’ of dR andan ecige

fi” of QQ are pieces of tSe same arc of L*).

In fact: lo case a), it is sufficient to iotroduce, withio ¿1, a new are /3
without overcrossings; un case b), it is sufficient to introduce, wuthio /3, a OCW
are & wuthout uodercrossiogs; un case c), ~fa’ is tSe puece of bricige-projectuon
adjacent io A to /3’ aoci belonging to dR, it is sufficieot to isotope tSe puece of
are fi” to pass «un and out» under a’. (Fig. 4 (a), (b), (e)).

On tSe other hand, note that a single region 11 of P~ having va¡eoce four
may obtaun valence six, Ib ut is in ihe followiog situation:
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Fig. 2



Mar>0 RILO CasO¡’

24~

ViS~ ~



Two-Fo/d Bratiched Coverings of S~ Have Type Sa 245

a)

R O —* IR 1
ID)

RQ

R -

a

IR

Hg. 4

RQ

RA



246 María Rita Casa/i

d) dR cootains a vertex A which ms an eod-poiot of a bricige-projectuon
of L41.

lo fact: if al aoci fi are respectively ihe piece of bridge-projectuon aod the
piece of arc adjacent in A and betooging to dR, ut us sufficueot to isotope /3í to
pass under &l froni the side opposite to 11, before arruving in A. (Fig. 4 (d)).

It is easy to check thai the moves suggested in cases a), it), c), d) do not
affeet ihe valeoce of ihe other regioos of ¡‘41, and rnerely introduce (in cases
c) aod d)) new regioos of valeoce tWo. Thus, it is a¡Ways possible to obtaio
froni 1341 a new planar projection P41’ of % such thai the rnaximum among
ihe valences of its regions is exactly six, aod ¡>41’ does nol contain regioxis of
valeoce four be¡ongiog to the cases a), it). c) or d).

Ib the va¡eoce of ¡>~‘ u~ six, the thesis is proved; otherwise, ¡et 11 be a region
of P~’ haviog valence four. As usual, denote by &í, /3, a~, /3~ the sequence of
its boundary-edges, consisteot with a fixed oruentatuon of ir, a

1,a2 beiog
pieces of bridge-projections, /3~. /3=being pieces of arcs of ¡J*’~ The properties
of P~’ ensure diat at ¡east one between the edges /3, and /32, /3 say, is such that
the region Q (# R) of ¡>41’ cootauning it has valence smx; ihen, usotope /3í to pass
orn aod out» under &, & beiog ihe oo¡y piece of bricige-projectuon io QQ oot
acijacení to úí or a2. ¡n this way, R obtaios vateoce síx — as requured —, whi¡e
Q sp¡its unto tWo regmons, Q’, Q” of va¡ence four, aoci a new piece of arc ~
acided to ihe bouodary OS of the region S(# Q) of P~’ cootamnung ti. (Fig. 5).

Note that QQ’ aod OS contaun two pieces (/3’aod /3”, respective¡y, say) of
the same are it; (i E{ ¡ ,..., g ji) of P’«’, which are both adjaceot to ti. Let
nl n2 fl¿/3i+¡ ¡r
p;, p; ~ be the sequence of the pieces of ihe are it;,
consístení wuth a suitab¡e oruentation of the component of 2’which contaios

sequence of the (not necessaruly dustmoct) regions of P’’ such that: 5, 5,
S2rn.~Q’. /3~ be¡ongs both to and to

052m~—j—j+í (xvhere the mdcx i of 5;
is written mod. (2ni9), and, for each íE {¡, 2v.., 2ni~— ¡ji, QS, aod dS¡~~
contain the same piece of bricige-projectuon &~. Note that &,,,.; and &=m

7jare
pieces of bridge-projectmons belonging to ihe sarne conipooeot of 2’ thao
b> Then, for each iE 1, 2 ,..., 2ni;— ¡1, msotope ihe piece of are J% wuth fi, = /3)
in OS, to pass «in and out» under the piece of bridge-projection 5,, so thai a
new piece of are /31± is acided to QS,~1 and a new pair of acijacení regions S/,
5/’ having va¡eoce four us p¡aced near £~ (Hg. 6) Note that, atibe eod of the
aboye sequence of moves, every region 5, comes back to uts oruginal valence
y (5<) in F~’, whm¡e the region Q’ obiaios valeoce six. Let now a

41 be the brucige-
projection of fl’ to whmch the adjacent pieces un dR and QQ (aí aod a*,
respectively, say) be¡oog, aod ¡et a”’+ be the connected cornponent of a41 — a”’
not contaioiog a

1; further, Jet 1< be ihe (possib¡y void) subset of {1,2
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2m;— ¡ji such thai, for every 1<6K, a,, be¡ongs to a*+, and leí k be the elenient
of K sucli that ak is the.closest to a”’ aniong ah ú4, kex. Tben by appiying
the move suggested in case a) to the pairs 5k’~ 5k-i-í” axid Sp’, &-~-í’ , is aoy,
aod the move suggested un case b) to the pair Se’, S,”, for each íE{ 1,2
2,n;—i ]—[k), the «adjustment» of ihe region R is obtained, with one only
new region Q” of valeoce four, However, ut Is easy to check that Q”, uf ~n
belooging to the cases a), b), c) or ci), is stricúy closer to an eod-poiot of the
brudge-projection a* (euther the one beloogiog to a*± ,or the new one, internal
to aO, ihan R was. Heoce, ihe exustence of a p¡anar projectuon P of 2’having
valence sux, easily fol¡ows by (finite) iteration. U

Example: By applying the procedure of Prop. 4 to ihe Montesunos link
2’= M(—2; (2,1), (2,1), (2,1), (2,1)) (see [82]) represented in Fig. 1, ooe
obtauns ihe valeoce six p¡anar projection of .$=representedin Pig. 7, passing
through ihe ones depucted in Pig. 2 and Pig. 3.

We are oow ab¡e to prove ihe main resu¡t of the papen

Proposition 6. ¡Jet AP be a (closed, oríentable) 3-man¿fold, whícit is a
rwo-fold coveríng space of 53 brancited over a línk 2’. Pien,

2 ¿ff M3= 53;
t(M3)= 4 ¿ff AP isa lens space L(p, q);1 6 otherwíse.

Proof.

Prop. 4 ensures ihe existence of a bricige-presentation E of 2’, such that
the planar projection A of E has valence six. Leí F(11) be the 2-syrnrnetric
crystalluzation of M3, obíained froni E by Ferri’s construetion. It is easy to
check thai F(L) contalos [0,2]—, [1,2]—, [1,3]— axid [0,3]— residues of
valeoce two or six, only; ihus, ib e u~ the cyclic permutation defined by
e=(0,2, 1,3), r~(F(L))6. The result 00W easily follows from the characte-
rization of the 3-rnanifolds of type íwo aoci four (see [Co 0]). U

Remark. IfM3 isa rwo-fo/d brancited coveríng of .9, tite rype of AP is
obrained by tite rype of a crysrallizarion of M3. It might he unterestmog to
know wheíher this happens in ihe general case, or noi.

The followipg result is a direcí consequence of the aboye proposition and
of Ihe existence of a pseudoconiplex K(n+ 1, 2h), which is «universal» wuth
respect to alí elosed orientable n-rnanufo¡ds of type 2it (see [C]).
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Fig. 7
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Corol¡ary 7. ¡Jet AP be a two-fold brancited covering space of 53• Titen,
¡itere exisís a finñe index subgroup N of a fuebsian group

S(4,6)=<a
1,a2,a3,a4/a,

3=a
2~=a3

3=a
4

3=a
1 a2 a3 a4 =1>

such titar

K(4,6)
N

Remark that prop. 3 ensures that the property siated in Corollary 7 holcis
for every closed orientable 3-manifold of Heegaard genus two.

5. FURTHER TYPE-SJX 3-MANIFOLOS

The present last sectuon is devoted to sbow that Prop. 6 actually implies
ihe existeoce of a very large c¡ass of type-six 3-manifolds, properly
compreheoding two-fold branched coveruogs of 53~

Por, the notion of m-coveriog — orugmoally due lo [V] —is needed.

Def¡nit¡on 6. ¡Jet (E, y), (1?’, y’) be (n+J)-coloured grapits. A map
f: V(I”)—. V(f) is said ro be an rn-coveríng, 1=m=n,¿f f preserves c-
adjacency for alí c E A,, atid is bijecrive witen resrrícíed la ni-residues.

The branciting (ni+1)-residues are the (m+l)-residues of (1’, y) covered
by at least one (ni + 1)-residue of (P’, y’) on whieh fis nol unjective.

The coveringfnaturally induces a topological map [fi : KJ”)— K(I’). An
n-covering induces an (unbranched) topologucal covering beíweeo the
underlying topologucal spaces, whule a ¡-covering induces a topologucal
covering branched over ihe (n—2)-subcomplex of K(J’) whose (n—2)—simplexes
are represeoted by the branching 2-residues of (1’, y).

We waot now lo il¡ustrate a standard method for constructung ni-cove-
rings of graphs representung maoifo¡ds, which wi¡¡ be useful for our purposes.

Leí (F,’y) be an (n +1)-coloured graph representing a closed orientab¡e n-
manifoid K(F) = M~. Suppose F~ connected, for some CE A.,, and ¡et L be the
(n—2)-subcomplex of K(F) represented by a (possibly void) given set
[C,, ~ C~} of 2-residues contaioing colour c.

If L=4 (resp. L#’t), theo a preseotation <X:R> of fl~(M~) (resp.
III, (M”—L)), called c-edge presentation, cao be obíained in the following way:
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*) the geoerators of X are ihe c-coloured eciges, arbitrarily oruented;

**) the re¡ators of R are obíained by wa¡king a¡ong al¡ the 2-residues of
F cootainung colour c (resp. al¡ the 2-residues of E containiog co¡our
c; buí C~, C~ 4,), givung the expooent +1 or —lío each generator
wheiher the oruentation of the 2-residue is cohereot or not with ihe
orientation of the generator.

Note that, if F~ is not conoected, the c-edge preseotation can be obtained
in a símular way: it is sufficieot to complete the relators of 1? with a muninial
set of generators such that the correspondung c-co¡oured edges conoecí E1..
The existence of a one-to-one correspondence 4’ between transutive d-represeo-
tatioos <u of FI, (M”) (resp. FI1 (M~—L)) and d-fo¡d unbranched covering spaces
of M~ (resp. d-fold covering spaces of M~ branched over L), us wetI-koown
(see [E]); lo [CGt], thefo¡¡owing method is described for constructung an
(n+l)-coloured graph (1’, 5’) such that K(F)=$®:

— set V(l’)=V(F)xNd:

— for each 1< E 4— [4 and íE AId, join (y, ~ with (w, í) by a k-coloured
edge if y, w are k-adjacent in (E, ‘y);

— join (y, í) with (w, fi by a c-coloured edge if un (E, y) ihere is an
oriented c-co¡oured ecige x1 from y to w and <u (x,) (0=i~

It is easy to check that the projection map f: V(I’)— V(I’) defined by
f((v, í))=v for every ve V(F) and ¿cN3, is a 2-coverung (resp. a l-covering
haviog C1, ~2 4, as branching 2-resudues).

Asan application of the prevuous constructuon aod of ihe results of section
4, we have the foilowing existence theorem for type-sux 3-manifolcis.

Proposition 8. II AP (AP # St L (p, q)) is att unbrancited covering of a
rwo-fold branched covering of 53, riten t (M

3) E 6.

Proof.

Let M3 be a two-fold branched covering of St and leí ¿o: fi, (AP) — 5d be
the mooodromy associated to the unbraoched d-fold coverung space M3 of M3.

Prop. 6 ensures the existeoce of a crysta¡luzatioo (E, y) of M3 such that,
for e = (0, 2,1, 3), r~ (E) = 6. If ce A

3 is ao arbitraruly chosen co¡our of (E, y)
and <A’; 1?> is the c-edge presentarion of fl1 (M

3), theo the constructuon
aboye described yields a 4-coloured graph (t, 9) representing AP = 4’ (<u) aod
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such thai rdl’)=6 (because of the 2-covering f: V(f)—. V(F)). Heoce, ihe
ihesis follows. U

Actually, an eveo more general resu¡t holcis.

Proposition 9. ¡Jet <T’, y) be a 4-colouredgrapit represenring a 3-nian¿fo/d
Mt sucit titar r(17)=6 (e beíng a suirable cyclicpermutarion of A

3); ler L be
a subconiplex of K~) represenredby a (possibly void) given ser of {e~, ~Hi-
residues, for sorne c E ¿Xi. Titen, every covering of AP = K(~j) brancited over
¡J is represented by a 4-co/oured grapit (1’, 5’), sucit ritat r, (1’) = 6.

The proof is ao obvious adaptation of the one of Prop. 8. U

Remark. Ihe fact that 773 = 5’ x 51 >< 51 is not a two-fold branched
coverung of 53j~ well-known ([Fox]). Neveriheless, Prop. 8 ensures r (77~) = 6.
In fact, V is ihe (unbranched) iwo-fold covering of the Selfert nianifold
ST(S==2=)=(OoOI—2;(2,1), (2,1), (2,1), (2,1)), which is the two-fold covering
space of S

3 branched over the Montesinos link M(—2; (2,1), (2,1), (2,!), (2,1))
of Fig. 1 (compare [M]).

Since Proposutions 8 and 9 yield a very large class of type six 3-manifolds,
ihe followiog two questuoos oaturally arise:

— There exists a 3-maoifold with type eight?

— There exists a 3-maoifold without any group action wuth type six?
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