Two-Fold Branched Coverings of S^{3} Have Type Six (*)

Maria Rita Casali

Abstract

In this work, we prove that every closed, orientable 3-manifold M^{3} which is a two-fold covering of S^{3} branched over a link, has type six. This implies that M^{3} is the quotient of the universal pseudocomplex $K(4,6)$ by the action of a finite index subgroup of a fuchsian group with presentation.

$$
S(4,6)=<a_{1}, a_{2}, a_{3}, a_{4} / a_{1}{ }^{3}=a_{2}{ }^{3}=a_{3}{ }^{3}=a_{4}{ }^{3}=a_{1} a_{2} a_{3} a_{4}=1>
$$

Moreover, the same result is proved to be true in case M^{3} being an unbranched covering of a two-fold branched covering of S^{3}.

1. INTRODUCTION

To every closed, orientable, P. L. n-manifold M^{n}, A. Costa associated an even integer $t\left(M^{n}\right)$, the so called "type" of M^{n}; the importance of this new invariant for manifolds lies in its relation with the existence of universal pseudocomplexes (whose geometrical structure is described in [C]).

Proposition 1. [C]-Let M^{n} be a closed, orientable n-manifold. If $t\left(M^{n}\right)=2 h, M^{n}$ is the quotient of the universal pseudocomplex $K(n+1,2 h)$, by the action of a finite index subgroup of a fuchsian group with presentation $S(n+1,2 h)=<a_{1}, a_{2} \ldots, a_{n+1} / a_{1}^{h}=a_{2}^{h}=\ldots=a_{n+1}^{h}=a_{1} a_{2} \ldots a_{n+1}=1>$.

Recently. A. Costa and L. Grasselli computed the type of every closed orientable n-manifold, with $n \neq 3$, and obtained the following results about the type of 3-manifolds.

[^0]1991 Mathematics Subject Classification: $57 \mathrm{Q} 15,57 \mathrm{M} 12$; 05C10, 57 M 25.
Editorial Complutense. Madrid, 1992.

Proposition 2. [CoG]-(a) Let M_{g}^{2} be the orientable surface of genus g. Then,
$t\left(M_{g}^{2}\right)= \begin{cases}2 & \text { iff } g=0 \\ 6 & \text { iff } g=1 \\ 8 & \text { otherwise }\end{cases}$
(b) Let M^{3} be an orientable 3-manifold. Then,
$t\left(M^{3}\right)=\left\{\begin{array}{l}2 \quad \text { iff } M^{3} \cong S^{3} \\ 4 \quad \text { iff } M^{3} \text { is a lens space } L(p, q) \\ 6 \text { or } 8 \text { otherwise }\end{array}\right.$
(c) Let M^{n} be an orientable n-manifold, with $n \geq 4$. Then.
$t\left(M^{n}\right)= \begin{cases}2 & \text { iff } \quad M^{n} \cong S^{n} \\ 4 & \text { otherwise }\end{cases}$
Thus, it is an open problem to find whether the type of a given 3-manifold M^{3}, different from S^{3} and $L(p, q)$, is 6 or 8 (only $t\left(S^{1} \times S^{2}\right)=6$ is directly computed).

In this paper, we give a partial answer, by proving that, if M^{3} is a two-fold covering of S^{3} branched over a link, or if M^{3} is an unbranched covering space of a two-fold branched covering of $S^{3}, M^{3} \neq S^{3}, M^{3} \neq L(p, q)$, then $t\left(M^{3}\right)=6$ (Propositions 6 and 8).

As a consequence, we obtain the possibility of «representing» every twofold branched covering of S^{3} by means of a finite index subgroup of the fuchsian group $S(4,6)=<a_{1}, a_{2}, a_{3}, a_{4} / a_{1}{ }^{3}=a_{2}{ }^{3}=a_{3}{ }^{3}=a_{4}{ }^{3}=a_{1} a_{2} a_{3} a_{4}=1>$ (Corollary 7).

Moreover, a well-known result originally proved by Viro ([Vi], $[B H],[T]$, [$C G_{2}$]) allows to assert, as a particular case of Corollary 7, that the group $S(4,6)$ is «universal» with respect to all closed, orientable 3 -manifolds of Heegaard genus two.

2. PRELIMINARIES AND NOTATIONS

This paper, like $[C]$ and $[C o G]$, that introduce and investigate the new invariant "type» for P. L.-manifolds, bases itself on the possibility of representing a large class of polyhedra, including P. L.-manifolds, by means of edge-coloured graphs (see $[B M],[F G G],[M$ and their bibliography).

An ($n+1$)-coloured graph is a pair ($\Gamma, \gamma), \Gamma=(V(\Gamma), E(\Gamma))$ being a multigraph (i.e. loops are forbidden, but multiple edges are allowed) regular of degree $n+1$, and $\gamma: E(\Gamma) \rightarrow \Delta_{n}=\{0,1, \ldots, n\}$ being a proper edge-coloration of Γ (i.e. $\gamma(e) \neq \gamma(f)$ for every pair e, f of adjacent edges). For sake of conciseness, we shall often denote the ($n+1$)-coloured graph (Γ, γ) simply by the symbol Γ of its underlying multigraph.

For each $\Lambda \subseteq \Delta_{n}$, we set $\Gamma_{\mathrm{A}}=\left(V(\Gamma), \gamma^{-1}(\Lambda)\right)$; each connected component of Γ_{Λ} is said to be a Λ-residue of Γ. Note that every $\{i, j\}$-residue of $\Gamma\left(i, j \in \Delta_{n}\right)$ is a cycle whose edges are alternatively coloured by i and j; the (even) number of these edges is called the valence of the $\{i, j\}$-residue.

A 2-cell embedding [W] $f:|\Gamma| \rightarrow F$ of an $(n+1)$-coloured graph (Γ, γ) into a closed surface F, is said to be regular if there exists a cyclic permutation $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ of Δ_{n} such that each region of f (i.e. each connected component of $F-f(|\Gamma|)$ is bounded by the image of an $\left\{\varepsilon_{i}, \varepsilon_{i+1}\right\}$-residue of $\Gamma\left(i \in Z_{n+1}\right)$.

Actually, for every $(n+1)$-coloured graph (Γ, γ) and for every pair $\left(\varepsilon, \varepsilon^{-1}\right)$ of cyclic permutations (ε^{-1} being the inverse of ε), there exists a unique regular embedding of (Γ, γ) into a closed surface F_{c}; moreover, F_{ε} is orientable iff Γ is bipartite (see [G]).

Definition 1. The type $\tau_{\mathrm{\varepsilon}}(\Gamma)$ of an ($n+1$)-coloured graph (Γ, λ) with respect to the cyclic permutation ε of Δ_{n}, is the less common multiple of the valences of all $\left\{\varepsilon_{i}, \varepsilon_{i+1}\right\}$-residues of $(\Gamma, \gamma), i \in Z_{n}$.

Definition 2. The type $\tau(\Gamma)$ of an $(n+1)$ coloured graph (Γ, γ) is defined by:

$$
\tau(\Gamma)=\min \left\{\tau_{\mathrm{v}}(\Gamma) / \varepsilon \in \Sigma\left(\Delta_{n}\right)\right\},
$$

$\Sigma\left(\Delta_{n}\right)$ being the set of all cyclic permutations of Δ_{n}.

Every ($n+1$)-coloured graph (Γ, γ) provides precise instructions for constructing an n-dimensional pseudocomplex $[H W] K(\Gamma)$, which is said to be represented by Γ : the n-simplexes of $K(\Gamma)$ are in bijection with the vertices of Γ, while the identifications between the ($n-1$)-dimensional faces are indicated by the coloured edges of Γ (see $[F G G]$ for the detailed construction). By abuse of language, we will often say that (Γ, γ) represents $|K(\Gamma)|$ and every homeomorphic space, too.

A crystallization of a closed n-manifold M^{n} is an ($n+1$)-coloured graph (Γ, γ) representing M^{n} such that Γ_{i} is connected for each $i \in \Delta_{n}$ (where
$\hat{i}=\Delta_{n}-\{i\}$). A theorem of [P] ensures the existence, for every closed n manifold M^{n}, of cirystallizations of $M^{n^{\prime}}$ (and hence of ($n+1$)-coloured graphs representing M^{n}); moreover, if ($\mathrm{\Gamma}, \gamma$) represents M^{n}, then M^{n} is orientable if and only if Γ is bipartite.

Definition 3. The type $t\left(M^{n}\right)$ of a closed n-manifold M^{n} is defined by:

$$
t\left(M^{n}\right)=\min \left\{\tau(\Gamma) /(\Gamma, \gamma) \text { represents } M^{n}\right\} .
$$

3. TWO-SYMMETRIC CRYSTALLIZATIONS

In $[F]$, Ferri describes an algorithm for constructing a crystallization $F(L)$ of the (closed, orientable) 3 -manifold which is the (cyclic) two-fold covering space of S^{3} branched over a link \mathscr{L}, starting from a given bridge-presentation L of \mathscr{L}; the construction works as follows.

Let $L=\left(B_{1}, \ldots, B_{g} ; b_{1}, \ldots, b_{g}\right)$ be the given g-bridge presentation of \mathscr{L}, B_{i} being the bridges and b_{i} being the arcs (for basic knot theory, see, for example, $[B Z]$). If π is the plane containing all arcs b_{i}, denote by a_{i} the projection of B_{i} on $\pi ; P=\left(a_{1}, \ldots, a_{g} ; b_{1}, \ldots, b_{g}\right\}$ is said to be the planar projection of L. We can always assume that P is connected; otherwise, it can be made to be connected by isotoping arcs of P to pass «in and out» under bridges of different components. For every $i \in N_{g}=\{1, \ldots, g\}$, draw an ellipse E_{i} on π having the bridge-projection a_{i} as principal axis and intersecting the arcs of P in exactly $2\left(h_{i}+1\right)$ points $P_{i}^{1}, \ldots, P_{i}^{2\left(h_{i}+1\right)}$, where h_{i} is the number of undercrossings of B_{i}. Let V be the set of all the points $P_{i}^{i}, j=1, \ldots, 2\left(h_{i}+1\right)$, $i=1, \ldots, g$. The elements of V subdivide the arcs of P into edges; let C (resp. $D)$ be the set of these edges which are internal (resp. external) to the ellipses. The elements of V subdivide the ellipses into edges, too: let F be the set of these edges. Colour the edges in D by 2 and colour the edges of the ellipse E_{1} alternatively by 0 and 1 ; then, complete the coloration on F by and 0 and 1 so that each region of the planar 2-cell embedding of $F \cup D$ is bounded by edges of only two colours. Let α be the involution on V which exchanges the end-points of the edges of C and fixes the end-points of the bridge-projections of P; let δ be the involution on V which exchanges the end-points of the edges of D. Draw a further set D^{\prime} of edges, each connecting a pair of elements of V corresponding under the involution $\alpha \delta \alpha$, and finally colour all these edges by 3 .

If Γ is the graph which has V as vertex-set and $D \cup D^{\prime} \cup F$ as edge-set, and if γ is the described edge-coloration on Γ, then $(\Gamma, \gamma)=F(L)$ is proved to be a crystallization of the two-fold covering space of S^{3} branched over the link \mathscr{L}. Note that the involution α, which may be thought of as an axial symmetry
on the plane π, exchanges colour 0 (resp. 2) with colour 1 (resp. 3) in $F(L)$; for this reason, the crystallizations $F(L)$ resulting from Ferri's construction are said to be 2 -symmetric.

In [$C G_{2}$] every closed orientable 3-manifold M^{3-} of Heegaard genus two is proved to admit a 2 -symmetric crystallization; this leaded to an easy proof of the following well-known result.

Proposition 3. [Vi] [BH] [T] [CG2]-Every closed, orientable 3-manifold M^{3} of Heegaard genus two is a two-fold covering space of S^{3} branched over a link.

4. COMPUTING THE TYPE OF TWO-FOLD BRANCHED COVERINGS OF \mathbf{S}^{3}

Let $P=\left(a_{1}, \ldots, a_{g} ; b_{1}, \ldots, b_{g}\right)$ be the planar projection of a g-bridge presentation L of a link \mathscr{L}, a_{i} being the bridge-projections and b_{i} being the arcs; let π be the plane containing P. The connected components of $\pi-P$ are said to be the regions of P; note that every region of P is alternatively bounded by pieces of bridge-projections and pieces of arcs of L. We shall call edge to such pieces of bridge-projections and arcs.

Definition 4. The valence of a region R of P is the (even) number of its boundary-edges.

Definition 5. The valence of the planar projection P is the less common multiple of the valences of all regions of P.

Proposition 4. Every link \mathscr{L} admits a bridge-presentation \bar{L} whose planar projection \bar{P} has valence six.

In order to prove Prop. 4, we need the following lemma.

Lemma 5. Let P be the planar projection of a bridge-presentation of a link \mathscr{L}. Let $G(P)$ be the pseudograph which has a vertex v_{R} for every region R of P, and $n \geq 0$ edges between v_{R} and $v_{R^{\prime}}$, if ∂R and ∂R^{\prime} contain n common pieces of bridge-projections.

Then: a) $G(P)$ is a multigraph (i.e. it contains no loop);
b) $\quad G(P)$ is connected.

Proof.
a) Let us suppose $G(P)$ to contain a loop based on the vertex v_{R}. This means that the region R of P contains a piece of bridge projection, $\bar{\alpha}$ say, twice in its boundary; thus, chosen an inner point A_{0} of $\bar{\alpha}$, it is possible to draw in π a closed simple curve $\sigma\left(\cong S^{1}\right)$ whose points belong to $R \cup\left\{A_{0}\right\}$. On the other hand, the projection in P of the component of the link \mathscr{C} containing $\bar{\alpha}$ is a closed curve τ in π whose double points, if any, are also double points of P. Then, σ intersects τ only in the regular point A_{0}, and this is an absurd.
b) Let us suppose $G(P)$ to be not connected. Let G^{\prime} be a connected component of $G(P)$ not containing the vertex $v_{\bar{R}}, \bar{R}$ being the unlimited region of P; let $v_{R_{R}}$ be an arbitrary vertex of G^{\prime}. If R_{1}, \ldots, R_{t} are the regions of P such that, for $i \in\{1, \ldots, t\}, v_{R_{i}}$, is adjacent to $v_{R g}$ in G^{\prime}, attach each R_{i}, one at a time, to R_{0}, by means of the common pieces of bridge-projections in their boundaries; then, repeat the same process for every attached region, and so on, until exhausting all regions R such that $v_{R} \in V\left(G^{*}\right)$. Since every region is a 2-ball and P is planar, at every stage a 2 -ball (possibly with holes) is obtained; let D^{2} be the 2-ball (with holes) which results at the end of the process. It is easy to check that $\partial \vec{D}^{2}$ is the projection in P of a component of the link \mathscr{L}, which contains no piece of bridge-projections; this contradicts the hypothesis that \mathscr{L} is bridge-presented, since every component of the link must contain both bridges and arcs.

Proof of Prop. 4.

The proof consists in the following two steps.
Ist step: We will prove that \mathscr{L} admits a bridge-presentation L^{*} such that the maximum among the valences of the regions of its planar projection P^{*} is ≤ 6;

2nd step: Starting from L^{*}, we will produce the required bridgepresentation \bar{L} of \mathscr{L}.
lst step.
Let P be the (connected) planar projection of a given bridge-presentation L of \mathscr{L}; suppose that the maximum among the valences of the regions of P is $m>6$ (otherwise, start with the 2 nd step). Let R be a region of P having valence m, and let $\alpha_{1}, \beta_{1}, \ldots, \alpha_{m / 2}, \beta_{m / 2}$ be the sequence of its boundary-edges, consistent with a fixed orientation of π, α_{j} being pieces of bridge-projections and β_{j} being pieces of arcs of L. (Fig. 1) First of all, isotope β_{3} to pass «in and

Fig. 1
out" under α_{1}, so that R gives rise to a region R^{\prime} of valence six (bounded by $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3}$) and a region R " of valence $m-4$; note that the move adds a new piece of $\operatorname{arc} \bar{\beta}$ to the boundary ∂Q of the region $Q(\neq R)$ of P containing α_{1} and a new piece of bridge-projection $\bar{\alpha}$ to the boundary ∂Z of the region $Z(\neq R)$ of P containing β_{3}. Thus, at this stage, the regions Q and Z have their valence increased. (Fig. 2) However, lemma 5 (b) ensures the existence of a sequence $Q_{1}, Q_{2}, \ldots, Q_{h}$ of regions of P, such that $Q_{1} \equiv Q, Q_{h} \equiv Z$, and ∂Q_{i} and ∂Q_{i+1} contain the same piece of bridge-projection $\bar{\alpha}_{i}$, for each $i \in\{1, \ldots, h-1)$; moreover, it can be assumed that the valence $v\left(Q_{i}\right)$ of the region Q_{i} is different from two, for each $i \in\{1, \ldots, h-1\}$, and, if $v(Z)>6$, that the bridgeprojection $\bar{\alpha}_{h-1}$ was not adjacent in P to the piece of arc β_{3}. Then, for each $i \in\{1, \ldots, h-1\}$, isotope the piece of $\operatorname{arc} \bar{\beta}_{i}$ (with $\left.\bar{\beta}_{i} \equiv \bar{\beta}\right)$ in ∂Q_{i} to pass «in and out" under the piece of bridge-projection $\bar{\alpha}_{j}$, so that a new piece of $\operatorname{arc} \bar{\beta}_{i+1}$ is added to ∂Q_{i+1} and Q_{i} gives rise to a «central» region \bar{Q}_{i} of valence four (containing $\dot{\alpha}_{i}$ in its boundary) and two regions $Q_{i}^{\prime}, Q_{i}^{\prime \prime}$ of valence not greater than $v\left(Q_{j}\right)$. Finally, isotope the piece of arc $\bar{\beta}_{h}$ in ∂Z to pass 《in and out) under $\bar{\alpha}$. (Fig. 3) Note that the above sequence of moves, besides strictly lowering the valence of R. has increased the valence of no region of P. Hence, a (finite) iteration obviously leads to a planar projection P^{*} of \mathscr{L} such that the maximum among the valences of its regions is ≤ 6.

2nd step.
Let L^{*} be a bridge-presentation of \mathscr{L}, such that the maximum among the valences of the regions of its planar projection P^{*} is ≤ 6. In order to obtain the required bridge-presentation \bar{L} of \mathscr{L}, it is necessary to «adjust» all regions of P^{*} having valence four, in order to generate regions of valence two or six only.

First of all, note that two regions R, Q of P^{*} having valence four may obtain, together, valence six, if they are in one of the following situations:
a) ∂R and ∂Q contain the same piece of bridge-projection $\bar{\alpha}$;
b) ∂R and ∂Q contain the same piece of $\operatorname{arc} \bar{\beta}$;
c) ∂R and ∂Q contain the same vertex A (i.e. an edge β^{\prime} of ∂R and an edge $\beta^{\prime \prime}$ of ∂Q are pieces of the same arc of L^{*}).

In fact: In case a), it is sufficient to introduce, within $\bar{\alpha}$, a new arc $\bar{\beta}$ without overcrossings; in case b), it is sufficient to introduce, within $\bar{\beta}$, a new $\operatorname{arc} \bar{\alpha}$ without undercrossings; in case c), if α^{\prime} is the piece of bridge-projection adjacent in A to β^{\prime} and belonging to ∂R, it is sufficient to isotope the piece of arc $\beta^{\prime \prime}$ to pass «in and out» under α^{\prime}. (Fig. 4 (a), (b), (c)).

On the other hand, note that a single region R of P^{*} having valence four may obtain valence six, if it is in the following situation:

Fig. 2

Fig. 3
a)

b)

c)

d)
\qquad

Fig. 4
d) ∂R contains a vertex A which is an end-point of a bridge-projection of L^{*}.

In fact: if α_{1} and β_{1} are respectively the piece of bridge-projection and the piece of arc adjacent in A and belonging to ∂R, it is sufficient to isotope β_{1} to pass under α_{1} from the side opposite to R, before arriving in A. (Fig. $4(d)$).

It is easy to check that the moves suggested in cases a), b), c), d) do not affect the valence of the other regions of P^{*}, and merely introduce (in cases c) and d)) new regions of valence two. Thus, it is always possible to obtain
 the valences of its regions is exactly six, and $P^{* \prime}$ does not contain regions of valence four belonging to the cases a),b),c) or d).

If the valence of $P^{* \prime}$ is six, the thesis is proved; otherwise, let R be a region of $P^{* \prime}$ having valence four. As usual, denote by $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}$ the sequence of its boundary-edges, consistent with a fixed orientation of $\pi, \alpha_{1}, \alpha_{2}$ being pieces of bridge-projections, β_{1}, β_{2} being pieces of arcs of $L^{* \prime}$. The properties of $P^{* \prime}$ ensure that at least one between the edges β_{1} and β_{2}, β_{1} say, is such that the region $Q(\neq R)$ of $P^{* \prime}$ containing it has valence six; then, isotope β_{1} to pass «in and out» under $\tilde{\alpha}, \tilde{\alpha}$ being the only piece of bridge-projection in ∂Q not adjacent to α_{1} or α_{2}. In this way, R obtains valence six - as required -, while Q splits into two regions, $Q^{\prime}, Q^{\prime \prime}$ of valence four, and a new piece of arc $\tilde{\beta}$ is added to the boundary ∂S of the region $S(\neq Q)$ of $P^{* \prime}$ containing $\tilde{\alpha}$. (Fig. 5).

Note that ∂Q^{\prime} and ∂S contain two pieces (β^{\prime} and $\beta^{\prime \prime}$, respectively, say) of the same arc $b_{i}^{-}(\bar{l} \in\{1, \ldots, g\})$ of $P^{* \prime}$, which are both adjacent to $\tilde{\alpha}$. Let $\beta_{i}^{1}, \beta_{i}^{2}, \ldots, \beta_{i}^{\bar{j}}, \beta_{i}^{\dot{j}+1}, \ldots, \beta_{i}^{m_{i}}$ be the sequence of the pieces of the arc b_{i}^{-}, consistent with a suitable orientation of the component of \mathscr{L} which contains b_{i}^{\prime}, so that $\beta_{\bar{j}}^{\bar{j}} \equiv \beta^{\prime}$ and $\beta_{\bar{j}}^{\bar{j}+1} \equiv \beta^{\prime \prime}$, with $\bar{j} \in\left\{1, \ldots, m_{i}\right\}$. Let $S_{1}, S_{2}, \ldots, S_{2 m_{i}}$ be the sequence of the (not necessarily distinct) regions of $P^{* \prime}$ such that: $S_{1} \equiv S$, $S_{2 m_{i}} \equiv Q^{\prime}, \beta_{i}^{j}$ belongs both to $\partial S_{j-\bar{j}}$ and to $\partial S_{2 m_{1}-j-\bar{j}+1}$ (where the index i of S_{i} is written mod. ($2 m_{i}$)), and, for each $i \in\left\{1,2, \ldots, 2 m_{i}^{-}-1\right\}, \partial S_{i}$ and ∂S_{i+1} contain the same piece of bridge-projection $\tilde{\alpha}_{i}$. Note that $\tilde{\alpha}_{m_{i}-j}$ and $\tilde{\alpha}_{2 m_{i}-j}$ are pieces of bridge-projections belonging to the same component of \mathscr{L} than b_{i}. Then, for each $i \in\left\{1,2, \ldots, 2 m_{i}-1\right\}$, isotope the piece of $\operatorname{arc} \tilde{\beta}_{i}$ with $\left.\tilde{\beta}_{1} \equiv \tilde{\beta}\right)$ in ∂S_{i} to pass uin and out» under the piece of bridge-projection $\tilde{\alpha}_{i}$, so that a new piece of $\operatorname{arc} \tilde{\beta}_{i+1}$ is added to ∂S_{i+1} and a new pair of adjacent regions S_{i}^{\prime}, $S_{i}^{\prime \prime}$ having valence four is placed near S_{i}, (Fig. 6) Note that, at the end of the above sequence of moves, every region S_{i} comes back to its original valence $v\left(S_{\nu}\right)$ in $P^{* \prime}$, while the region Q^{\prime} obtains valence six. Let now a^{*} be the bridgeprojection of $P^{* \prime}$ to which the adjacent pieces in ∂R and $\partial Q\left(\alpha_{1}\right.$ and α^{*}, respectively, say) belong, and let a^{*+} be the connected component of $a^{*}-\alpha^{*}$ not containing α_{1}; further, let K be the (possibly void) subset of $\{1,2, \ldots$,

$\left.2 m_{i}-1\right\}$ such that, for every $k \in K, \alpha_{k}$ belongs to a^{*+}, and let k be the element of K such that α_{k}^{-k} is the closest to α^{*} among all $\alpha_{k}, k \in K$. Then by applying the move suggested in case a) to the pairs $S_{\dot{k}^{\prime}}, S_{\bar{k}^{\prime} 1^{\prime \prime}}$ and $S_{\vec{k}}{ }^{\prime \prime}, S_{\vec{k}+1^{\prime}}$, is any, and the move suggested in case b) to the pair $S_{i}^{\prime}, S_{i}^{\prime \prime}$, for each $i \in\{1,2, \ldots$, $\left.2 m_{i}-1\right\}-\{\bar{k}\}$, the «adjustment» of the region R is obtained, with one only new region $Q^{\prime \prime}$ of valence four, However, it is easy to check that $Q^{\prime \prime}$, if not belonging to the cases a), b), c) or d), is strictly closer to an end-point of the bridge-projection a^{*} (either the one belonging to a^{*+}, or the new one, internal to $\alpha_{\bar{k}}$), than R was. Hence, the existence of a planar projection \bar{P} of \mathscr{L} having valence six, easily follows by (finite) iteration.

Example: By applying the procedure of Prop. 4 to the Montesinos link $\mathscr{L}=M(-2 ;(2,1),(2,1),(2,1),(2,1))$ (see [BZ]) represented in Fig. 1, one obtains the valence six planar projection of \mathscr{L} represented in Fig. 7, passing through the ones depicted in Fig. 2 and Fig. 3.

We are now able to prove the main result of the paper,

Proposition 6. Let M^{3} be a (closed, orientable) 3-manifold, which is a two-fold covering space of S^{3} branched over a link \mathscr{L}. Then,

$$
t\left(M^{3}\right)= \begin{cases}2 & \text { iff } M^{3}=S^{3} \\ 4 & \text { iff } M^{3} \text { is a lens space } L(p, q) \\ 6 & \text { otherwise }\end{cases}
$$

Proof.

Prop. 4 ensures the existence of a bridge-presentation \bar{L} of \mathscr{L}, such that the planar projection \bar{P} of \bar{L} has valence six. Let $F(\bar{L})$ be the 2 -symmetric crystallization of M^{3}, obtained from \bar{L} by Ferri's construction. It is easy to check that $F(\bar{L})$ contains $\{0,2\}-,\{1,2\}-,\{1,3\}-$ and $\{0,3\}-$ residues of valence two or six, only; thus, if ε is the cyclic permutation defined by $\varepsilon=(0,2,1,3), \tau_{\varepsilon}(F(\tilde{L}))=6$. The result now easily follows from the characterization of the 3 -manifolds of type two and four (see [CoG]).

Remark. If M^{3} is a two-fold branched covering of S^{3}, the type of M^{3} is obtained by the type of a crystallization of M^{3}. It might be interesting to know whether this happens in the general case, or not.

The following result is a direct consequence of the above proposition and of the existence of a pseudocomplex $K(n+1,2 h)$, which is «universal" with respect to all closed orientable n-manifolds of type $2 h$ (see [C]).

Maria Rita Casali

Fig. 7

Corollary 7. Let M^{3} be a two-fold branched covering space of S^{3}. Then, there exists a finite index subgroup N of a fuchsian group

$$
S(4,6)=<a_{1}, a_{2}, a_{3}, a_{4} / a_{1}^{3}=a_{2}^{3}=a_{3}^{3}=a_{4}^{3}=a_{1} a_{2} a_{3} a_{4}=1>
$$

such that

$$
M^{3}=\frac{K(4,6)}{N}
$$

Remark that prop. 3 ensures that the property stated in Corollary 7 holds for every closed orientable 3-manifold of Heegaard genus two.

5. FURTHER TYPE-SIX 3-MANIFOLDS

The present last section is devoted to show that Prop. 6 actually implies the existence of a very large class of type-six 3-manifolds, properly comprehending two-fold branched coverings of S^{3}.

For, the notion of m-covering - originally due to $[V]-$ is needed.

Definition 6. Let $(\Gamma, \gamma),\left(\Gamma^{\prime}, \gamma^{\prime}\right)$ be $(n+1)$-coloured graphs. A map $f: V\left(\Gamma^{\prime}\right) \rightarrow V(\Gamma)$ is said to be an m-covering, $I \leq m \leq n$, if f preserves c adjacency for all $c \in \Delta_{n}$ and is bijective when restricted to m-residues.

The branching $(m+1)$-residues are the $(m+1)$-residues of (Γ, γ) covered by at least one $(m+1)$-residue of $\left(\Gamma^{\prime}, \gamma^{\prime}\right)$ on which f is not injective.

The covering f naturally induces a topological map $|f|: K\left(\Gamma^{\prime}\right) \rightarrow K(\Gamma)$. An n-covering induces an (unbranched) topological covering between the underlying topological spaces, while a 1 -covering induces a topological covering branched over the ($n-2$)-subcomplex of $K(\Gamma)$ whose ($n-2$)-simplexes are represented by the branching 2 -residues of (Γ, γ).

We want now to illustrate a standard method for constructing m-coverings of graphs representing manifolds, which will be useful for our purposes.

Let (Γ, γ) be an $(n+1)$-coloured graph representing a closed orientable n manifold $K(\Gamma)=M^{n}$. Suppose $\Gamma_{\hat{c}}$ connected, for some $c \in \Delta_{n}$, and let L be the ($n-2$)-subcomplex of $K(\Gamma)$ represented by a (possibly void) given set $\left\{C_{1}, C_{2}, \ldots, C_{p}\right\}$ of 2-residues containing colour c.

If $L=\phi$ (resp. $L \neq \phi$), then a presentation $\langle X: R\rangle$ of $\Pi_{1}\left(M^{n}\right)$ (resp. $\Pi_{1}\left(M^{n}-L\right)$), called c-edge presentation, can be obtained in the following way:
*) the generators of X are the c-coloured edges, arbitrarily oriented;
**) the relators of R are obtained by walking along all the 2 -residues of Γ containing colour c (resp. all the 2 -residues of Γ containing colour c, but $C_{1}, C_{2}, \ldots, C_{p}$), giving the exponent +1 or -1 to each generator whether the orientation of the 2 -residue is coherent or not with the orientation of the generator.

Note that, if $\Gamma_{\hat{E}}$ is not connected, the c-edge presentation can be obtained in a similar way: it is sufficient to complete the relators of R with a minimal set of generators such that the corresponding c-coloured edges connect $\Gamma_{\hat{c}}$. The existence of a one-to-one correspondence Φ between transitive d-representations ω of $\Pi_{1}\left(M^{n}\right)$ (resp. $\Pi_{1}\left(M^{n}-L\right)$) and d-fold unbranched covering spaces of M^{n} (resp. d-fold covering spaces of M^{n} branched over L), is well-known (see $[F]$). In $\left[C G_{1}\right]$, the following method is described for constructing an $(n+1)$-coloured graph $(\tilde{\Gamma}, \tilde{\gamma})$ such that $K(\tilde{\Gamma})=\Phi(\omega)$:

- set $V(\tilde{\Gamma})=V(\Gamma) \times N_{d}$:
- for each $k \in \Delta_{n}-\{c\}$ and $i \in N_{d}$, join (v, i) with (w, i) by a k-coloured edge if v, w are k-adjacent in (Γ, γ);
- join (v, i) with (w, j) by a c-coloured edge if in (Γ, γ) there is an oriented c-coloured edge x_{i} from v to w and $\omega\left(x_{i}\right)(i)=j$.

It is easy to check that the projection map $f: V(\tilde{\Gamma}) \rightarrow V(\Gamma)$ defined by $f((v, i))=v$ for every $v \in V(\Gamma)$ and $i \in N_{d}$ is a 2 -covering (resp. a 1-covering having $C_{1}, C_{2}, \ldots, C_{p}$ as branching 2 -residues).

As an application of the previous construction and of the results of section 4, we have the following existence theorem for type-six 3-manifolds.

Proposition 8. If $\tilde{M}^{3}\left(\tilde{M}^{3} \neq S^{3}, L(p, q)\right)$ is an unbranched covering of a two-fold branched covering of S^{3}, then $t\left(\tilde{M}^{3}\right)=6$.

Proof.

Let M^{3} be a two-fold branched covering of S^{3}, and let $\omega: \Pi_{1}\left(M^{3}\right) \rightarrow S_{d}$ be the monodromy associated to the unbranched d-fold covering space M^{3} of M^{3}.

Prop. 6 ensures the existence of a crystallization (Γ, γ) of M^{3} such that, for $\varepsilon=(0,2, I, 3), \tau_{\varepsilon}(\Gamma)=6$. If $c \in \Delta_{3}$ is an arbitrarily chosen colour of (Γ, γ) and $\langle X ; R\rangle$ is the c-edge presentation of $\Pi_{1}\left(M^{3}\right)$, then the construction above described yields a 4-coloured graph $(\widetilde{\Gamma}, \tilde{\gamma})$ representing $M^{3}=\Phi(\omega)$ and
such that $r_{\varepsilon}(\tilde{\Gamma})=6$ (because of the 2 -covering $f: V(\tilde{\Gamma}) \rightarrow V(\Gamma)$). Hence, the thesis follows.

Actually, an even more general result holds.

Proposition 9. Let (Γ, γ) be a 4-coloured graph representing a 3-manifold M^{3}, such that $\tau_{\varepsilon}(\Gamma)=6$ (ε being a suitable cyclic permutation of Δ_{3}); let L be a subcomplex of $K(\Gamma)$ represented by a (possibly void) given set of $\left\{\varepsilon_{c}, \varepsilon_{c}+2\right\}$ residues, for some $c \in \Delta_{3}$. Then, every covering of $M^{3}=K(\Gamma)$ branched over L is represented by a 4 -coloured graph $(\tilde{\Gamma}, \tilde{\gamma})$, such that $\tau_{\varepsilon}(\widetilde{\Gamma})=6$.

The proof is an obvious adaptation of the one of Prop. 8.

Remark. The fact that $T^{3}=S^{1} \times S^{1} \times S^{1}$ is not a two-fold branched covering of S^{3} is well-known ([Fox]). Nevertheless, Prop. 8 ensures $t\left(T^{3}\right)=6$. In fact, T^{3} is the (unbranched) two-fold covering of the Selfert manifold $S T\left(S_{2222}\right)=(O o O /-2 ;(2,1),(2,1),(2,1),(2,1))$, which is the two-fold covering space of S^{3} branched over the Montesinos link $M(-2 ;(2,1),(2,1),(2,1),(2,1))$ of Fig. 1 (compare [M]).

Since Propositions 8 and 9 yield a very large class of type six 3-manifolds, the following two questions naturally arise:

- There exists a 3-manifold with type eight?
- There exists a 3 -manifold without any group action with type six?

References

[BH] J. Birman - H. Hilden: Heegaard splittings of branched coverings of S^{3}, Trans. Amer. Math. Soc. 213 (1975), 315-352.
[BM] J. Bracho-L. Montejano: The combinatorics of colored triangulations of manifolds, Geom. Dedicata, 22 (1987), 303-328.
[BZ] G. Burde-H. Zieschang: Knots, Walter de Gruyter, 1985.
[C] A. Costa: Coloured graphs representing manifolds and universal maps, Geom. Dedicata 28 (1988), 349-357.
[CG1] M. R. Casall-L. Grasselli: Representing branched coverings by edgecoloured graphs, Topology and its Appl. 33 (1989), 197-207.
[$\left.\mathrm{CG}_{2}\right]$ M. R. Casall-L: Grasselli: 2-symmetric crystallizations and 2-fold branched coverings of S^{3}, Discrete Math. 87 (1991), 9-22.
[CoG] A. Costa-L. Grasselli: Universal coverings of PL-manifolds via coloured graphs, Aequationes Math., 44 (1992), 60-71.
[F] M. FERR1: Crystallizations of 2-fold branched coverings of S^{3}, Proc. Amer. Math. Soc. 73 (1979), 271-276.
[Fox] R. H. Fox: A note on branched cyclic coverings of spheres, Rev. Mat. Hisp.-Am. (4) 32 (1972), 158-166.
[FGG] M. Ferri-C. Gagliardi-L. Grasselli: A graph-theoretical representation of PL-manifolds. A survey on crystallizations, Aequationes Math. 31 (1986), 121-141.
[G] C. Gagliardi: Extending the concept of genus to dimension n, Proc. Amer. Math. Soc. 81 (1981), 473-481.
[HW] P. J. Hilton-S. Wylie: An introduction to algebraic topology-Homology theory, Cambridge Univ. Press, Cambridge, 1960.
[M] J. M. Montesinos: Classical tessellations and three-manifolds. SpringerVerlag, Berlin, Heidelberg, 1987.
[P] M. Pezzana: Sulla struttura topologica delle varieta' compatte, Atti Sem. Mat. Fis. Univ. Modena 23 (1974), 269-277.
[T] M. TAKAhashi: Analternative proof of Birman-Hilden-Viro's theorem. Tsukuba J. Math. 2 (1978), 29-34.
[V] A. VINCE: n-graphs, Discrete Math. 72 (1988), 367-380.
[Vi] O. JA. VIRO; Linking, 2-sheeted branched coverings and braids, Mat. Sb. 87 (1972), 216-228 (russian version). English translation: Math. USSR Sb. 16 (1972), 223-236.
[W] A, T. WHite: Graphs, groups and surfaces, North Holland, Amsterdam, 1973.

Dipartimento di Matematica
Pura et Applicata aG. Vitaliw
Via Campi 213 B
Universita di Modena
I-4II 100 Modera \quad Recibido: 13 de diciembre de 1991
Italy

[^0]: (*) Work performed under the auspicies of the G.N.S.A.G.A. of the C.N.R. (National Research Council of Italy) and financially supported by M.U.R.S.T. of Italy (project "Geometria Reale e Complessa").

