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Existence of Periodic Solutions for a Class of
Nonlinear Evolution Equations

RADU CASCAVAL and IOAN 1. VRABIE

ABSTRACT. In the present paper we prove an existence result concerning
T-periodic solutions to a class of nonlinear evolution equations of the form

u'(t) + Au(t) 5 f(t,u(t)), t € R,

where A is an m-accretive operator acting in a real Hilbert space /I and such
that -A is the generator of a compact semigroup, while f: R x D(A) - H
is continuous and T-periodic with respect to the first argument.

1. INTRODUCTION

Our goal in the present paper is to prove an existence result con-
cerning T-periodic solutions to a class of nonlinear evolution equations’
of the form

u'(t) + Au(t) 5 f(t,u(t)), te R (1.1)
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In all that follows (H,{-,},||-]!) is a real Hilbert space, B(0,r} is the
closed ball with radius » > 0 and centered at 0,4 : D(A) C H — 2" is
an m-accretive operator and f : Rxﬁ-(?) — H is a continuous function
which is T-periodic with respect to its first argument. Our main result
is Theorem 1.1 below,

Theorem 1.1, Assume that A : D(A) C H — 2H s an m-
accretive operator and — A generates a compact serigroup. Assume fur-
ther that f : Rx D(A) — H is a continuous function which is T -periodic
with respect to its first argument, and which is bounded on bounded sub-
sets in R x D(A). If there ezists 7 > 0 such that B(0,7) N D(A) is
nonempty, and for each = € D(A) with ||z|| = r, each y € Az and each
te[0,T)

(:r,y - f(t,I)) 20, (1'2)

then the problem (1.1) has at least one T-periodic integral solution.

Resuits on this kind of problems have been obtained previously
under various assumptions on A and on f by many authors and we
mention here only [4,6,10,13,16]. For further details on the subject see
[16]. For the case in which f does not depend on u see [1,9,11,12,14].

One of the most usual method for proving an existence result for
T-periodic solutions to (1.1) is to show that the corresponding Poincaré
map, i.e. thé map which assigns to each z € D(A) the values at T
of all integral solutions of (1.1) satisfying u(0) = z, has at least one
fixed point. Since in our case this map is neither single-valued nor even
convex-valued {we recall that f is only continuous) this method is no
longer applicable directly. In order to avoid this difficulty, in a recent
paper by the second author [16], the existence of T-periodic solutions
of (1.1) is obtained by looking for fixed points for a suitably defined
mapping which is always single-valued and continuous. The approach
introduced there permits to prove the existence of T-periodic solutions to
(1.1) without approximating the perturbing term f by smooth functions
in order to guarantee the uniqueness of the integral solutions to the
associated Cauchy problem.

Very recently, Hirano [10] improves the main result in [16] (which
is valid in general Banach spaces) in the specific case in which A is
the subdifferential of a l.s.c. convex and proper function acting on a
real Hilbert space H. More precisely, Hirano [10] shows that if A is a
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subdifferential and -~ A generates a compact semigroup, while f : R X
H — H is a Carathéodory function, T-periodic with respect to its first
argument and there exist My, M3,a,b > 0 such that

£, 2| < My|z]| + Mo (1.3)

forallte Rand z € H, and

(2,9 — f(z,2)) 2 alle|]* - b (1.4)

forallt € R, z € D(A) and y € Az, then the problem (1.1) has at least
one T-periodic integral (in fact strong) solution.

His method of proof which has its roots in the calculus of variations
in essentially based on conditions {1.3) and (1.4), and rests heavily on
the fact that A is a subdifferential. As we can easily see, our result is
applicable to a strictly broader class of problems of the form (1.1) inas-
much as we do not assume that A is a subdifferential and the conditions
(1.3) and (1.4) are replaced by the less restrictive ones: f is bounded on
bounded subsets in R x D(A), and respectively by (1.2). It is easy to
see that if there exist a,b, @ > 0 such that

(z,y = f(t,z)) 2 all=||* - b

for each t € R, =z € D(A) and y € Az, then (1.2) holds for every
7 > (b/a)!/* for which B(0,r) N D(A) is nonempty.

We conclude this section by noticing that the compactness assump-
tion on the semigroup generated by — A is essential. More precisely, it is
not possible to obtain a variant of Theorem 1.1 in the case in which the
semigroup generated by — A is not compact, even if we assume that f is
a compact operator satisfying (1.2). Indeed, a very simple and instruc-
tive example due to Deimling [8, Exercise 6, p. 85] shows that there
exists a compact mapping f : I? — I? satisfying {z, f(z)} < 0 for each
z € I? with [|z|| = 7, and such that the problem u'(t} = f(u(t)), t € R,
has no T-periodic sclution.
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2. PRELIMINARIES

Although we assume familiarity with the theory of nonlinear evol-
ution equations governed by m-accretive operators, we recall for easy
reference some basic concepts and results in the field which we shall use
frequently in the sequel. For further details on this subject see [3,5,7,17].

An operator A: D(A) C H — 2¥ is called m-accretive if for each
z; € D(A), yi € Az, 1= 1,2,

(331 —Z2,¥%1 — 3/2) 2 01

and for each A > 0, 7 4 AA is surjective.
Consider the Cauchy problem

w'(t) + Au(t) 3 g(), 0Kt < T, (2.1)

u(0) = uo,
where A is an m-accretive operator, up € D(A), and g € L1([0,T); H).

By an integral solution of (2.1) we mean a continuous function u :

[0,T] — D(A), with u(0) = ug, and satisfying

llu(t) - z|[* < [|u(s) - =||* + 2] {u(t) — z,9(7) — y)dr (2.2)

for each z € D(A), y€ Az and 0 < s <t <T.

It is known that for each (ug,9) € D(A)x L!([0,T}; H) the problem
(2.1) has a unique integral solution v = $(ug,g). Moreover, if u =
F(uo,9) and v = S(wvp, k), then

()~ (o)l < l1) - o+ [ llotr) - AOlidr — (23)

for each 0 < 5 <t < T. See [3] or [5].

Let S(t): D(A) — D(A), t > 0 be the semigroup of nonexpansive
operators generated by —A, i.e. §(t)up = S(uo, 0)(¢) for each ug € D(A)
and t > 0.
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The semigroup S(t) : D(A) — D(A), t > 0 is called compact if
S(t) is a compact operator for each ¢ > 0.

We recall that a family G € L'([0,T}); H) is called uniformly in-
tegrable if for each ¢ > 0 there exists §(¢) > 0 such that for every
measurable subset E in [0,7"] whose Lebesgue measure is less than §(¢)
we have

[ llo()]ldt < ¢
E

uniformly for ¢ € G.
A remarkable property of compact semigroups is given below.
Theorem 2.1. If —A generates a compact semigroup, then, for
each bounded subset B of D(A) and each uniformly integrable femily G
in L'([0,T); H), the set I(B x G) is relatively compact in C([6,T); H)
for each 6 € (0,T). If, in addition, B is relatively compact in H, then
S(B x G) is relatively compact even in C([0,T]; H).

The proof of this slight extension of a result due to Baras [2] and
to Vrabie [15] is quite similar to that of [17, Theorem 2.3.2, p. 64] and
50 we omit it.

3. PROOF OF THE MAIN RESULT

For the sake of convenience and clarity we divide the proof of The-
orem 1.1 into three lemmas.

First, let us consider the Cauchy problem
u'(t) + Au(t) 3 f(t,u(t)), 0<t<T (3.1)

u(0) = uo.

In the next lemmas we will assume that f satisfies a slightly stronger
condition than (1.2). Namely, we will assume that

(C) there exist r > 0 and p > 0 such that B(0,7) N D(A) is nonempty
and for each z € D(A) with ||z|| = r, each y € Az and ¢ € [0,7)

(.’.E,y— f(t,z)) > p-
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Lemma 3.1. Assume that —A generales a compact semigroup and

: [0,T] x D(A) — H is continuous, bounded on bounded subsets in

[0 T]XD(A) and satisfies (C'). Then, for each ug € D(A) with lluo]] £ 7,

the problem (8.1) has at least one integral solution u : [0,T] — D(A)
satisfying

[lu(®)]]| £ r for all t € [0,T]. (3.2)

Lemma 3.2. Assume that —A generates a compact semigroup and
f: [0,T] x D{A) — H is continuous, bounded on bounded subsets
in [0,T] x D(A) and satisfies (C). Assume, in addition, that for each
ug € B(0,7) N D(A) the problem (3.1) has a unique integral solution
u = E(up) defined on the whole [0,T]. Then, the mapping ug — E(uo)
is continuous from B(0,7) N D(A) into C([0,T]; H). ~

" Lemma 3.3. Assume that — A generates a compact semigroup and
f: [0,T] x D(A) — H is continuous, bounded on bounded subsets
in [0,T] x D(A) and satisfies (C). Assume, in addition, that for each
ug € B(0,7) N D(A) the problem (3.1) has a unigue integral solution
u = E(up) defined on the whole [0,T). Then, the problem

u'(t) + Au(t) 3 f(t,u(t)), 0<t<T (3.3)

u(0) = u(T)

has at least one integral solution.

Proof of Lemma 3.1. The fact that for each ug € D(A) the prob-
lem (3.1) has at least one noncontinuable integral solution « : [0,Tm) —
D(A) follows from [17, Theorem 3.8.2, p.180]. Then, let uy € D(A)
with ||ug|| € 7 amd let w : [0,7,) — D(A) be such a noncontinu-
able integral solution of (3.1). For each ¢ > Olet f, : [0,Tn) — H
be a C'-function which approximates ¢ — f(f,2(t}) uniformly on com-
pact subsets in [0,7,,), and let up, € D(A) satisfying ||uge|| < r, and
Hup — uge|] € €. We note that such an element uo. always exists since
B(0,r) N D(A) is nonempty and D(A) is convex - see [3, Proposition
2.6, p.77].
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Now, let us consider the approximate problem
up(t) + Aue() 3 fe(t), 0t < T (3.4)

u,({)) = Upe

In view of [5, Proposition 3.3, p.68] this problem has a unique strong
solution #, : [0,T,) — D(A) satisfying u.(t} € D(A) for each t €
[0,Tm) and such that u. is differentiable from the right at each ¢ €
[0, 7).

Since lim,yo fe(t) = f(t,u(t)) uniformly on compact subsets in
[0,T}) and lim¢)o toe = uo, from (2.3) it follows that

ltiﬁ]l ue (L) = u(t) (3.5)

uniformly on compact subsets in [0,7},).

At this point let us observe that either there exists £g > 0 such that
for each € € (0,€9) and each ¢ € [0,7},) we have

lua(B)l] < 7, (3.6)

or there exist a sequence (€, Joen converging to 0 and a sequence (t,,)nen
in [0,7,) - denoted for simplicity by (¢) and (t.) - such that ||u.(t.)]] >
T.

If (3.6) holds, then by (3.5) we easily conclude that
eIl < 7 (3.7)

for each t € [0,T}n), and thus, in view of [17, Theorem 3.8.2, p.180],
% can be continued to the right of T, if T,,, < T". Hence, in this case
Tw =T, uis defined on [0,T] and the proof of Lemma 3.1 is complete.

Therefore, let us assume that (3.6) does not hold. Clearly, for each

¢ € (e) there exist s, € [0,T,,) and A, > 0 such that [s.,s. + A} C
[0, Tm),

l[ue(s)l| < 7 for s € [0, 3] (3.8)
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and
Hue(8)|| > r for s € (3¢, 8: + Ac). (3.9)

If lim sup, ¢ 5. = T, from (3.5) and (3.8) we deduce (3.7) and this
completes the proof. So, let us assume by contradiction that
lim sup, o 8¢ < Tom. Then, there exists Ty € [0,Ty) such that s. € {0, To]
for each ¢ € (¢).

Now, taking the inner product in both sides of (3.4) by u.(t) for
t = 8., we get

1d
§d_|'“s(5=)|l2 + (ue(se),ve(se) — fe(se)) = 0,

where v.(s.} € Auc(s.). A simple computation along with (C) yields

1d+ 2
EE”“E(SE)” < =p+ |[ue(se)l] - [1f (e, we(5e)) — fe(se))l

for each € € (€). Recalling that lim, ¢ fo(t) = f(¢,%(t)) and

limg o u.(t) = u(t) uniformly on [0,Tp] and that s, € [0,T5] for € € (&),
from the last inequality, we conclude that for a sufficiently small € € (¢)
we have

1d* e
2 dt
Hence there exists §, > 0 such that (s, s, + é,) C [0,T},) and

|ue(se)lI” < 0.

||ue(s)|| < r for s € (se,8: + 6¢),

relation which obviously contradicts (3.9). Thus, the supposition that
lim sup, o 8¢ < T, is false, and this completes the proof of Lemma 3.1.
[ |

Proof of Lemma 3.2. Let (tgy)nen be a sequence in B(0,r) N
D(A) with lim,,_, o, 4o, = ug. Let us denote by u, the unique integral
solution of (3.1) with initial datum uo,. From (3.2} we deduce that the
sequence (tu, Jnen is bounded in C([0, T]; H). Consequently, the family
{f(-,un(:));n € N} is bounded in C([0,7]; H) and therefore uniformly
integrable in L'{[0,T]; H). Using Theorem 2.1 we deduce that {u,;n €
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N1} is relatively compact in C([0,T]; H). Therefore, to conclude the
proof, it suffices to show that the only limit point of (un)nen is the
unique integral solution u of (3.1) corresponding to the initial

datum ug. To this aim let us consider a subsequence of (un)nen -
denoted for simplicity also by (4x)nen - which converges in C([0,T]; H)
to some function u. Since, for each n € N, u,, satisfies (2.2), it follows
that u satisfies (2.2) too, and thus it is an integral solution of (3.1)
corresponding to the initial datum ug. Since this solution is unique, the
proof of Lemma 3.2 is complete. B

Proof of Lemma 3.3. Let B4(0,r) = B(0,r) N D(A) - which is
nonempty, closed, bounded and convex - and let Q : B4(0,7) — H be
the Poincaré map, i.e. Q(up) = u(T) for each up € Ba(0,r), where u is
the unique integral solution of the problem (3.1) corresponding to the
initial datum ug. Obviously, Lemma 3.1 shows that @ maps B4(0,7)
into itself, while Theorem 2.1 implies that ¢} has a relatively compact
range in H. Since by Lemma 3.2 @ is continuous from B4(0,r) into
itself, @ satisfies the hypotheses of Schauder’s Fixed Point Theorem,
and thus it has at least one fixed point uo € Ba(0,7). Now it is clear
that the integral solution of (3.1) with the initial datum ue is in fact an
integral solution of the problem (3.3}, and this completes the proof of
Lemma 3.3. ]

Proof of Theorem 1.1. Since f: R x D(A) — H is continuous,
for each £ > 0 there exists a locally Lipschitz function f. : Rx D(A4) —
H such that

1t u) —e-u—fe(t,u)l] <(e-r)/2 (3.10)
for each (¢,u) € R x D(A). See [8, Theorem 7.2, p.44 and Exercice 6,
p. 53).

We may easily verify that, for each € > 0, f, satisfies (C') with the
same 7 as f does and with p = (¢ - r%)/2.

Now let us consider the problem (3.3) with f replaced with f,. From
Lemma 3.3 we know that for each £ > 0 the problem (3.3) has at least
one integral solution u. : {0,7] — D(A). In view of Lemma 3.1 we have
[lus(t)]| < = for each t € [0,T]. This inequality along with (3.10) shows
that {fe(-,uc(-));€ > 0} is bounded in C([0,T]; H). From Theorem 2.1
we then deduce that {u.;e > 0} is relatively compact in C([6,T); H)



334 R. Cascaval and [.I. Vrabie

for each § € (0,T). Inasmuch as u.(0) = u(T), and {u(T);e > 0} is
relatively compact in H, we conclude that {u.(0);e > 0} is relatively
compact too. Using once again Theorem 2.1 we deduce that {u.;e > 0}
is relatively compact in C([0,T]; H). Thus, for each sequence ¢ | 0, at
least on a subsequence, (. )s»o converges to a function u which obviously
is an integral solution of (3.3). Since f is T-periodic with respect to
its first argument this solution can be continued on the whole R as a
T-periodic integral solution of (1.1}, and this completes the proof of
Theorem 1.1. |

4. AN EXAMPLE

The aim of this section is to illustrate the effectiveness of the ab-
stract existence result we have proved by showing how this applies to
nonlinear partial differential equations of parabolic type. Thus, let us
consider the nonlinear heat equation

@—Apu:g(t,x,u) for (t,2) e R x Q2

at
vu=0  for ({,z) € R x 09 (4.1)
u(t,z) = u(t+ T,z) for ({,z) e R xQ

where (2 is a bounded domain in R™ with smooth boundary aQ, p >
2, g: Rx2xR — R is a continuous function and A, is the pseudo-

Laplace operator, i.e.
P~ Bu
)

"8
Apu = Z %(
i=1 ¢

Our aim here is to show that, under some rather general assump-
tions on g, the problem (4.1) can be rewritten as an abstract evolution
equation of the form (1.1) satisfying the hypotheses of Theorem 1.1.

v
61:‘-

We begin by recalling that an equivalent norm on Wol P(§2) is given
by the LP(§2)-norm of the gradient. Therefore there exists ¢ > 0 such
that

( / |9 u(e)Pd + / |u(a:)|’°dz) < [lvu@pra @2
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for every u € Wy P(R).
We are now prepared to prove:
Theorem 4.1. Assume thatg: R x 2 x R = R is continuous,

T -periodic with respect to its first argument and there ezxists a > 0 and
b > 0 such that

lg(t, z,u)| < alu| + b for all (¢,z,4) € R x & x R. (4.3)

Assume in addition that there ezist a € (0,¢) (where ¢ > 0 satisfies
(4.2)) and 3 > 0 such that

u-g(t,z,u) < a|ul? + B for all (t,z,u) € R x & x R. (4.4)

Then there exists at least one solution u : R — L%(S) of the
problem (4.1) satisfying

u € C([0,T]; L* () n L=([0, T]; Wy () (4.5)
du
& € 12(l0, T A(®)). (4.6)

Proof. Take H = L?() with the usual inner product and let us
define the operator A: D(A)C H — H by

Au = —Ayu

for each u € D(A), where D(A) = {u € Wy'?(Q); Apu € L*(Q)}, and
f: RxH — H by

f(t,u)(z) = ¢(t,z, u(z))

for each v € L*(2), t € R and a.e. for z € 9.

Now it is clear that (4.1} can be rewritten as a problem of the form
(1.1) with A and f as before. It is known that —~ A generates a compact
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semigroup [17, Proposition 2.3.2, p.59] and, in view of (4.3), that f is
everywhere defined, continuous and T-periodic with respect to its first
argument. Thus, in order to appeal to Theorem 1.1, we have to show
that A and f verify (1.2). To this aim let us denote by |£2| the Lebesgue
measure of Q, choose

r2 17 - a) 7 Pj)t

and let us observe that, in view of (4.4), (4.2) and of the choice of =, it
follows

(Au— f(t,u),u) = jﬂ (17 u(@)P — 9(t, 2, u(z))u(z))dz

> /Q (17 w@)|” - ofu(z))? - B)dz
> jn |V u(z)Pdz + (c — ) ]ﬂ fu(a)Pdz — -1
/2
> [ 19 ue)ds + (e - a)lrzl”*”“( / 1u(z)|2das) _p-10l.

Consequently, if u € D(A) and

(/ﬂ |u(z)|2dz)m -

we have

{Au — f(t,u),u) > c/n | 7 u(z)|Pdz > 0.

Thus A and f satisfy all the hypotheses of Theorem 1.1. Since (4.5)
and (4.6) follows from [3, Proposition 2.4, p.204], the proof of Theorem
4.1 is complete. B
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Remark 4.1. With some obvious modifications the proof of The-
orem 4.1 can be addapted to handle the case in which (4.3} and (4.4)
hold for some b € L*°([0,T); L*(R)) and 8 € L°°([0,T}; L}(R)).

References

(1) Badii, M. and Diaz, J.1.: Periodic solutions of a degenerate parabolic
problem arising in unsaturated flow through a porous medium, to appear.

[2) Baras, P.: Compacité de l'opérateur f — u solution d’une équation
non linéaire, (du)/(dt) + Au 3 f,C,R. Acad. Sci. Paris, 289 (1978),
1113-1116.

[3] Barbu, V.: Nonlinear semigroups and differential equations in Ba-
nach spaces, Editura Academiei Bucuresti, Noordhoff, 1976.

[4] Becker, R.I.: Periodic solutions of semilinear equations of evolution
of compact type, J. Math. Anal. Appl., 82 (1981), 33-48.

[5] Brézis, H.: Opérateurs mazimauz monotones et semi-groupes de con-
tractions dans un space de Hilbert, North-Holland, 1973.

(6] Browder, F.E.: Ezistence of periodic solutions for nonlinear equations
of evolution, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1100-1103.

(7] Crandall, M.G.: Nonlinear semigroups and evolution governed by
accretive operators, Proc. Sympos. Pure Math., vol. 45 Part 1 Amer.
Math. Soc., Providence R.I., F.E. Browder editor, 1986, 305-337.

[8] Deimling, K.: Nonlinear Functional Analysis, Springer Verlag
Berlin-Heidelberg-New York-Tokyo, 1980.

[9] Haraux, A. and Kenmochi,N.: Asymptotic behaviour of solutions
to some degenerate problems, Preprint, Analyse Numérique, Paris IV
(1988), 1-23.

[10) Hirano, N.: Ezistence of periodic solutions for nonlinear evolution
equations in Hibert spaces, Proc. Amer. Math. Soc., 120 (1994), 185-
192.

[11] Kenmochi, N. and Kubo, M.: Periodic solutions to a class of nonlin-
ear variational inequalities with time dependent constraints, Funkcialaj
Ekvacioj, 30 (1987) 333-349.



338 R. Cascaval and I.1. Vrabie

[12] Kenmochi, N. and Kubo, M.: Periodic solutions of parabolic-elliptic
obstacle problems, J. Diff. Eqgs., 88 (1990).

(13} Priiss, J.: Periodic solutions of semi-linear evolution equations, Non-
lin. Anal. T.M.A,, 3 (1979), 601-612.

[14] Seidman, T.: Periodic solutions of a nonlinear parabolic equation,
J. Diff. Eqs., 19 (1975) 242-257.

(15] Vrabie, LL: The nonlinear version of Pazy’s local existence theorem,
Israel J. Math., 32 (1979) 221-235.

[16] Vrabie, I.I.: Periodic solutions for nonlinear evolution equations,
Proc. Amer. Math. Soc., 109 (1990) 653-661.

(17] Vrabie, L1.: Compactness methods for nonlinear evolutions, Long-
man Scientific and Technical, 1987.

Dept. of Mathematics, Recibido: 28 de mayo de 1993
University “Al. 1. Cuza” of [asi,

Tasi 6600,

ROMANIA



