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ABSTRACT. In the present paper the oscillatory and asymtotic properties
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1. INTRODUCTION

In 1987 the book of Ladde, Lakshmikantham, Zhang [2] was pub-
lished. In it for the first time in sufficient details problems related to
the oscillation and asymptotic theory of functional differential equations
are considered. Parallel to the development of the oscillation theory of
functional differential equations the development of the oscillation and
asymptotic theory of various classes of ordinary differential equations
began, such as differential equations with “maxima”, impulsive differ-
ential equations, integro-differential equations, etc. We shall note that
the results obtained for these equations are of isolated character and the
traditional problems set in the oscillation theory are almost untouched
for them.

In the present paper the oscillatory and asymptotic properties of the
solutions of a class of homogeneous operator-differential equations are
investigated and thus by means of a single approach the properties of the
solutions of numerous little investigated classes of differential equations
are studied. We shall note that an analogous approach was used in
Mishev, Bainov [3].

2. PRELIMINARY NOTES

Consider the operator-differential equation

[ (D)2 (@)L - . [n (Blre (@), ()T .. T + 8- (Az) () =0 (1)

where § = 1, n > 1; the number ¢, € R is fixed. A is an operator
with certain properties: 7; € C{[tp,00),(0,00)), 2 =0,...,n — 1. Here
C(M, N) is the set of all continuous functions f: M — N.

Introduce the following notation:

(Loz)(t) = 70(2) - (t)

(Liz)(t) = (D[ Licaz)), 1= 1,...,m, Tn = 1.
Ro(t) =1
Ra(t) = /‘ ds

o T1(31)
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t dsy 1 dsy %=1 ds;
mo= | nfsl)(/to rz(sz)('”( . rts)))))

t=2,....,.n—1forn>2

Denote by D,, the set of all functions =z € C({T,,00); R)(T: 2 o)
such that the functions L;z (¢ = 0,1,...,n) exist and are continuous for
[T, 00).

Definition 1. The function z : [T;,00) — R is said to be a
solution of equation (1) if z € D, and z satisfies equation (1) for t >
IH&X{TI,TA’} (TA’ Z to).

Definition 2. A given function u : [tp,©0) — R is said to event-
ually enjoy the property P if there exists a point t,, > ty such that for
t > 1ty the property P is valid.

Definition 3. The function z € C([Tx,00); R) is said to be event-
ually zero if z(t) = 0 eventually, and eventually nonzero otherwise.

Definition 4. The function z € C([T;,0); R) is said to oscillate if

there exists a sequence of numbers ity <ty < --- <ty < ---, lim ¢, = 00
n—00

such that z(t;)z(ti41) < 0. Otherwise the function is said to be nonoscil-
lating. The function z is said to weakly oscillate if sup{t : z(t) =0} =
00.

For any nonoscillating function y € C([Ty,); R) (Ty 2 to) we
define the function

(bor)®) = [ " y(s)ds

(Pay)(t) = t £—%-1—]——-——?é‘)s(;)ds TT=n—=27.,0, n> 1

We shall say that conditions (H) are satisfied if the following con-
ditions hold:
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H1.1; € C([ty,),(0,00)), i=0,...,n— 1.
Hg'j::oﬂd_‘(-tt) = 00, t=1,...,n—1.
H3.A: D, — C([TA:;, o); R).

H{. If the functions z1,z3 € Dy, and 21(t) < z2(t) eventually, then
(Az1)(t) < (Azy)(t) eventually.

H3. If the function z € D,, and z(t) = 0 eventually, then (A;)(1) =
0 eventually.

H6. If the function x € D, and z is eventually nonzero and
nonoscillating, then the function Az is eventually nonzero.

Lemma 1. Let the following conditions hold:

1. Conditions HI and H2 hold.

2. The functionz € D,,.

3. The function L,z is eventually nonzero and nonoscillating.
Then:

1. Each function Liz (i = 0,...,n— 1)} is eventually monotonic and
nonzero.

2. Ifn>1and tl_iilzgo(L;:1:)(t) # 0 for somei=1,...,n— 1, then
tEIEO(ij)(t) = sgn(tliIEO(L;z)(t)),oo forany j=0,...,i—1.

3. If tli[([)lo(L,-z)(t) =0 for somei=0,...,n— 1, then (L;z) - (t).
(Lj+12)(t) £ 0 eventually for j=1,...,n— L.

4. If (Liz}(2) - (Li+12)(t) < 0 eventually for some i =0,...,n—1,
then gli.t{l.o(L"m)(t) =CeR.

5. If tlim (L;z)(t) € R for somei=0,...,n— 1, then

ds < 0o and

f°° [(Li+1z)(s)]

Tit1(s)

(Liz)(t) = lim (Liz)(t) + (=1)* " ($iLnz) (D). (2)
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6. For n > 1 the following equality is valid

lim M)— = t]ingo(L;:r)(t), i=1,...,n—1. (3)

t—'ruu—R;('t')—

Remark 1. Lemma 1 is a corollary of the respective theorems
proved in [1], [5], [6], [7]-

3. MAIN RESULTS
Theorem 1. Let the following conditions hold:

1. Conditions (H) are met.

2. For any constant ¢ € R\ {0} there ezists an integer i € [0,n — 1]
such that eventually the following relation is valid

(ol

Then for the ezistence of an eventually nonzero nonoscillating sol-
ution z of equation (1) for which Lox is a bounded function it is nec-
essary for 6§ = 1 (6 = —1) that n be an odd (even) number. For these
solutions the following relations are valid

tli}&(L;z)(t) =0 and sgn(Liz}(t) = (—1)'sgnz(t) (i =0,...,n —1).

Proof. Let z € D, be an eventually nonzero, nonoscillating
solution of equation (1). Without loss of generality we can assume that
z(t) > 0 for t € [t;,00), where t; > t5. From condition H4 it follows
that there exists a point ¢; > t; such that (4z)(t) > 0 for t > to.

Then from equation (1) it follows that

§(Lnz)(t) = —(Az)()) SO fort> 1 (5)
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i.e. we can apply Lemma 1.

We shall prove that tlim (Loz)(t) = 0. If we suppose that this is not
-+ 00

true, then from assertion 1 of Lemma 1 it follows that 75(t)-z(t} > ¢ > 0
eventually for some constant c.

From condition H4 and (1) it follows that eventually the following
inequality holds

mem=umnz@%yn (6)

Choose ¢ (i = 0,...,n — 1) which corresponds to the constant c (see
condition 2 of Theorem 1). From assertion 2 of Lemma 1 it follows that
tlim (L;z)(t) is a finite number. Then from equality (2} it follows that
— 00

|($iLnz)(t)] < 00 (7)

From inequalities (6) and (7) we obtain that

(¥ A=) (t)] < oo

1 TU

which contradicts condition (4). Hence

Jiz (Zoz)(®) = 0 ®
From (8) and assertions 2 and 3 of Lemma 1 it follows that

(Lia)(t) - (Lisaa)() <0, j =0y.cym— 1 (9)
tlim (L;z)(t)y=0

From inequalities (9) and (5) it follows that for § = 1 (§ = —1) the
number #n is odd {(even). W

Theorem 2. Let the following conditions hold:
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1. Conditions (H)} are met.
2. Condition £ of Theorem I holds.
3 6=1.

4. Forn > 1 for any integer i € [0,n — 2] which is odd or even
just as n is, and for any constant ¢ € R\ {0} the following relation is
eventually valid

cR;
](¢i+1A_‘_i) (t)l = 00 (10)
To
Then the assertion of Theorem 1 is valid without the requirement
for boundedness of the function Lgx.

Proof. Let z be an eventually nonzero nonoscillating solution of
equation (1). Without loss of generality assume that z(¢) > 0 eventually.
Then from conditions H4, H5, condition 3 of Theorem 1 and equation (1)
it follows that (L,z)(t) < 0 eventually and we can apply Lemma 1. Let ¢
be the greatest integer for which eventually the inequalities (L;z)(t) > 0
and (Liy12)(t) > 0 are valid (If there exists no 7 with this property, then
the boundedness of the function Lgz follows immediately from Lemma
1}). Then from condition 4 of Theorem 2 and from Lemma 1 it follows
that n — 7 = 0 (mod 2) and tl_i'rgo(L,‘x)(t) > 0. From the last inequality
and from (3) we derive that eventually the following inequality is valid

{Lo2)(t) >c>0, Le. z(t) > cfzt;
0

Ri(t) - °

We apply Lemma 1 and obtain that tlim (Li+1z)(t) < oo. Then from
-0

(2) it follows that
[(is1 Ln2)(t)f < 00 (11)

From the fact the eventually

(a0l = (42)(0) 2 (452 )@ (12)
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and from inequalities (11) and (12) it follows that
(94 )] < o0
To

which contradicts condition (10). W

Corollary 1. Let the conditions of Theorem 2 hold and let n be
even. Then all solutions of equation (1) oscillate.

Theorem 3. Let the following conditions hold:

1. Conditions (H)} are met.
2. Condition 2 of Theorem 1 holds.
3 6=-1.

§. For any integer i € [0,n — 1] which is odd if n is even and
vice versa, and for any constant ¢ € R\ {0} the following relation is
eventually valid

’('¢’min{i+1 ,n—q}A c_?‘) (t)‘ =0 (13)

o

Then for any nonoscillating solution = of equation (1} just one of
the following assertions is valid:

1.

tlilgo(Lja:)(t) =0,3=0,...,n—~1 and then n is even.

‘tlim (L_-,-z)(t)‘ =00, j=0,...,n—-1 and then

Rn_l(t)

() = o(x()) as t — oo.
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Proof. Let z be an eventually nonzero nonoscillating solution of
equation (1) for § = —1. Without loss of generality we can assume that
z(t) > 0. Then (Lnz)(t) > 0 eventually. Denote by i (i = 0,...,n - 1)
the least integer such that the inequalities (L;z)(t) > 0 and (Lit12}(t) >
0 are eventually valid (If there exists no such integer i € [0,n — 1],
then from Lemma 1 it follows that the function Loz is bounded. Then
assertion 1 of Theorem 3 follows from Theorem 1). From condition 4 of
Theorem 3 it follows that n — ¢ = 1 (mod 2). If ¢ = n ~ 1, then from
Lemma 1 we obtain that tli.tﬂo(L""lz)(t) > 0.

Suppose that tlim (Ln-12)(t) < 0o. Then eventually

($n_142)(2) = (a1 La2)(2) < o0 (14)
But from assertion 6 of Lemma 1 it follows that eventually

(Ri:i)%?.c>0 ,i.e.m(t)zf_%z_t_{)(ﬁ (15)

From (14) and (15) we obtain a contradiction with condition (13). Hence
tlim (Lp—12)}{t) = co. Then tlim (Ljz)(t) = oo for j=0,...,n— 1. The
— 00 — o0

relation R::t 2 = o(x(t)) as t — oo follows from (3) for i = n — 1. For

1< n — 3 we get to a contradiction by arguments analogous to those in
the proof of Theorem 2. &

Remark 2. In Theorems 1.3 let condition H6 be replaced by the
weaker condition H7:

H7: If z € D,, and sup{t: z(t) = 0} < oo, then the function Az is
eventually nonzero.

Then the assertions of Theorems 1-3 will be valid if we replace in
them “nonoscillating solution” by “non-weakly-oscillating solution”.
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4. SOME PARTICULAR REALIZATIONS OF THE OPE-
RATOR A

Theorem 4. Let the following conditions hold:

1. (Az)() = m(t)‘é‘?é;l(;) Fi(t1, 1 (dr(s)z(ha(8)))+

(DL T2 92(2 ()2 (ha(e))) (6)

where Jor each i = 1,2
Pir @i, di, hi € C({to, 0); R)
tl_LIglop;(t) = tlilglo hi(t) = 00, di(t) > 0
Pi(t) < ai(t)
gi € C(R, R) are nondecreasing functions and sgn g:(u) = sgn(u)
F e C([t()a 00) X Rr R)
Fi(t,u) are nondecreasing functions with respect to u.
2. Conditions Hf-H{ hold.

3. Condition 2 of Theorem I holds.

Then for the ezistence of an eventually nonzero nonoscillating
solution z of the equation

(Luz)(t) + 6(p1 omax Fi(t, gi(di(8)z(R1(s)))+

E3(t, g2(da(s)z(ha(s)))) = 0 (17)

for which Loz is a bounded function it is necessary for 6 = 1 (§ =

—1) than n be an odd (even) number. For these solutions the following
relations are valid

min
pa(t)<s<qa(t)

tlim (Liz)(¢)=0  and
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sgn(L;z)(t) = (-1)' sgn 2(t), i =0,...,n — 1,

Theorem 5. Let the following conditions hold:

I. Condition I of Theorem 4 holds.
2. Conditions HI-H{ hold.

3. Conditions 2, .?Aa'nd.,{ of Theorem 2 are met.

Then the assertion of Theorem 4 is valid without the requirement
for boundedness of the function Lyz.

Theoremn 6. Let the following conditions hold:

1. Condition ! of Theorem { holds.
2. Conditions Hi-H{ hold.
3. Conditions 3 and 4 of Theorem 3 are met.

Then for any nonoscillating solution of equation (17) just one of
the following assertions is valid:

£, lim (L;z)(t)=0, 7=0,...,n—1 and then n is even.

2. tlinolo(ij)(t)’ =00, j=0,...,m — 1 and then
Roos(8) _ o(z(t)) ast— oo.
7o(t)

Theorems 4,5 and 6 are particular cases of Theorems 1, 2 and 3,
respectively.

Remark 3. If only one of the two addends enter the right-hand
side of (16), then the operator A satisfies conditions H3-H5 and H7.

Theorem 7. Let the following conditions hold:

a(t)
1. (42)(t) = F(, [, , Ksz@ehhrts)  (8)
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where:

a) The function F satisfies condition 1 of Theorem 4.
b) p,g € C([to,00); B), lim p(2) = oo, p(t) < ¢(t)

c) K € C([tg, ) x R, R). The function K(t,s,u,v) is nonde-
creasing with repect to v and to v.
d) sgn K(t,s,u,0) = sgn u
sgn K(t,3,0,0) = sgn v
e) For any t € [tg,00) the function s — 7(t,s) is increasing.

f) The functions t — 71(t,p(t)) and t — 7(t,q(t)) are continuous
and for t € [tg,00) the following relation is valid

lim |r(t',8) ~ (¢, 8)|ds = 0

t/—t

/min{Q(t) a(t')}
max{p(t),p(¢'}}

2. Conditions HI-H4 are met.
3. Condition 2 of Theorem 1 holds.
Then for the existence of an eventually nonzero nonoscillating

solution x of the equation

q(t)

(Lnz)(t)+6- F(t,/m K(t,s,z:(t),:c(s))d,r(t,s)) =0 (19)

for which Loz is a bounded function it is necessary for 6§ = 1 (6§ =
—1) that n be an odd (even) number. For these solutions the following
relations are valid

tli'nolo(L,-z)(t) =0 and sgn (Liz)(t) = (=1) sgn z(t), i=0,...,n — 1.
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Theorem 8. Let the following conditions hold:

1. Condition 1 of Theorem 7 holds.
2. Conditions H1-H{ hold.
3. Conditions 2, & and 4§ of Theorem 2 are met.

Then the assertion of Theorem 7 is valid without the requirement
for boundedness of the function Loz.

Theorem 9. Let the following conditions hold:

{. Condition [ of Theorem 7 holds.
2. Conditions HI-H{ hold.
3. Conditions 8 and 4 of Theorem § are met.

Then for any nonoscillating solution z of equation (19) just one of
the following assertions is valid:

L tliug()(L,-z)(t) =0, 7=0,...,n—1 and then n is even.

2.

tlir{.lo(L,-x)(t)l =00, j=0,...,n =1 and then

R,_1(t)
To(t)

=o(z(t)) ast— oo

Theorems 7, 8 and 9 are particular cases of Theorems 1, 2 and 3,
respectively.

Remark 4. If the operator A defined by (18) satisfies condition 1
of Theorem 7 but conditions 1d and le are replaced by the conditions

K(t,s,u,v) >0 foru>0,v>0

K(t,s,u,v) <0 foru<0,v<0

and
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the function s — 7(¢,s) is nondecreasing and nonconstant in the
interval [p(t), g(t)] respectively, then the operator A satisfies conditions
H3-H5 and H7.
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