
REVISTA MATEMÁTICA de la
Universidad Complutense de Madrid
Volumen 9, número suplementario, 1996

Spline functions and total pasitivity.

M. GASCA *

Dedicado al Profesor Baltasar Rodríguez Salittas, maestro de tardos
matemáticos españoles, con admiraciótt y afecto.

Abstract
Fn this survey we show the close connection between the tbeory

of Spline Fúnctions and that of Total Positivit>’. Fn the last section
we mention sorne recent resu]ts on totally positive bases wbich
are optimal for shape preserving properties in Computer Aided
Geometrie Design.

1 Totally positive functions and matrices

Totally positive functions pía>’ an important role in Approximation Tite-
or>’ and in man>’ otiter branches of Matitematics: Analysja, Probability,
Combinatorics, Statistics, etc., witit applications in Econornics, Biology,
Computer Aided Geometrie Design,. . . Tite>’ started to be systemati-
cali>’ studied about sixty >‘ears ago, witen F. 11. Grantmaciter and M.
G. Krein in tite former Soviet Union and a little later 1. 3. Scitoenberg
in tite Unita! States publisited their pioneering papen on Uds subject.
Anyway, much of tite theory was inifluenced at tite beginning by the
earlier work of man>’ important mathematicians, as mentioned by Kar-
Hm in [19]: Stieltjes, Citebyshev, Bernstein, Haar, Fejér, Sehur, Pólya,
Fekete,...
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In 1968 S. Karlin published his fundamental book Total Positivity
[19], where he develops tite titeor>’ and includes almost all tite results
appeared until that time. It was publisita! as Volume ¡ but tite second
volume has been never written until now. Tite book is so impressive
and complete that probabí>’ this has causa! titat no other book on tite
subject itas been published until 1995. However tite great quantity of
papers devoted to the different applications ob tite titear>’ encouraged us
to promote tite organization of an international meeting to summarize
titem. An International Workshop on Total Positivity ant its Applica-
tions (IWTPA) took place in Jaca (Spain) in September 1994, meeting
together to man>’ of the present researciters iii this area. As an important
consequence, a new book [17] entitía! Total Positivity ant its Applica-
tions (M. Gasca and 0. A. Micchelli as editors) has been just publisited
by Academic Publishers. A detailed histor>’ of the first results on Total
Positivity can be reconstructed from tite historical remarks of ¡19] and
[23] and also from tite paper [21] b>’ Allan Pinkus lii [17].

A real fnnction (or kernel) K(x, y) of twa variables belonging to
linearí>’ ordered sets A?, y is said to be totally positive ib for eacit positive
integer and for all

one hás
det(K(z1, Y~))1=¿Li=v»> O.

Lb botit A?, Y are finite sets titen K can be considera! a finite rnatrix
and then we speak of totally positive (TP) matrices. Consequentí>’, a TP
matrix is a matrix witose minors are all nonnegative. Witen tite inequali-
ties are strict in the aboye definitions we speak of strictly totally positive
functions or matrices. Fn tite german literature tite term total nicht-
negativitát itas been frequentí>’ usa! instead of total positivity. Titere
are man>’ examples of TP functions, in particular in Statistics and also
tite Green’s functions associated witit man>’ standard boundar>’-value
problems of Sturm-Liouville.

2 The origins of spline functions

Piecewise polynomial functions itave been considera! for a long time in
arder to gain flexibility witit respect to polynomials, aboye nil witen one
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is considering large intervais. The aim of maintaining global continuity
as much as possible gaye rise to the titeor>’ of spline functions.

Polynomial splines ob degree Iv witit simple knots are piecewise pol>’-
nomials of degree Iv witit global continuity of order Iv — 1. Tite term
spline to singularize titese functions was introduced by 1. 3. Scitoenberg
in 1946, due to tite titin roda ob elastic material traditionalí>’ usa! by
designers, witich are calla! splines. An ideal spline of this class pass-
ing titrough several points 18 in essence representa! by a piecewise cubic
witit global continuity of order 2. More detalís can be fornid in man>’
introductor>’ texts on tite subject.

Since the study of the involved matitematical problems can be traced
until Euler’s time one can say that splines have a ver>’ oíd bistor>’. But
15 was not until Scitoenberg that tite>’ were systematically studied and
frequentí>’ usa! bar approximation purposes. Many other authors are
mentioned in a historical remark in [23]. 1-lowever Scitoenberg and matit-
ematicians related to itim (de Boor, Karlin, Miccitelli, Schumalcer and
man>’ otiters) itave produced, aboye all brom tite sixties, most of the
important results on splines. Otiter historical remarks on sorne aspects
ob tite titeor>’ can be found in several papers in [17], for example [20]
and [1]. One of tite reasons of tite great success of splines in Approx-
imation Titeor>’ was tite discover>’ ob ver>’ efficient algorithnis to work
with them and tite simultaneous development of digital computen witere
titose algorithns can be implemented.

Altitougit tite original splines had simple knots, repetition ob knots
was soon associated to lower order of continuit>’ at them, as we present
in the next section.

3 Spline functions

Let A = {x1}1<~<,. be a set of real points witit z1 < x2 < < z7, Iv
a positive integer and M = (vn,, m~.. ,mr) a vector of integers witit
1 =m~ =Iv + 1W. Consider an interval [a, bj, finite or infinite,
such titat xj E [a, b] Vi, and denote x~ = a, z,.~1 = b. A piecewise
polynomial function f of degree Iv on eacit of tite intervais [xj, x~+jj, O <
i < r — 1, [z,., Xr+l] and continuity of order Iv — m¿ al tite knot z1 is
called a apune of degree Iv with kviots x¿ of multiplicity m¿ 1 < i < r.
Following tite notation ob [23] tite space spanned by these functions will
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be denoted by St{Pk, M, A).
The role playa! by tite space Ple can be played by otiter extended

complete Chebyshev spaces, giving rise to the so calla! Chebysiteviavi
splivies. Wc restrict our attention to polynomial splines. Moreover,
right continuity at the knots could be obviously considera! instead of
left continuity. Since a apline s E S(Pk, Al, A) is determina! by (Iv+ 1) x
(r +1) coefficients subject to Z~,(Iv + 1 — m~) continuity conditions,
it easil>’ follows titat tite diniension of tite space is Iv + 1 + Z~?=~ mj.
For brevity we denote n = >3?, m¿ and consequentí>’ the dimension 15

k+vi+t
A natural basis for titis space is tite union of an>’ basis of Pi., with

tite set of truttcated pomer functiovis

{ (x — xe)t+1i} _

witere, as usual,

4 = { x~ ifx>0

Consequently, a spline s E S(Pk, lvi, A) can be expressed in the form

le r mi
s(x) = >3cíz~ + >3>3cei(x — x¿)~~’’. (1)

t=O &=lj=1

Titese bases are not convenient for man>’ purposes. la particular,
titeir bunctions do not have compact support. Qn the contrar>’, man>’
splines itave compact support. Furtitermore, witen we move to tite right
in tite real lime, man>’ functions of the basis are not zero, altitougit only
Iv + 1 truncata! powers are needed to represent a polynomial ob degree
k between two consecutive knots. This means that tite truncated power
functions are locail>’ linearí>’ dependent.

Looking for splines of minimal support and locail>’ linearí>’ indepen-
dent, ititappensthat ib m¿+mí+í+...+mi> Iv+1 thereexistsnonzero
splines s(z) sucit titat

8(x) = O for z < xc or x > xj.

ib me + m¿± ,+ . . . + m~j =Iv + 1, tlien no such nonzero spline exists.
In titis sense, splines like these with m¿ + mí+í + ... + m¡ = Iv + 2 have
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least support. They can be introduced lxi several different ways, being
tite use ob tite divided differences of tite Green’s function (x, y)~. one of
tite rnost elegant ways. It requires to form a new partition of points as
follows:

y1S~”=Yk~1=oIfo>—00

y1=”=yk~i<z1 ifa=—oc

!Jk+2 = yk+3 ... = yk+v».+1 =

Yk+mi+2 = = ... = tlk±vnl-t-m2+1= X2

= Yk+m.+3 = ... = Yk+..+1 = xr

b=uk+,.+2=...=u,.+2k+2ifb<Oo
2r < yk-4-...4-2 = =Yn+2k+2 ib b = oc.

Observe titat one itas
YI+k+1 > y~ Vi.

Now we define the functions

Bí(x) = (ui+k+í — yJ[yi, . . . ~yí+k±11(u— x)~ a. =z <b (2)

or equivalent1>’

Bi(x) = (~1)k(uí+le+l — yO[uí, . . . ,yí÷k+1I(x—

1 <i <vi + k + 1. Here [y¿, . . - u~+k+1]f(x, y) means tite divided differ-
ence of f with respect to the variable u and with arguinents ui,... , YI+k+1-

Titese functions B¿(x) (up to a constant factor for different normal-
izations) are calla! B—splines and form a basis of S<¿Pk, Al, A), with

B
1(x) = O Vx ~ [y~l/i+k+1]

B~Qc) >0W E (yí,yí+k+í).
Tite aboye ones have been normalized in order to satis~r

n+k+1>3 B1(x)=1 VzE¡o,b].
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B~ is a spline of degree Iv and knots ye,.-- ~ue+k+1-For each z, no
more than Iv + 1 ob tite B1(x)’s are different from zero, and tite set
{Bt, Be+i, . . , Bi}, witit j — 1 =k + 1, is a basis ob the space of splines
of degree Iv un [ui+k,ui+í) and knots Yi+k+1,

Nice recurrence relations produce eas>’ computational manipulations
of tite B—splines, which means a great practical advantage witit respect
to otiter bases.

It is worth tu mention titat man>’ of tite properties of this type of func-
tions had been studied by the bulgarian matitematician L. Tchakaloff
some years before tite first papers on splines, but with a different term-
nolo~p. Moreover, his paperson titese questions, written in bulgarian,
had a sitort diffusion. See tite paper by 13. Bojanov [1] in [17] bor more
detajls.

4 B-splines and total positivity

One ob tite nicest properties of B-spllnes concerns tite sign ob collocation
matrices bor Lagrange interpolation problems.

Let us consider a set ob strictly increasing real numbers yi < y~ <

... <,yn+k+1 and let B~, B2,-~, B~ be tite corresponding B-splines de—
fina! by (2), witit [ul,m+k+í] as tite support ob B~. Let ti < t2 < < t,.

be real nuinbers and consider tite collocation matrix

B2•~ B»}

Tite titeorem that states titat tite matrix (3) is nonsingular ib and
uní>’ ib

tíE{xlBt(x)#0} i=1,2.--,vi,

i.e.

ja known as Schoenberg and Whitney altitougit tite original Theorem 2
of [22] was presenta! in a sligittl>’ different form, as we sitail see. In fact
titis result is ver>’ rich and can be presenta! in several different borms,
some ob them giving more information about the sigo of tite minors ob
tite collocation matrix M.
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As we itave said aboye, if vi > Iv + 2 tite B-splines fi,, fi2,
form a basis of tite space of splines of degree Iv avid knots Vk+2r - - , y,,

i.e. the splines that can be expressed in tite borm

le n
s(x)=>3o,A+ >3 c~j(x—yg)~. (5)

i=O i=k+2

Observe that in this form the Schoenberg-Whitney theorem states that.
titere exists a unique spline (5) witit prescribed values at tité points
íi<í2<...<í,,ifandoni>’if

tj< uj+k+1 < ~ 1<i <vi—Iv— 1. (6)

This is precisel>’ tite statement of [22, Titeorem 2], where B-splines were
not usa! because tite>’ had not been introduced yet. Tite proof is basa!
on Laplace transforms and is quite different ob titose basa! on B-splines,
which are ratiter simpler (see [23, Theorem 4.611).

But tite roles of lmots and interpolation poínts can be interchanged,
as it is seen in [9]. Let us write tite s>’stem defined by tite Lagrange
interpolation problem considera! aboye for splines (5):

le n
>3a¿t~¡+ >3 c¿(ts—ydt=zi 1=j=n. (7)
¿=0 i=k+2

witere z~ is tite prescribed value of s(x) at t~j. For 1 <i <vi— Iv + 1 let
M¿(z) be tite B-spline of degree Iv witit knots t¿,~

M¿(x) = M(z lt1,~-, t¿+kel) = [t1, . . . , t¿+k+1](v —

witere, as said aboye, tite divided difference is taken on tite argmnent u.
Observe that in titis case we have not normalized tite B-spline witit tite
factor (t¿+k+í — ti).

Recail titat

= i+k+1 f(ti

)

>3 ~ —

i=’ II
rtj
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and that this is zero when f is a polynomial of degree not greater titan Iv.
We can replace in tite system (7) the rth equation (r = vi, vi— 1,..., Iv+2)

an adequate linear combination of it and tite Iv + 1 precedent ones
in order to get zeros in the flrst Iv + 1 coefficients: observe that bor
r = vi,,.— 1,--,Iv+2 one itas

r
ah>3 = Qh[tr~k~~1<..,trlt O O <it <Iv

j=r—k
2r—k—I

~ti

r (ti—yh)~
Ch>3 r —

j le J~ (t
1—t,)

l=r—k—1
~ti

Ch[trk..1<”, tfl(.—yh)~ chMr~k~~1(uh), Iv+2 =it < vi

witere tite divided difference is taken on tite argument denoted by the
dot.

The new system can be written

>3 ci(ti—yJ~w=zi, 1=j=Iv+1
í=O t=k+2 (8)

>3 c~Mj(y4Z~1 =i =vi—Iv—1
+2

and it has a solution bor ah data z~, ~ , ~ z1, z2, , ~ that
is all z1, z2, . , z,,, if and oní>’ if

detMi(yj)l=i=,.q.,1;le+2=j=n!=0.

la otiter words, tite interpolation problem (7) itas a unique solution if
and oní>’ if tite interpolation problem deterinined by tite space spanned
by M,, ... , M,.q.,..1 and tite interpolation points Yk+2, Yk+3~ ... ,y,, itas
a unique solution. According to (3) (4) titat itappens ib and oní>’ ib

yjE{z~Mf4~~(x)~0}jk+2,Iv+3,”.,fl, (9)

i.e.
< y¡ < t~ Iv + 2 =i =i’~- (10)
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Observe titat (4) implica (10) and that (10) implies (4) except for
tite conditions for yl,u2,--- , Yle+1 titat do not appear in tite last version
of the problem, aud rernark titat tite roles of lcnots and interpolation
points have been intercitanged in both results.

Let us observe too that tite matrix

Mí(ui) i=t<n—¡e—1;Ie+2=j<n

of tite coefficients ob tite last vi — Iv — 1 equations ob (8) is tite Schur com-

plemeuit of tite Vandermonde rnatrix (t5) 0<i<k1=i=k+1 in tite coefflcients

matrix of tite whole system (7).
The Scitoenberg and Whitne>’ theorem itolds alio for splines with

multiple knots. See [23] for more detafis and itistorical remarks.
Anywa>’, titeTe are more interesting properties involved in tite col-

location matrix (3). In fact, it is a totail>’ positive matrix. Tite total
positivity was previewed b>’ Schoenberg and prova! first by Karlin [19]

for Cheb>’shevian splines (see Section 10 of [19] for historical re-
marks). De Boor [21prova! it again in a different and simpler way. The
total positivit>’ of tite rnatrix means the nonnegativity of alí minors of
tite matrix, but in general it is difficult for TP matrices to l<now, without
calculating it, ib a minor of tite matrix will be positive or zero. De Boor,
in the same paper, prova! a nice property of tite collocation matrix of
tite B-splines: an>’ minor of it is positive if and only u the diagonal en-
tries of the minor are alí positive, and consequentí>’ tite minor is zero ib
and oní>’ if titere is at least one zero in tite diagonal of tite minor. To-
taU>’ positive matrices itaving this property form ay intermediate class
between totalí>’ positive and strictly totail>’ positive matrices, and have
been calla! by us in [9] almost strictly totally positive matrices.

Dealing witit splines, tite technique of knot insertion is ver>’ useful.
Let r aud ji be two strictly increasing sequences ob knots sucit titat i- is
a subsequence of ji. Titen tite spaee of splines of degree Iv and knots i-

is a subspace of that of tite same degree and knots ji. Let b~ and b~ the
row vectors of tite corresponding B-spline bases. Titen one has

br = bpAr1¿.

Tite (i,j) entr>’ of A,.~ is usuall>’ denoted c¿iQ) and considera! as
a function of i is calla! a discrete B-spline. The matrix ~rp ~ totail>’
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positive and is called tite collocaation matrix of tite discrete B-splines.
Even, iii tbk case, tite matrix is almost strictly totally positive in the

aboye terminology. See [20]bar a brief summary and references of tite

properties of discrete B-splines.

5 Variation diminution

Let us denote S}x1, x21.. . ,x,,.) tite number ob sign citanges of tite se-
quence of real numbers z1, za,... ,zvn djacarding zero terms and let f
be a function defined in an ordera! real set. Denote

87 = supr (f(t,,fQ2),. . .

where tite supremum is taken over ah ti, t2, - , t,n~ (t1 E 1) witli vn ar-

bitrar>’ but finite.
Analogously, let S~ (z,, X2, . ,x,,,) be the maximum number ob sign

citanges of tite sequence xl, x2, . . . , x»., tite zero terms being permitted

to take on arbitrar>’ signs. Denote

S~1 — sup S~ (f(t~), f(t2),. . . , f(tv»))

An important property ob totail>’ positive matrices (as a special case

of sign-regiilar matrices, see ¡10]) is that II’ A is a nonsingular totail>’

positive matrix of order u, titen

S}Ax) =S}x) Vx E IR~
St(Az) =8(x) ‘lx E .1?~.

IfA is strictl>’ totail>’ positive, titen, for all z E R~\ {O},

S~(Ax) =S(x).

This means titat A itas tite variation-diminishing propert>’. Rouglily
speaking, tite number of sign citanges of tite trasformed of a sequence
is not greater titan that of tite original sequence. Titis property itas

important applications in Computer Aided Geometric Design.
A system of nonnegative functions (ni) 1=í<nis said to be totail>’

positive on ¡ if tite collocation matrix
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is always totalí>’ positive. The system is normalized totally positive
(NTP) if it is totally positive and >3?~ — 1. For sucit a system
andPi,...,J’,,EE”;wemaydefineacurve-y(t)by

n
‘y(t) = >3uj(t)Pt. (11)

i=1

Tite points P~,•• . , P,, are called covitrol pointa, because we expect to
modify tite sitape of tite curve by changing adequately these points. Tite
polygon with vertices ~ 1’,. is calla! control polygon of-y..

For a normalized totail>’ positive s3rstem tite curve (11) lies fi, tite

convex hulí of tite control pol>’gon and one has an interesting sitape

preserving propert>’, witich is ver>’ convenient for design purposes and
we cail evidpoint interpolation property: tite initial and final endpoints of

the curve and tite initial and final endpoints (respectivel>’) ob tite control

polygon coincide. Moreover, otiter variation-dimiishing properties of
such s>’stems impí>’ that tite monotonicity or convexit>r of tite control

polygon are inherited by tite curve, and tite length, angular variation
and nmnber of infiections of tite curve are respectivel>’ bounded by titose

of tite control pol>’gon.
Totalí>’ positive s>’stems are also calla! ordered complete Citebysitev

systems and from tite precedent section we deduce that tite B-spline

basis is one of titese systems. As an>’ other of titem, B-splines satis5’
the following variation diminisiting property: for an>’ nontrivial vector

where S (>3k c1B¿(x)) is taken in tite witole real lime (see [23],Titeo-
rem 4.76).

Bernstein polynomials

= ( ~) (1— z)kt¿ O < 1 <Iv

borm anotiter normalized totail>’ positive system in [0,1]. In fact, tite>’
can be introduced as tite B-spline basis of degree k when we take as

knotst,=t2=...=tk+,=O,tk+2=tk+a~...=t2k+2=1,titatisall
tite knots are placed at tite endpoints of tite interval [0,1].
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6 Totally positive bases and optimal bases

We itave seen aboye that tite B-spline collocation matrix bor different
points is almost strictly totail>’ positive. Analogously to tite definition of
TP s>’stems given inthe preca!ent section we can define almosí stnctly
totally positive systems ob bunctions. As it itas been seen iii [51,for
totail>’ positive bases 1? of continuous bunctions tite bollowing properties

are equivalent:

(i) fi is alinost strictly totail>’ positive.

(u) A Sdhoemberg-Whitney theorem holds forfi.

(iii) Tite fimctions in fi are locail>’ linearí>’ independent.

In [7] Carnicer and Peña itave given an interesting surve>’ of recent
results on optimal bases for Computer Aida! Geometric Design. In
finite dimensional spaces with totalí>’ positive bases there exists a basis
(unique np to a positive constant factor for each function) called 13-
basis sucit that an>’ totalí>’ positive basis ob tite space can be generated
fron tite B-basis by means of a totally positive matrix. Titese bases are
optimal in several senses. Titey have optimal shape preserving properties

in tite sense titat tite control pol>’gon of a curve constructed with tite
B-basfr imitates better tite sitape of tite curve. Titese bases are also least

supported and itave other nmnerical advantages. Examples of titem are
again, among otiters, tite Bernstein basis and the B-splines basis.

For man>’ of these last properties it itas been ver>’ irnportant a better
knowledge ob TP matrices which has been tite result of a series ob papers

b>’ M. Gasca and 3. M. Peña in the last years. la titose papers the basis
tod has been tite s>’stematic use of tite so calla! Neville elimination, that

is a matricial elimination procedure which consists of producing zeros m
the Ivth column of the matrix in tite rows vi, vi — ~ k + 1 adding to
each row an adequate multiple of tite previous one, instead of adding a

multiple of tite Ivtit row as in Gauss elimination. Titis kind of elimination

has proved to be ver>’ useful to deal with totally positive matricex. Tite
main point bor this usefulness is titat Neville elimination is perbormed

it>’ bidiagonal elementar>’ matrices witit unit diagonal, witich are totail>’
positive if tite nonzero elements are nonnegative. Qn tite contrar>’, in

general, tite elementar>’ matrices witicit are usa! in Gauss elimination
are not totail>’ positive.
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See for example [10-16] for more details and references.
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