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Abstract

In this survey we show the close connection between the theory
of Spline Functions and that of Total Positivity. In the last section
we mention some recent results on totally positive bases which
are optimal for shape preserving properties in Computer Aided
Geometric Design.

1 Totally positive functions and matrices

Totally positive functions play an important role in Approximation The-
ory and in many other branches of Mathematics: Analysis, Probability,
Combinatories, Statistics, ete., with applications in Economics, Biology,
Computer Aided Geometric Design,... They started to be systemati-
cally studied about sixty years ago, when F. R. Grantmacher and M.
G. Krein in the former Soviet Union and a little later I. J. Schoenberg
in the United States published their pioneering papers on this subject.
Anyway, much of the theory was influenced at the beginning by the
earlier work of many important mathematicians, as mentioned by Kar-
lin in [19): Stieltjes, Chebyshev, Bernstein, Haar, Fejér, Schur, Pélya,
Fekete,. . .
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In 1968 S. Karlin published bis fundamental book Total Positivity
{19], where he develops the theory and includes almost all the results
appeared until that time. It was published as Volume I but the second
volume has been never written until now. The book is so impressive
and complete that probably this has caused that no other book on the
subject has been published until 1995. However the great quantity of
papers devoted fo the different applications of the theory encouraged us
to promote the organization of an international meeting to summarize
them. An International Workshop on Total Positivity ant its Applica-
tions (IWTPA) took place in Jaca (Spain) in September 1994, meeting
together to many of the present researchers in this area. As an important
consequence, a new book [17] entitled Total Positivity ant its Applica-
tions (M. Gasca and C. A. Micchelli as editors) has been just published
by Academic Publishers. A detailed history of the first results on Total
Positivity can be reconstructed from the historical remarks of [19] and
[23] and also from the paper [21] by Allan Pinkus in [17].

A real function (or kernel} K(x,y) of two variables belonging to
linearly ordered sets X,Y is said to be fofally positive if for each positive
integer and for all

Ty << < Ty <Y< <ym TEX,Y; €Y,

one has
det(K(:c,:, yi)h<ij<m > 0.

If both X,Y are finite sets then X can be considered a finite matrix
and then we speak of totelly positive (T P) matrices. Consequently, a TP
matrix is a matrix whose minors are all nonnegative. When the inequali-
ties are strict in the above definitions we speak of strictly totally positive
functions or matrices. In the german literature the term total nichi-
negativitit has been frequently used instead of total positivity. There
are many examples of TP functions, in particular in Statistics and also
the Green’s functions associated with many standard boundary-value
problems of Sturm-Liouville.

2 The origins of spline functions

Piecewise polynomial functions have been considered for a long time in
order to gain flexibility with respect to polynomials, above all when one
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is considering large intervals. The aim of maintaining global continuity
as much as possible gave rise to the theory of spline functions.

Polynomial splines of degree ¥ with simple knots are piecewise poly-
nomials of degree k¥ with global continuity of order £ — 1. The term
spline to singularize these functions was introduced by L J. Schoenberg
in 1946, due to the thin rods of elastic material traditionally used by
designers, which are called splines. An ideal spline of this class pass-
ing through several points is in essence represented by a piecewise cubic
with global continuity of order 2. More details can be found in many
introductory texts on the subject.

Since the study of the involved mathematical problems can be traced
until Euler’s time one can say that splines have a very old history. But
is was not until Schoenberg that they were systematically studied and
frequently used for approximation purposes. Many other authors are
mentioned in a historical remark in {23]. However Schoenberg and math-
ematicians related to him (de Boor, Karlin, Micchelli, Schumaker and
many others) have produced, above all from the sixties, most of the
important results on splines. Other historical remarks on some aspects
of the theory can be found in several papers in [17], for example [20]
and {1]. One of the reasons of the great success of splines in Approx-
imation Theory was the discovery of very efficient algorithms to work
with them and the simultaneous development of digital computers where
those algorithms can be implemented.

Although the original splines had simple knots, repetition of knots
was soon associated to lower order of continuity at them, as we present
in the next section.

3 Spline functions

Let A = {:r:,-}lgs,_ be a set of real points with 21 < z9 < -+- < 24, k
a positive integer and M = (mi,mo---,m,) a vector of integers with
1 < m; £k+1Vi. Consider an interval [a,b], finite or infinite,
such that z; € [e,b]Vi, and denote =9 = a,zp; = b A piecewise
polynomial function f of degree k on each of the intervals [z;, z441),0 <
i <r—1,|z;, zry1} and continuity of order k — m; at the knot x; is
called a spline of degree k with knots z; of multiplicity my, 1 < i < r.
Following the notation of [23] the space spanned by these functions will
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be denoted by S{Py, M, A).

The role played by the space P can be played by other extended
complete Chebyshev spaces, giving rise to the so called Chebyshevian
splines. We restrict our attention to polynomial splines. Moreover,
right continuity at ‘the knots could be obviously considered instead of
left continuity. Since a spline s € S(Pg, M, A) is determined by (k+1) x
(r + 1) coefficients subject to 3 ;_,(k + 1 — m;) continuity conditions,
it easily follows that the dimension of the space is k + 1 + 2 i mi.
For brevity we denote n = Y ;_; m; and consequently the dimension is
k+n-+1.

A natural basis for this space is the union of any basis of Px with
the set of truncated power functions

{(I . :L")k+1_j}
Y 1<i<r1<j<m;

where, as usual,
[ { o, ifz>0;

+T Yo otherwise .
Consequently, a spline s € S(P, M, A) can be expressed in the form

k r

s{z) = Z: t':,-:l:i + chif(x - ze)i+1_j- (1)

i=0 i=1j=1

These bases are not convenient for many purposes. In particular,
their functions do not have compact support. On the contrary, many
splines have compact support. Furthermore, when we move to the right
in-the real line, many functions of the basis are not zero, although only
k + 1 truncated powers are needed to represent a polynomial of degree
k between two consecutive knots. This means that the truncated power
functions are locally linearly dependent.

Looking for splines of minimal support and locally linearly indepen-
dent, it happens that if m;+miy1+---+m; > k+1 there exists nonzero
splines s(z) such that

s(zx) =0 for z < z; or z > zj.

If m¢+miyp1+---+m; < k+ 1, then no such nonzero spline exists.
In this sense, splines like these with m; + mir; +--- +m; = k+ 2 have
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least support. They can be introduced in several different ways, being
the use of the divided differences of the Green’s function (z, y)f_ one of
the most elegant ways. It requires to form a new partition of points as
follows:

<<y <aifa>-o0

NSy <z if a=—c0o

Y42 = Y43 = - = Yk4+m+1 = T1
Yk4+mi+2 = Ye+mi+3 = " = Yk+matme+l = T2
Yk4n-met-2 = Yetm+3 = *° " — Yk+nt+l = Tr

b< yrni2 <o Sypyarpzifb< o0
ZTr < Yhtne2 <000 < Ynpokto if b= o0,

Observe that one has
Vitk+l > ¥i Vi

Now we define the functions
Bi(z) = (Yirk+1 — ¥l o viknr]lly — ) e <z <b (2)
or equivalently
Bi(z) = (—l)k(‘yi+k+1 — vy, vivknal(z — y)'ﬁ,,

1<i<n+k+1. Here |y, -, vitk+1]f {2, ¥) means the divided differ-

ence of f with respect to the variable y and with arguments ¥4, - - -, ¥ir-k41-
These functions Bi(z) (up to a constant factor for different normal-

izations) are called B—splines and form a basis of S(Px, M, A), with

Bi(z) = 0 Yz ¢ [yi, yirk+1]

Bi(z) > 0Vz € (yi, Yitk+1)-
The above ones have been normalized in order to,satis‘fy
n+k+1

Z Bi(z)=1 Vz € [a,b].

i=1
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B; is a spline of degree k and knots y;,---,¥i1x+1. For each z, no
more than k + 1 of the By(z)'s are different from zero, and the set
{Bi, Bit1,---, Bj}, with  — 1 > k + 1, is a basis of the space of splines
of degree k on [y, ¥;+1) and knots yirk+1,- -, ¥5-

Nice recurrence relations produce easy computational manipulations
of the B—splines, which means a great practical advantage with respect
to other bases. _

It is worth to mention that many of the properties of this type of func-
tions had been studied by the bulgarian mathematician L. Tchakaloff
some years before the first papers on splines, but with a different termi-
nology. Moreover, his papers.on these questions, written in bulgarian,
had a short diffusion. See the paper by B. Bojanov [1] in [17] for more
details.

4 B-splines and total positivity

One of the nicest properties of B-splines concerns the sign of collocation
matrices for Lagrange interpolation problems.

Let us consider a set of strictly increasing real numbers ¥ < y2 <
++« < Yniks+1 80d let By, By, ---, By, be the corresponding B-splines de-
fined by (2), with [yi, ¥i+k+1] as the support of B;. Let ¢; < t2 < -+ < iy
be real numbers and consider the collocation matrix

(2] to e
. ( B By - B, ) = (Bj{ti)<igen- (3)

The theorem that states that the matrix (3) is nonsingular if and
only if
t; € {z | Bi(z) #0} i=12---,n,

1.e,
Vi <ti<yitkyr 1<i<n (4)

is known as Schoenberg and Whitney although the original Theorem 2
of [22]) was presented in a slightly different form, as we shall see. In fact
this result is very rich and can be presented in several different forms,
some of them giving more information about the sign of the minors of
the collocation matrix M. '
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As we have said above, if n > k + 2 the B-splines By, Bg, -+, By

form a basis of the space of splines of degree k and knots yx42,- -+, ¥n,
i.e. the splines that can be expressed in the form

k n
s(z) = Zaja:j + Z cj(z — yg)f_ (5)
=0

i=k+2

Observe that in this form the Schoenberg-Whitney theorem states that.
there exists a unique spline (5) with prescribed values at the points
11 <ty < .-+ < ty if and only if

b < Yirk+l < tivk+r 1<i<n—k—1. (6)

This is precisely the statement of {22, Theorem 2|, where B-splines were
not used because they had not been introduced yet. The proof is based
on Laplace transforms and is quite different of those based on B-splines,
which are rather simpler (see (23, Theorem 4.61]).

But the roles of knots and interpolation points can be interchanged,
as it is seen in [9]. Let us write the system defined by the Lagrange
interpolation problem considered above for splines (5):

k n
Za,‘t} + Z ci(tj - 'y,-)’; =2z 1<j<n. (7)
i=0 i=k+2

where z; is the prescribed value of s(z) at t;. For 1 <i <n—k+1let
M;(z) be the B-spline of degree k with knots ¢;,- -, tipx1:

Miz)= M(z | ti, -, tivks1) = [fir -+ taprr](y — -’L‘)L

where, as said above, the divided difference is taken on the argument y.
Observe that in this case we have not normalized the B-spline with the
factor (ti+k+1 - ti).

Recall that

i+k+1 Ft;)
b, topksd) f = Y TR

| S

r=i

r#j
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and that this is zero when f is a polynomial of degree not greater than k.
We can replace in the system (7) the rth equation (r = n,n—1,---, k+2)
by an adequate linear combination of it and the k + 1 precedent ones
in order to get zeros in the first k + 1 coefficients: observe that for
r=mn,n—1,- <,k +2 one has

r th
an Y —E— = anltr_ker, o tt" = 0,0 < h <k,
j=r—k—1 H
I=r—k—1
1#5
r k
(tj — yn
ch 2 _,_M_ —
I=r—k-1
12

chltr—t-1,-+ trl(—yn)E = enMy_g_1(yn), k+2 < h <,
where the divided difference is taken on the argument denoted by the
dot. '
The new system can be written

k n
Yoati+ Y eilti—w)i =2, 1<i<k+]
i=0 i=ﬁ+2 (8)

3 M) =%1<j<n-k-1
i=k+2

and it has a solution for all data z1, 25, -, zZkt1, 21, 22, * * * » Zn—k—1, that
is all z1, 22, - -, 2n, if and only if :

det Mi(y;)1<i<n—k—1;k+2<j<n 7 0.

In other words, the interpolation problem (7} has a unique solution if
and only if the interpolation problem determined by the space spanned
by My, -, Mn_i_1 and the interpolation points yk+2, Y43, -, yn has
a unique solution. According to (3) (4) that happens if and only if

yje{ﬂfle_k_.l(.’l?)%O}j:k+2,k+3,'-',ﬂ, (9)

ie.
ti—k—1 < Yj < ti k+ 2<j<n. (10)
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Observe that (4) implies (10) and that (10) implies (4) except for
the conditions for y;,y2, -, yk+1 that do not appear in the last version
of the problem, and remark that the roles of knots and interpolation
points have been interchanged in both results.

Let us observe too that the matrix

M;i(y5)1<i<n—k-1k4+2<i<n

of the coefficients of the last n — k — 1 equations of (8) is the Schur com-
l‘.

in the coefficients
7/ 0<igkn<i<k+1

plement of the Vandermonde matrix (t

matrix of the whole system (7).

The Schoenberg and Whitney theorem holds also for splines with
multiple knots. See [23] for more details and historical remarks.

Anyway, there are more interesting properties involved in the col-
location matrix (3). In fact, it is a totally positive matrix. The total
positivity was previewed by Schoenberg and proved first by Karlin [19]
even for Chebyshevian splines (see Section 10 of [19] for historical re-
marks}. De Boor [2] proved it again in a different and simpler way. The
total positivity of the matrix means the nonnegativity of all minors of
the matrix, but in general it is difficult for TP matrices to know, without
calculating it, if a minor of the matrix will be positive or zero. De Boor,
in the same paper, proved a nice property of the collocation matrix of
the B-splines: any minor of it is positive if and only if the diagonal en-
tries of the minor are all positive, and consequently the minor is zero if
and only if there is at least one zero in the diagonal of the minor. To-
tally positive matrices having this property form an intermediate class
between totally positive and strictly totally positive matrices, and have
been called by us in [9] almost strictly totally positive matrices.

Dealing with splines, the technique of knot insertion is very useful.
Let T and p be two strictly increasing sequences of knots such that 7 is
a subsequence of u. Then the space of splines of degree k¥ and knots
is a subspace of that of the same degree and knots . Let b, and b, the
row vectors of the corresponding B-spline bases. Then one has

bf == b#_A T

The (%,7) entry of A;, is usually denoted a;(i) and considered as
a function of ¢ is called a discrete B-spline. The matrix Ar, is totally
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positive and is called the collocaation matrix of the discrete B-splines.
Even, in this case, the matrix is almost strictly totally positive in the
above terminology. See [20] for a brief summary and references of the
properties of discrete B-splines.

5 Variation diminution

Let us denote $~(z1,z2,-- -, Zy,) the number of sign changes of the se-
quence of real numbers ), 2, -, Ty discarding zero terms and let f
be a function defined in an ordered real set. Denote

87f =sup 8™ (f(t1, f(t2),- -~ f(tm))

where the supremum is taken over all ¢1,20,- -+, tm, (t; € I) with m ar-
bitrary but finite.

Analogously, let ST (zy,xg, - -, %mp) be the maximum number of sign
changes of the sequence z1,z2,-,Zm, the zero terms being permitted

to take on arbitrary signs. Denote

STf=sup ST (f(tr), f(t2),- s f{tm)) -

An important property of totally positive matrices (as a special case
of sign-regular matrices, see [19]) is that if A is a nonsingular totally
positive matrix of order n, then

S~ (Az) < S7(z) VzeR"
S*(Az) < S~ (z) Vz € R™

If A is strictly totally positive, then, for all z € R™\ {0},
St (Az) < 8 ().

This means that A has the variation-diminishing property. Roughly
speaking, the number of sign changes of the trasformed of a sequence
is not greater than that of the original sequence. This property has
important applications in Computer Aided Geometric Design.

A system of nonnegative functions (ui}i<icn is said to be totally
positive on I if the collocation matrix

4t o ta Y, . _
M(ul uz o+ Up = (ui(ti)cijentt <t2 < - <tmt €1
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is always totally positive. The system is normalized totally positive
(NTP) if it is totally positive and Y 7.;u; = 1. For such a system
and Py,---, Pp € R*, we may define a curve (t} by

() = 3 ult) P (11)
i=1

The points Py,---, P, are called control points, because we expect to
modify the shape of the curve by changing adequately these points. The
polygon with vertices Py, - - -, Py, is called control polygon of ~..

For a normalized totally positive system the curve (11) lies in the
convex hull of the control polygon and one has an interesting shape
preserving property, which is very convenient for design purposes and
we call endpoint interpolation property. the initial and final endpoints of
the curve and the initial and final endpoints (respectively) of the control
polygon coincide. Moreover, other variation-diminishing properties of
such systems imply that the monotonicity or convexity of the control
polygon are inherited by the curve, and the length, angular variation
and number of inflections of the curve are respectively bounded by those
of the control polygon.

Totally positive systems are also called ordered complete Chebyshev
systems and from the precedent section we deduce that the B-spline
basis is one of these systems. As any other of them, B-splines satisfy
the following variation diminishing property: for any nontrivial vector

(cls [ P cn)

S~ (i c,-B,-(a:)) < 8 {e1,02,- -, ¢n)
i=1

where S~ (3.1, ¢iBi(z)) is taken in the whole real line (see [23}, Theo-
rem 4.76).
Bernstein polynomials

By,i(x) = ( f ) (1-zF 7z 0<i<k

form another normalized totally pesitive system in [0,1]. In fact, they
can be introduced as the B-spline basis of degree ¥ when we take as
knots t; = to = -+- = gy = 0, g0 = tpys = --- = topyo = 1, that is all
the knots are placed at the endpoints of the interval [0,1].
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6 Totally positive bases and optimal bases

We have seen above that the B-spline collocation matrix for different
points is almost strictly totally positive. Analogously to the definition of
TP systems given in the precedent section we can define almost strictly
totally positive systems of functions. As it has been seen in [6], for
totally positive bases B of continuous functions the following properties
are equivalent:

(i} B is almost strictly totally positive.
(ii) A Schoemberg-Whitney theorem holds for B.

(iif) The functions in B are locally linearly independent.

In [7] Carnicer and Pefia have given an interesting survey of recent
results on optimal bases for Computer Aided Geometric Design. In
finite dimensional spaces with totally positive bases there exists a basis
(unique up to a positive constant factor for each function) called B-
basis such that any totally positive basis of the space can be generated
fron the B-basis by means of a totally positive matrix. These bases are
optimal in several senses. They have optimal shape preserving properties
in the sense that the control polygon of a curve constructed with the
B-basis imitates better the shape of the curve. These bases are also least
supported and have other numerical advantages. Examples of them are
again, among others, the Bernstein basis and the B-splines basis.

For many of these last properties it has been very important a better
knowledge of TP matrices which has been the result of a series of papers
by M. Gasca and J. M. Pena in the last years. In those papers the basis
tool has been the systematic use of the so called Neville elimination, that
is a matricial elimination procedure which consists of producing zeros in
the kth column of the matrix in the rows n,n — 1,---,k + 1 adding to
each row an adequate multiple of the previous one, instead of adding a
multiple of the kth row as in Gauss elimination. This kind of elimination
has proved to be very useful to deal with totally positive matricex. The
main point for this usefulness is that Neville elimination is performed
by bidiagonal elementary matrices with unit diagonal, which are totally
positive if the nonzero elements are nonnegative. On the contrary, in
general, the elementary matrices which are used in Gauss elimination
are not totally positive.
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See for example [10-16] for more details and references.
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