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Rational models of solvmanifolds with
Kahlerian structures.

A. TRALLE (SZCZECIN)

Abstract

We investigate the existence of symplectic non-K&hlerian strue-
tures on compact solvmanifolds and prove some results which give
strong necessary conditions for the existence of Kahlerian struc-
tures in terms of rational homeotopy theory. Our results explain
known examples and generalize the Benson-Gordon theorem [BG2]
{our method allows us to drop the assumption of the complete solv-
ability of G).

1 Introduction

There has been an interest recently in examples of compact symplec-
tic manifolds with no Kahler structures ([Ab, Gmf, CFG, FLS, McD,
LuO] and others). With the exception of [McD, FLS| and the surgery
technique of {Gmf]|, known examples are nilmanifolds coming from the
following general theorem proved by Benson and Gordon [BG1] and
Hasegawa [Has].

Let M be a compact K (T, 1)—manifold where I is a discrete, finitely
generated, torsion free, nilpotent group. If M admits a Kdhler structure,
then T’ is abelian and M has the homotopy type of a torus.

This theorem implies that any non-toral symplectic K (I', 1)— mani-
fold with nilpotent I' yields the desired example.

Nevertheless, it would be interesting to look for other aspherical
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manifolds which are symplectic but non-Kahlerian. For example, the re-
sult of [FLS] suggests looking for such manifolds in the class of solvman-
ifolds. Observe once more that the fundamental group of a solvmanifold
need not be nilpotent, (moreover, it is known that for a solvmanifold M,
the nilpotency of 71(M) implies the diffeomorphicity of M to a nilman-
ifold [VGS]).

The case of solvinanifolds, however, differs essentially from that of
the nilmanifolds for several reasons. In general, the Nomizu theorem
concerning the cohomology of a nilmanifold is not available, therefore,
the minimal model of a solvmanifold cannot be used directly. Moreover,
the known examples of symplectic and Kahlerian solvmanifolds show
that all possible homotopy types, Kdihlerian and non-Kdhlerian, may
occur (see [FLS, BG2]). The most unexpected example of [BG2] shows
that there exists a compact symplectic solvmanifold of the same rational
homotopy type as T2 x §%, but non-Kdihlerian, because it cannot carry
any complex structure [FG].

In [BG2] and [FLS] , the authors investigated the case of a solv-
manifold G/I' of a completely solvable Lie group G and established the
necessary conditions for the existence of Kahlerian structure on such
manifolds. The key to the proof of the cited results is the Nomizu-
Hattori theorem [H] regarding the eohomology of G/I" which allowed the
anthors to establish the rational model (A*(G/T),d) = (AL(G)*,6). In
general, the Nomizu-Hatiori theorem does not hold (see [R] and [VGS])
and the technique of [BG2] is not available. Moreover, there are many
types of solvmanifolds which are not completely solvable [VGS|, e.g.
solvmanifolds of (R)—type, (E)—type, mixed types etc.

Nevertheless, the main result of this paper shows that there exists
a graded differential algebra (A*(G/T'),d) which is a rational model of
an arbitrary Kdhlerian solvmanifold and possesses the same elgebraic
properties as (A*(G/T),d). Of course, in the completely solvable case
these algebraic properties determine the structure of G (it is semidirect
product of abelian and nilpotent parts). We use a different approach
based on the Thomas theorem [Thl], [Th2] which describes models of
Serre fibrations. The use of this theorems is of independent interest.

To formulate the main result of the paper, we introduce the notion
of the twisted tensor product of graded commutative differential algebras.
Here and in the sequel we use traditional notations of rational homotopy
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theory and solvmanifolds. Nevertheless, some of them are explained in
the next section.

Let (R,d) and (S, 6) be graded commutative differential algebras.
Introduce the tensor product R ® & of R and & as graded algebras and
define the “twisted” derivation d by the formula

drel)=d(r)®1,reR

d(1@5) = 1@ 8(s) + 3 (-1 30k 6) @ rfyy0e 8 (1)
i20 £21

here 455 is a derivation of (8, 6) decreasing the degree by i, that is

$5(zv) = 95 (@) + (- 1) ¥ Dzgf (y)

and {rf+1,§ = 1,2,---} constitute a basis of R**!, By definition, the
graded differential algebra (R ® S, d) is called the twisted tensor product
of (R,d) and (S, 6). In the sequel we denote the twisted tensor product

by
(R,d) ® (S, 6).

Theorem. Let M = G/T be a compact solvmanifold carrying a Kih-
lerian structure. There exists a free graded differential algebra (A*(E),d)
satisfying the following properties

(i) (A‘(E),d-) is a Lefschetz algebra and a rational moder for E;

(i1) (A*(E),d) = (AX,d = 0) ®, (AY,6), X and Y are finite dimen-
sional vector spaces of elements of degree 1, and (AY,6) iz a min-
tmal differential algebra;

(iii) for the bigrading AY = A*X ® A’Y the equalities hold:

Hl(At) — AI,O Hn_l(A*) — Ak,l-—-l
(iv) the Lefschetz element w € A2(X @ Y) can be chosen in the form
0,2

w=w2’0+w

and w?? and w®? are non-degenerate 2—forms on X* and Y*,
which are closed and non-exzact with respect to d and 6.
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(v) dimX and dimY are even and X* end Y* are w—orthogonal.

To illustrate the usefulness of theorem 3 we also show that it gener-
alizes the Benson-Gordon theorem [BG2]. Here and in the sequel L(G)
denotes the Lie algebra of the Lie group G.

Corollary. If G is completely solvable and G/T is a solvmanifold that
admits a Kahler structure, then

(i) there is an abelian complement A in L(G) of the derived algebra
N = (1(@), L(@)];

(i) A and N are even dimensional;
(iii) the center of L(G) intersects N trivially;

(iv) the Kahlerian form is cohomologous to a left inveriant sympletic
form w = wg + w1, where N = ker(wo) and A = ker{w);

(v) both wy and wy are closed but not ezact in L(G) and also in N and
A;

(vi) the adjoint action of A on N is by infinitesimal symplectomor-
phismas. ‘

Remark.
(i) Corollary follows rather from the proof of Theorem 3.

(i) The properties (ii)-(v) stated in the Theorem are the algebraic
properties established in {BG2| for (AL(G)*, 6) in the completely
solvable case.

In the last section of the paper we construct explicitly an example
of a sympletic solvmanifold which is not completely solvable. We deduce
that this solvmanifold is not Kahlerian. We use the algebraic properties
of the model (A*{G/T'), d) established in the Theorem for Kéhlerian solv-
manifolds to describe the rational homotopy type of any 4-dimensional
Kahlerian solvmanifold. This description explains examples in [FG] and
[BG2] from the rational homotopy point of view.
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2 Preliminaries

This work is devoted, in fact, to algebraic properties of free models of
Kahlerian compact solvmanifolds G/T', that is free graded differential
algebras A*(G/T'), quasiisomorphic to the Rham algebra Qpr(G/T).
Thus, we are in the fremework of rational homotopy theory, although
our models are not minimal in general. Since there are many books and
research articles on rational homotopy theory, we assume the reader to
be familiar with it, referring to [Haj, [Le], [Ta] and [DGMS].

In the sequel we consider the category R— DG A of graded differential
algebras over the field of the real numbers (although the algebraic results
are valid for the arbitrary field of a zero characteristic). By definition, a
model of a manifold M is a free graded differential algebra A*(M) such
that there exists either a homomorphism,

a: A'(M)— Qpr(M)
or a homomorphism
B : Qpr(M) — A*(M)

inducing isomorphism in cohomology. Of course, A*(M) need not be
minimal and therefore is not unique. We use the notion of the minimal
model in the usual sense. The cohomology functor for R — DG A is
denoted by H*. By definition we call a free finitely-graded differential
algebra

A =gl At

oriented if H™(A) # 0.
Definition.

(i) A finitely-graded free differential algebra (A,d) = (EB?:OAi,d) is
called symplectic, if there exists an element [w] € H?, such that
[w]™ # 0,w € A%

(it) An algebra (A,d) satisfying (i) is called Lefschetz, or satisfies the
hard Lefschetz condition if all homomorphisms

Ly : HYT = H™7T L ([R]) = [W7][n], r > 1

are isomorphisms. The element w € A% is called Lefschetz.
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Observe that symplectic algebras satisfying Poincaré duality are mod-
els of compact symplectic manifolds and Lefschetz algebras are those of
compact Kahlerian manifolds. This fact will play the key role in Section
3.

One of the main ingredients of proofs in this article is the Thomas
theorem concerning the models of rational Serre fibrations [Th 1} and
[Th 2], therefore, we reproduce its exact formulation (see [Th 1] for the
proof).

Let

F—-E-—B (%)

be a Serre fibration with F and B of finite cohomology type. It is
a known fact that the fundamental group =;(B} acts natu-
rally on H/(F),j > 1, that is, there exists a representation of m1(B)
in Aut(H*(F)) (see, e.g.[Se]). We presume that, E, F, B are path con-
nected.

Recall that by definition an action of a group G on an abelian group’
C is called nilpotent if the following conditions are satisfied:

(i) G acts on C by automorphism;
(ii) the inductively defined sequence

MC=C1 2 2TpnC={gc—~c,g€CG,ceI',C}

vanishes for some n > 1 ({---} denotes the Z(G—submodule in C gener-
ated by gec — ¢).

[TH}-Theorem (J.-C. Thomas). Let (%) be a Serre fibration satisfy-
ing the previous restrictions. Suppose that m(B) acts nilpotently on
HI(F),j > 1. Then there exists a model (A*(E),d) which is a twisted
tensor product

(A‘(E):d) = (MBsdB) ®r (MF’ dF)

of the minimal models (Mp,dg) and (Mpdg) of B and F respectively.
The twisting r i3 of the form (3).

Remark. We prefer to write the twisting r in the form {TeS].
In the sequel we denote the Lie algebra of a Lie group G by L(G).
The dual of the vector space X is denoted by X*.
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Following [BG2] we consider as solvmanifolds only homogeneous
spaces G /T, where G is a solvable simply connected Lie group and I' is
a lattice in G, that is a discrete co-compact subgroup (seefAu, M] for
general theory of solvmanifolds).

We introduce nilmanifolds as homogeneous spaces N/I', where N is
a simply connected nilpotent Lie group and I' a lattice in N.

To compare our results with [BG2,FLS|, we recall the definition of
a completely solvable Lie group: a Lie group G is completely solvable,
if all endomorphisms adV : L(G) — L(G),V € L(G) possess only real
eigenvalues. Of course, there are many solvable Lie groups which are
not completely solvable (see e.g. [Au}, [VGS]).

To prove the main result of this paper we need the following fact,
which is well-known and can be found in the explicit form in [O):

The minimal model of any compact nilmanifold N/T' is of the form

(Mpyr.d) = (AL(N)*,6)
where § is a standard derivation determining the cohomology of L(N):

sa(Xo,- - Xx) = 3 (- 1) a((Xe, X;), X0, -+, X, Xjo -+ Xa), (2)
i<j
Xg,-+- Xk € L(N), € AKL(N)*.

In Section 4 we use the notion of the higher-order Massey product,
referring to [K] for the definition.

A free graded algebra over a graded vector space X is denoted by
AX, the degree of an element z € X is denoted by deg(z).

Analyzing examples in the last section of the paper, we refer to the
Kodaira classification of compact complex surfaces [BPV] and [FM].
We use the Kodaira classification table in the form [BPV] (p.188). All
definitions necessary to understand this classification are also contained
in {BPV]. We denote the geometric genus of a surface by the symbol =,
and the irregularity number by g¢.

3 Proof of the theorem and corollary

Let (AX ® AY,d) satisfy the conditions of the Theorem. In the se-
quel we assume X and Y to be finite dimensional and fix the bases
Z1, - Tk, Y1, -, of X and Y respectively. We begin with
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Lemma 1. Let (AX & AY,d) satisfy the condition (ii) of the Theorem.
Suppose that (AX @ AY,d) is oriented. Then, necessarily, the derivation
d i3 of the form

dyj = x(J) +y3jt_,' + Z':Esya + :Ejyj:J = la o 'l:
s#j

where
> z=0 3)

2 € A2X, ys;e; € A%V, deg(Ts) = 1,deg(ys) = 1,deg(z;) = 1

Proof. Since H"(AX ® AY, d) # 0 and since (AX ® AY) is the exterior
algebra,

dimH (AX ® AY) = dimZ"(AX Q AY) = dimA™"(X @ Y) = 1.

Suppose that A1 (X @ Y) # Z*(A(X @ Y)), then there exists v €
A" Y X @Y ),dv # 0, dv € A*(X®Y). By the previous remark dv = au,
where u is a generator in A®(X & Y), corresponding to the non-zero

cohomology class, which is a contradiction.
Thus

Aﬂ—l(X e Y) — Ak-l,t + Ak,!'—l — Zﬂ—l(X @ Y) (4)
Therefore

o k—1,1 .
Ui:xl-..wi...mkyl...yleA ’,1=1,...’k

are cocycles (here and in the sequel T; denotes the absence of z;). Cal-
culating du; explicitly one obtains

i
du; =z Ti- -z ((—I)j"IZyl---yj—xdyjyjﬂ'“y:) =
i=t

i
=y Ty Tk {(_1)5-—1 21;1"'9;‘-1 (:l:(j) + ¥s 1 +Z:'E,y, + Tsta +:E,-yj)

LES]

yj+1"-yz}==
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Ti- TRy “Yi-1Yait;¥i+1- -+ X1 ‘T Tk Yi-1 (ZE’”’) Yitl--

s#i
i +m1 "'Ei"'zkyl"‘yj—lijyjyj—l ...yl} =0
Observe that

Ly T ThYL 'yj—lx(”)yjﬂ g € AR = {0}

E—104+1
Ty TieTRYL Yj1Wse Y1y € AT = {0}

xl---ii---mkylu-yj—l Zfsys !Ij+1"'yl=0-
s#7

The first two equalities are obvious, the third follows, since

se{l,---,j—1,7+1,---,1}. Finally

!
2Bk | D% | vy w =0
J=1

which means that
!
Zf:j € Annpro{zy -+ Ti- - 2k)
j=1
Since the above argument is valid for all ¢,
{
3 75 € N Annpso(wy - By - o)
J=1
Since the sum of Z; is of degree 1, (3) follows. Lemma 1 is proved.

Lemma 2. Under the conditions of Lemma 1 the inclusion holds:

d(AF-2) c AR,
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Proof. Take the element y; --- 3. Then

i
d(yr-- w) = Z(_U"*lyl coedyig =
i=1

1
= Z(—l)i_lm cee Y-l (-’Bm + Yst; + Zfsys + -’J—fiyi) Yitl Y —

i=1 sFL

I i
= Z(—l)i_lm ot By o+ Z(—l)idyl ATl W=
i=1 =1

i
= Z(ml)i71y1 e yi-lx(i)yi+] -y € Aﬂ,l’
i=1

because
Y1 YipiWs Wity € ADHH {0},
Y1 Wi ngys Yir1---yi— 0
87
and

] !
2(i—1) - _
31 Ve iy = (sz) yi--y=0

from Lemma 1. Lemma 2 is proved.

Lemma 3. Let (AX®AY, d) satisfy the conditions of Lemma 7. Assume
in addition that the Poincaré duality holds. If

HYAX ® AY,d) = A1, (6)

then
H™ 1 (AX ® AY,d) = AF 14, (7)

Proof. From the Poincaré duality
dimH" 1 (AX x AY) = k.

From (4)
Zn—l(AX ® AY) = Akilll + Ak,l*l
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and by comparing the degrees (the calculation is straightforward, al-
though it is necessary to use the minimality of (AY, §) which guarrantees
that yus; do not contain expressions with y;):

A(ARU1 & AR gARE-2) gk
¥From Lemma 2 (Formula (5) )
d(AR=2H) c AR
and therefore, the subspace of coboundaries B*~! ¢ A®~1. Thus,
dimH Y (AX @ AY) = dim(A* "1 4 A1) — dimB*! =k

Therefore, since dim A¥*~1 = [, dim A¥=!% = k, the assumption Bl £
A%1 would imply

dimH* ! = dimZ ' — dimB* ' =k + 1~ dimB* ! > k.

Thus
Bn—l - Ak,tAl (8)

and Lemma 3 is proved.

Proof of the Theorem

We begin the proof showing that there exists a graded differential
algebra which is a model for G/T' and which satisfies the condition (i)
of the Theorem. Then we prove that this algebra possesses algebraic
properties (ii)-(v) stated in the Theorem.

Let N be the nilradical of G. From the Mostow theorem {M], N C T
is a lattice in N. The latter fact is equivalent to the closeness of NI' in
G. Therefore, one can construct the “double fibration”

I'N = N/NT — G/T = G/I'N.

Since G/I' = G xn (N/N NT), the fiber of the locally trivial bundle
above possesses the path-connected structural group N. From the Serre
theorem [Se], H*(N/N NT) is a trivial 71(G/N N T)—module. Since
all cohomology algebras here are of a finite type, the Thomas theorem
(Section 2) is applicable and the rational model A*(G/I') of G/T is a
twisted tensor product

Mern & MN/NAT-
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It is well known that G/I'N is a torus and since ' N is a lattice, the
fiber of the considered fibration is a compact nilmanifold Finally,

Mgy = (AX,d = 0}, My nar = (AL(N)*, 6)
(see Section 2) and
{(A*(G/T),d) = (AX,0) ®, (AY, §),

where (i) and (ii) are satisfied, ¥ = L(N)*. Suppose that (AX ® AY,d)
satisfies the conditions of Lemma 1 and dy; are linearly independent.
Then (6) holds, since d |y= 0 and d |y is one-to-one. If some dy; are
linearly dependent, from the obvious base change one can assume that
for the new basic vectors 7, dfj; = 0 and thus ; € X. Therefore one
can assume the linear independence of dy; without loss of generality and
(7) follows. Now, the condition (iii) follows from Lemma 3.
To prove (iv)-(v), take y* € Y* and observe that

(i(y*)w)wm_l — ii(y*)wm € Ak,l—l,
m
since w™ € A™ = A**. From (8) i(y*)w™ is a coboundary. Therefore,
i(y")w g A

because otherwise the hard Lefschetz condition and Lemma 3 would
give a contradiction. Thus there exists 7* € Y* such that w(y*, #*) # 0
and therefore w |y.xy. is non-degenerate. Observe that using non-
degeneracy, one can choose X* to be w—orthogonal to Y*. Using the
appropriate identifications of exterior algebra elements and alternating
forms, one obtains the form of the Lefschetz element, that is (iv) and,
as a consequence, (v). The Theorem is proved.

Proof of the Corollary

Analyzing the proof of the Theorem one can notice that conditions
(iii)-(v) are valid for any twisted tensor product satisfying the Lefschetz
conditions and (ii). Following [BG2] we assign to G/T" a model A*(G/T)
which possesses properties (ii)-(v) of A*(G/T'), although this new model
in general differs from the latter. We can observe that for completely
solvable Lie groups

H*(G/T) ~ H*(L(G)) = H*(AL(G)", )
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from Hattori’s theorem [H]. Since
(AL(G)",6) = (UBR(G), d),

the cohomology class of a Kahlerian form has a representative w €
(A2L(G)*,8). Since w™ # 0 and w is an alternarive 2-form on L(G),
it is non degenerate. Therefore, (AL(G)*,8) can be taken as a model of
G/T.

Take N = [L(G), L(G)] and decompose L(G)* as a vector space sum

L(G)* = A @ N,
where
A*={8 € L(G)" | N) = 0}, N* = {a € L(G)* | a(A) = 0}

(here A is an arbitrary complement to A’). Now, taking into account
the equalities (the first follows from (2})

6ﬂ(U!V) = _16([X* Y])vN: [L(G)’ L(G)]

we have

6(A) = 0.

Since N C in the nilradical of L(G), the ideal AV is nilpotent and there-
fore

(AN, 6 |n-)

is a minimal graded differential algebra. Therefore,
(A*(G/T) = (AL(G)*,6) = (AA*, 6 = 0) ®; (AN, 6 |a)

(that is, the model for G/I" can be represented as a twisted tensor prod-
uct satisfying the condition (ii) of the Theorem, the Lefschetz condition
and the conditions of Lemmata 1-3 (the latter is guaranteed by the
minimality of the second term in the twisted tensor product). Finally,
(A*(G/T),d) satisfies the properties (i)-(v) of the Theorem and as a
consequence, the properties (ii), (iv) and (v) of the Corollary.

Remark. These properties were proved in {BG2] directly for the par-
ticular case of (AL(G)*, §) with completely solvable G.
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To finish the proof it is enough to repeat the argument in [BG2]
(parts (i), (iii) and (vi). Here, of course, the proof is based on the
particular choice of {A*(G/T'), d). For example, the commutativity of 4
follows from (v) of the Theorem and the formula

0=éw(A,B,V)=—w([4,B)],V)+w(lA,V],B)—w([B,V],A), A, BE AV c N

(see the proof in [BG2] for details). The Corollary is proved.

4 Examples

It is rather easy to produce examples of solvmanifolds which are not
completely solvable. For instance, any 4-dimensional real solvable Lie
group possessing lattices is either nilpotent, or is of one of two forms
below:

a) G = R x, R% where ¢ : R — GL3(R) is a homomorphism
satisfying the condition ¢(1) € GL3(Z), or

b) G = R x, N3, where N3 is a maximal unipotent subgroup in
SL3(R) and ¢ : R — Aut(N3) is a homomorphism such that ¢(1) pre-’
serves the subgroup N3(Q) in SL3(Q) of matrices with rational entries
in N3 (see [VGS] and [Au]).

Following this general description, we produce the following example.

Example 1. Let G and ¢ be as in a) above and define ¢ by the formula
costdr  sintdwr 0

w(t)=| —sintSr costsSr 0
0 0 1

Then there erists a lattice I' in G such that G/T is a compact symplectic
solvmanifold which is not diffeomorphic to a manifold. This solumanifold
is not completely solvable and has no Kdhlerian structure,

To prove this assertion, observe that the Lie algebra of G is of the
form

L(G) = Span(A, X,Y,Z),[A, X]=-Y,[A4,Y]=X,[A,Z] =0
and all other brackets are zero. Since

L(G) = A x4, B, A= Span(4), B = Span(X, Y, Z),
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where A and B are abelian, L(G) is solvable. It is non-nilpotent, since
ad(A)*(X) # 0 for any n. Obviously ed(A) has imaginary eigenvalues
and G is not completely solvable. Since ¢(1) has integer entries, G
possesses a lattice. [f we generate the lattice in R, say, by %, we obtain
a lattice I' which is a non-nilpotent group extending Z* by a group
Z/5Z. And therefore G/T is not diffeomorphic to a nilmanifold.

Observe that G/I" is symplectic. To show this, consider the complex
(AL(G)*, 6). From Section 2 one can write

(AL(G)" 6) = (A(a” T, Y, Z), 6)3

§(a) = 0,6(z) = —ay, 6{y) = az,8(z) = 0.
One can check that

w=az+zy

is a symplectic form on G/T (one identifies AL(G)* with left-invariant
forms on G and projects this forms on G/T').

We cannot use the Hattori theorem to prove the non-eristence of a
Kéhlerian structure, since G/T" is not completely solvable, To prove
the latter assertion we appeal to the Kodaira classification of complex
surfaces. Assuming G/T to be Kihlerian and hence complex one per-
forms the following argument. Since G/I" is parallelizable, its Euler
characteristic and the first Pointriagin number vanish, which implies
the vanishing of the Chern classes ¢; and cz. Therefore, the geometric
genus pg(G/T) = 0. Then the Kodaira classification of complex surfaces
implies G/T to be algebraic [BPV]. One can notice that if I' = A X, B
is & semidirect product of two abelian groups determined by the homo-
morphism ¢ : A — Aut(B), then I'/[T',T] consists of elements of the
form

(e, b+ @(a)(br) - wlar) (1) - b7 ")

Calculating this expression for I and ¢ determining our particular solv-
manifold, one can check directly that

rank(l'/[[,T]) = 2,

which implies that b;(G/T) = 2. From the Kodaira classification table
(BPV] (p. 188) G/I cannot be a surface of general type. Then, since the
geometric genus vanishes and the second Betti number is 2, one obtains
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¢(G/T) = hl(OG/T) = 1. Using the same argument as in [FM] (p. 30},
one eliminates ruled surfaces. The only possibility remains to consider
is that of hyperelliptic surfaces. In the latter case,

G/T = (B x F)/H,

where B and F are elliptic curves and H is a finite group acting freely
on B x F and the genera g(B),g(F) > 1. Since H is always of the
form H = Z/mZ,m = 2,3,4,6 [FM], the possible fundamental group of
(B x F)/H is an extension of Z* by Z/mZ with m = 2,3,4,6 and from
our construction

71(G/T) # m((B x F}/H)
which implies the proof.
Example 2.

Proposition 1. Let M = G/T" be a compact {-dimensional solvmani-
fold. If M admits a Kdhler structure, then M has the rational homotopy
type either of a torus T4, or of §2 x T2.

Proof. Assuming M to be Kéhler and hence complex, we appeal to
the Kodaira classification of complex surfaces. From the table in [BPV],
either b1(M) = 4, or (M) = 2, since b;(M) = 1 and b (M) = 3 are
eliminated by the Kahler condition, and &; (M) = 0 cannot be realized
by a compact solvmanifold of the type a) or b) above.

Now, apply the Theorem proved in this paper. Applying the proof
of it to the Lie groups G of the form a) b), one obtains

(A*(G/T"),d) = (A(e, b, z,v),d),
and from parts (iii) and (v) it follows that either
d(a) = d(b) = d(z) = d(y) = 0,

d(a) = d(b) = 0,d(x) # 0, d(y) # 0.

We claim now, that part (iv) shows that the differential d in
(A*(G/T'),d) up to isomorphism is either of the form

d(a) = d(b} = 0,d(z) = —ay,d(y) = axz,
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or

d{a) = d(b) = 0,d(z) = az,d(y) = —ay.

To prove the latter assertion, it is enough to make on obvious variable
change, taking into consideration the identities

d? =0, and d(zy) =0 (9)

(the latter follows from (iv), since the Lefschetz element is necessarily of
the form ab + zy. Calculations are straightforward, therefore we won’t
reproduce them. Note only, that it is convenient to rewrite d, say, in the
form

d(z) = a11z + a12y,d(y) = ez + agoy, ai; € Span(a, b)

and write explicitly the conditions on a;; following from (9). Then the
appropriate change of variables can be seen easily.

Now, it is enough to mnotice that the cohomology al-
gebra H*(A(a,b,x,y),d) in both cases is generated by ele
ments a, b, ab, zy, azy, bry, abry. Then some straghtforward computa-
tion shows that H*(A(a,b, z,y),d) has the minimal model given by the
formula

(M, d1) = (A(a,b,) ® R[X1] @ A(zn )}, d1),
d(a) = d(b) = d(X;) = 0,d(y1) = X12, deg(X,) = 2,deg(11) = 3.

Since we assumed G/T" to be Kahlerian, its minimal model is a formal
consequence of the cohomology algebra H*(G/I') [DGMS]. Then, the
uniqueness theorem for the minimal model (which does not depend on
the nilpotency condition) implies.

M = Mgr = Mrygge.

The proposition is proved.

Example 3.

Many more examples can be constructed. We restrict ourselves to
indicating one more example in dimension 8 which is a modification of
an example in [FLS], but wkich also cannot be handled by the techniques
of [FLS).
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Proposition 2. Let L(G) ba o Lie algebra defined as follows
L(G) = Span(A, B, X1, X2, X3, X4, X5, Xg),

[4, X1] = X1,|A, Xg] = = X2, [4, X3] = X3,[A, Xe] = = X4
[A, X5l = aXs, [A, X¢] = —a X5, [B, X3] = X1,[B, X4 = Xo,a € R

(the other brackets are assumed to be zero).
Let G be a simply-connected Lie group corresponding to L(G). Then:

(i) G is a solvable non-nilpotent and not completely solvable Lie group;
(i) G contains @ lattice I for some particular o;

(#1) the homogeneous space G/I is a compact symplectic solvmanifold
with no Kihler structure

The proof of this proposition is given in |Tr] and is based on the guite
different argument combined with a long calculation using quadruple
Massey products [K]. We omit it here.

Remark. Our examples are analogous to Example 1 in [BG2| and
Theorems 1-3 in [FG] when G/T" is not completely solvable.
Examples presented here give some evidence for the following

Conjecture. A compact solvmanifold G/T" of (R)—type is Kihlerian if
and only if it is a homotopy torus.

By definition [VGS], a solvmanifold G/T is of {R)}—type, if for any
V € L(G) all linear operators adV : L{G) — L(G) have only imaginary
eigenvalues.
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