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Topology of real algebraic T-surfaces.

lila ITENBERG

Abstract
The paper la devoted to algebraic surfaces which can be ab-

tained using a simple combinatorial procedure cafled the T-
constructian. The class of T-surfaces la suflicientí>’ rich: for exam-
píe, we construct T-surfaces of an arbitrary degree in Rl’3 wbich
are M-surfaces. We also present a construction of T-surfaces in
Rl’3 with díne H,(RX;Z/2) > h”’(CX), where RX and CX
are the real and the complex point sets of the surface.

1 Introduction

Tite subject of tite paper is T-surfaces, i. e. real algebráic surfaces witicit
can be constructed in a simple cambinatarial fasition: one can patcitwork
them from tite pieces whicit essentially are planes.

Tite construction of combinatorial patcitworking (or T-constructian)
works in any dimension. We restrict aurself itere by tite case of surfaces.
Tite general T-canstruction can be formulated in a campletely similar
way (tite combinatorial patcitwork constructian in tite case of curves is
described in [I-V], [11], [12]).. TiteT-construction is a particular case of
tite Viro titeorem (see [V2], [V3], [VS), [Ve], [Rl]).

Tite results on topology of T-surfaces presented itt tite paper are con-
centrated arouttd tite following conjecture proposed by O. Vire ((V4}):
let X be a nansingular simply connected compact complex surface witit
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an antihalomarphic invalution c : X —+ X; titen dii Hi(RX; Z/2) =
h”’(X), witere RX la tite fixed point set of tite ittvalution c (for a de-
tailed inifarmation on real algebraic surfaces see [Kh], [Sil, IWiD.

Titis conjecture is related ta tite Ragsdale conjecture (see ¡Ra]) con-
cerning tite topolo~’ of real a]gebraic curves. Ta formulate tite Ragsdale
conjecture, let us denote tite number of even ovais of a nonsingular real
algebraic plane projective curve of degree 2k by p (an aval of a nonsin-
guiar curve of an even degree is called even (resp. odd), iL it lies inside
of evén (resp. odd) number of otiter ovais of titis curve), and denote tite
number of odd ¿vals by n.

Ragsdale conjecture. For a nonsingular real algebraic plane projective
curve of degree 2k

3k2—3k+2 3k2—3k
2 ‘ 2

Any caunter-example ta tite inequality p = 3k2-3le+2 produces a
2

caunter-example to Viro’s conjecture: one can take a dauble plane ram-
ified Meng tite complex point set of a counter-exaanple to tite iRagsdale
conjecture witit an appropriate citoice of a lifting of tite involution of
cemplex conjugation. Titus, tite caunter-examples to Ragsdale conjec-
ture obtained itt [Ii] (see, also, [12], [I-V]) sitow titatViro’s conjecture is
not true. Tite caunter-examples te Ragsdale canjecture are constructed
as T-curves. So, it is natural to try to use the cambinatorial patcitwork
construction itt erder to construct caunter-examples te Viro’s canjecture
whicit are real algebraic surfaces in RJ’~.

We sitow in sections 3 and 4 titat under some conditions of”maximal-
ity” of tite triangulation participating itt tite combinatorial patcitwork
censtruction, Viro’s conjecture is true for the resulting T-surfaces. How-
ever, using a “nonmaximal” triangulation (see exact deflnitions itt sec-
tion 2), we can obtain a T-surface X in ftP3 with ¿Hm Hi(RX; Z/2)>
h”’(CX) (see section 6).

We afro construct T-surfaces of any degree in Rl’3 which are
surfaces (it means titat tite total Z/2-itomolegy group of tite real point
set has the same rani< as titat of tite complexification; see section 5).

1 would 111w to thank V. Kharlamov and O. Viro for tite useful dis-
cussions.
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2 T-construction

Let m be a pasitive integer number (it would be tite degree of tite sur-
face under constrMction) and 2’ be tite tetraitedron in It3 witit vertices
(0,0,0), (0,0, m), (0, ira, 0), (m, 0,0). Let us take a triangulation r of T
witli vertices itaving integer coardinates. Suppose titat a distributian of
signs st tite vertices of r is given. Tite sign (plus or mittus) at tite vertex
witit ceordinates (i, j, 1) is denoted by 614,1.

Take tite copies

= s~(T), T, = s~(T), Tz =

= s~os~(T), ~ = s~os~(T), 2’~ = svosz(T) ,T~
2 = s2os~os6(T)

of 2’, witere s,,, sa,, ~ are reflections witit respect to tite coardinate
planes. Denote by 2’. tite actaitedran

T U T~ U 24, U T~ UT~ U T,,, U ~ U ~

Extend tite triangulation r to a symmetric triangulation of 2’., and tite
distribution of signs ~ to a distributien at tite vertices of tite extended
triangulation by tite following rule: passing from a yerta to its mirror
image witit respect to a coerdinate plane we preserve its sign if tite
distance from tite vertex to tite plane is even, and citange tite sign iL tite
distance is odd.

a tetraitedron of tite triangulation of 2’, itas vertices of different
signs, select a piece of tite plane (triangle or quadrangle.) being tite cen-
vex ituil of tite middle points of tite edges having endpoints of opposite
signs. Denote by S tite union of tite selected pieces. It is a piecewise-
linear surface contained in 2’.. Glue by s±os~ o s~ tite facets of 2’.. Tite
resulting space 2’ is itomeomorphic to tite real projective space Rl’

3.
Denote by S tite image of S in 2’.

Let us introduce an additional assumption: tite triangulatien r of 2’ is
convez. Titis means titat there exists a convex piecewise-linear function
u : 2’ —. R witose domains of linearity coincide witit the tetraitedra of
p-. Sometiines, sucli triangulations are also called coiterent (see [GKZ])
ar regular (see [Zifl.

Theorern 2.1 (0. Viro). Under tite assumptíons made aboye on tite
triangulatíon r of 2’, tites-e ezist a nonsungular real algebs-aic sus-face X



134 ¡ha Itenberg

of degree m iii Rl’3 and a itomeomos-pitism ftP3 T mappung tite set
of real points RX of X onto 5.

Moreover, a polynomlal deflning the surface X can be written down
explicitly: if t is positive and sufficiently small, tite palyttomial

(¿44)6V

(witere y is tite set of vertices of r) defines a surface with tite properties
described in Titeorem 2.1.

Weconsider two special types of triangulatians of 2’. A triangulation
r of 2’ is called primitive if alí tite tetraitedra of r are of volume 1/6. A
T-surface canstructed using a primitive triangulation is called primitive.

A triangulatian i-’ of 2’ is called marimal if ah tite integer points of
2’ are vertices of 9. Clearly, any primitive triangulation is maximal.
Tite notions of primitive and maximal triangulatians coincide in dimen-
sian 2. Tite situation is different in dimension 3 : titere exist maximal
triangulations of 2’ whicit are net printitive.

3 Euler characteristic of T-surface

Let us consider a k-dimensional siirnplex Q having vertices witit integer
coardinates and belonging to tite ortitant {r¿ =0} of R”. Wc calí tite
simplex Q elementas-y if tite reductions modulo 2 of tite verticesof Q are
independent (generate an affine space of dimensien k ayer Z/2).

Suppose that a distribution of signs at tite vertices of tite simplex
Q Ls given. L.et us take tite distributions of sigtts at tite vertices of
tite symmetric copies of Q using tite following generalization of tite míe
fermulated in section 2:

tite symmetric copy of a vertex a in an orthant b gets tite
sigtt (—1)~6sign(a), witere a is tite reduction modulo 2 of
tite vertex a ; tite i-th coardinate of tite vector 6 lix (Z/2)»
la equal to O (resp. te 1) if r¿> O (resp. A <0) for a point
(rl,..., rn) in. tite interior of tite orthant b; and d. b denotes
tite standard scalar product of twa vectors in (Z/2)”.

We cail a symmetric copy of Q nonempty if it itas vertices of different
signs.
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Propa8itton 3.1. If tite simplez 4> is elementas-y and does nol belong
to a coordinate hyperplane, titen 4> itas eractly 2~ — 2nk nonempty sym-
mets-ic copies.

Praof. Let us, flrst, remark titat tite map a —> d~ b is linear ayer Z/2.
Tite follawing operatians do not citange tite property of any symmetric
copy of 4> to be nonempty:

(1) parallel transíation of 4>,

(2) changing of signs at aB tite vertices of 4>.
Titus, we can suppose titat tite reduction ño modulo 2 of a vertex ve

of 4> is O in (Z/2)”, and titat tite vertex yo itas tite sign “+“. Denote
tite atiter vertices of 4> and titeir reductions modulo 2 by vi, ... , vk and
vi;.. . 4, respectively. Tite condition titat tite capy of 4> in att ortitant
b is empty (i. e. is not nonempty) can be expressed by a system of linear
equatians

sí, ... ,Vk~b=
6le,

witere e~ = O if tite sign of tite vertex v~ is positive, and e~ = 1 uf tite
sign of y

1 is negative. Tite unknowns of tite systém are tite coardinates
of S. A solutian ta tite system does exist because tite rank of tite system
is equal to k (tite simplex 4> is elementary). Moreover, tite dimensian
of tite space of salutions is equal to it — k. It means titat tite number
of solutians is equal to 2nle, in otiter words, tite simplex 4> has exactly

— 2~k nonempty copies.

u
Proposition 3.1 is similar to Lemma 1 in [I-R].

Naw we are able to calculate tite Euler citaracteristie of a primitive
T-surface.

Theerem 3.2. ¡f X is a primitive T-surface itt ftP
3, titen tite Euler

citas-acteristie x(RX) of tite real point set of X is equal to tite signature
a (OX) of tite compler pount set ofX. lii otiter morda, if X is a primitíve
T-surface of degree m itt RP3, titen

x(RS) = -~ + 4m3 3•
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Proof. Let us take an arbitrary primitive triangulation T of tite tetra-
hedron 2’ and an arbitrary distribution of signs at tite integer points of
2’. Tite piecewise-linear surface S itas a natural ceil subdivision: eacit
ceil is tite intersection of S witit a simplex of tite triangulatian of 2’.

AII tite simplices of r are elementary. Tite number of simplices of
w of any dimension is fixed (tite number of simplices of any dimension
contauned in eacit face of T la also fixed). Titus, we can calculate tite
Euler citaracteristie of S according to Proposition 3.1.

Tite triangulation r cóntains

m3 tetraitedra,
2m3 + 2m2 triangles, and 4m2 of them are contained in tite
facets of 2’,
7m3/6 + 3m2 + llm/6 edges, 6m2 of titem are contained in
tite facets of 2’, and 6m of titem are cantained in tite edges
of 2’,
(m + 1)(m + 2)(m + 3)/6 vertices.

We obtain titat tite described ceil subdiyision of 5 contains 7m3 twa-
dimensional cells, 12m3 edges and 14m3/3 + 4m/3 vertices. Titus,

4m
+ — = a(CX).3

u

Titeos-em 3.3. If X Ls a T-sus-face constructed using a marimal trian-
gulation of tite tets-aitedron 2’, titen x(RX) =o}CX).

Proof. Let us, flrst, remark titat all simplices of dimension < 2 of a
maximal triangulation r’ of 2’ are elementary. Denote by q tite number
of tetraitedra of Y. II any tetraitedran of Y is elementary titan, repeating
tite calculation of tite proal of Titeorem 3.2, we obtain x(S) = 2m3/3 —

q + 4m/3.
Eacit nanelementary tetrahedron ~ itas at least 6 nonempty copies,

because tite rank of tite corresponding system of linear equations (see
tite preef of Proposition 3.1) is equal te 2. Titus,

- 2m3 4m ,
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witere q~ is tite number of nonelementary tetrahedra of Y. It remains to
remark titat q + q’ <m3 and we obtain

a
-~ + 4m

3 ya(CX).
u

4 Case of primitive or maximal triangulation

As we saw in section 3, tite Euler citaracteristic of a primitive T-surface
¡nRA la determined by tite degree and la equal te tite signature a(CX)
of tite complex paint set of tite surface.

For a real algebraic surface X (er, more generally, for a real algebraic
variety of any dimension), we itave Smitit inequality (see, for example,
[Wi]):

b.(ftX) =b4CX)
between tite ranks of total Z/2-itomology groups of tite real and of tite
complex paint sets of X. If b.(RX) = b4CX), tite surface X is called
att M-sus-face. We denote by be(Y> tite rank of i-tit itamology graup of
Y witit Z/2-coefficients.

Let us mentian twa congruences (see [Wifl.

Rakhlin congruence. If X is att Al-sus-face, Ihen

x(RX) u(CX) mod 16.

Kharlamev-Gudkov-ICrahnev congruence. ¡fX is att (M-I)-surface
(itt otiter wos-ds, ifb.(RX) = b.(CX) —2), titen

x(RX) a(CX) ± 2 mod 16.

Rokblin congruence and Theorem 3.2 sitow titat we can expect to
construct primiti~e T-surfaces witicit are M-surfaces. We will see in
section 5 titat sucli surfaces da really exist in any degree. On tite otiter
itand, titere are no (M-1)-surfaces amang primitive T-surfaces in Rl’3
according to Kitarlamov-Gudkov-Kraitnoy congruence and Titeorem 3.2.
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Theorem 4.1. ¡f X Ls a prirnitive T-surface iii Rl’3 titen

b
1(RX) =4”’(CX), bo(RX) =h

2’0(CX) + 1.

Remarks. Titeorem 4.1 states titat Viro’s canjecture itolds in tite case
of primitive T-surfaces.

Tlie inequality bo(RX) =it2’0(CX ) + 1 far primitive T-surfaces was
proved by E. Situstiñ in [Sit].

Proef of Titees-em 4.1. Using tite Smitit inequality

b.(RX) =b4CX) = m3 — 4m2 -f- 6m

(witere m is tite degree of X) and tite equality

x(RX) = a(CX) = -~ + 5213 3

praved in Titeorem 3.2, we immediately abtain

b
1(RX) =h”

1(CX) = 2m3 7m— 2m2 +

and
3

+ hm
6 6

u

Viro’s conjecture alsa italds in tite case of T-surfaces canstructed
usrng maxñnal triangulations.

Titeos-em 4.2. If X is a T-surface constructed using a marimal trian-
gulation of tite tetrahedron 2’, titen

b
1(RX) =h

1”(CX).

Proof. Tite Smitit inequality and tite inequality x(R.X) = a(CX)
proved itt Titeorem 3.3, give again tite desired inequality

b
1(RX) =h”’(CX).

u
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5 M-surfaces

We describe, flrst, a special primitive triangulation p of 2’ suggested by
O. Viro. We sitow titat tite T-construction using tite triangulation p
and an appropriate distribution of signs at tite integer points of 2’ gives
an M-surface of degree m in Rl’3. In fact, tite surfaces given by tite
pracedure described below are itomeomorpitic to anes constructed (nat
as T-surfaces) by O. Viro in [Vi].

Let us divide tite tetraitedron 2’ by tite planes z = 1, and denote by
F¿ tite polytape

{(r,y,z) El : l<z<l+l, 1=0 m—1}.

Citoase an arbitrary primitive convex triangulation of eacit triangle

T¡zTfl{zl}, l=O,...,m—1

(a triangulation of tite triangle T¿ is called primitive if alí its triangles
are of area 1/2, or, equivalently, ir all tite integer points of 2’¿ are vertices
of tite trianguiation).

Eacit polytope 1’¿ is triangulated as failows. II l is even, take tite jain
J¡ of tite gide of T¡ lying in tite zz-caordinate plane and of tite side of
~Y~i lyittgintite planex+y+z=m. tUl laodd, takeas .I¡ titejoinof
tite side of 24 lying in tite plane r + y + z = ni and of tite side of 24~~
lying in tite rz-coordinate plane. Tite join .J¡ is naturally triangulated
into tite joins of segments

[(i, 0,1), (i+1, 0,1)], [(m—Q+1)—j,j, 1+1), (m—(l+l)—(j+1),j+1, 1+1)1,

a=0,...,m—l—l, j=0,...,m—I—2

if 1 is even, and Jg is triangulated into tite jeins of segments

:=0,...,m—l—2, j=0 m—I—1

iL 1 is odd.
Tite pelytope F¡ is tite union of .I¿ and of twa tetraitedra P/~> and

42) Titese tetraitedra can be triangulated into tite canes ayer tite tri-

angles of tite citasen triangulations of T~ and of ~‘¡+í~
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Clearly, tite described triangulation p of 2’ is priniltive. To explain
titat p is convex, cansider a triangulation of 2’ formed by the tetraitedra

Tite later triangulation 18 canvex. Let u’ : 2’ R be a convex func-
tian certi~’ing tite convexity of titis triangulatian, and let u1 : T¿ —* It
(1 = O m — 1) be a convex funútian certiI~’ing titat tite citasen trian-
gulation of 24 is convex. Consider a piecewise-linear function u : 2’ It
irbich is linearon eacit tetraitedron of p and takes tite value u’(r¡)+euí(rz)

at an integer point r¡ of 7’~. It is easy to see tbat tite functian u Lar a
pasitive sufficiently small e certifles tite conyex¿ity of p.

Citoase tite fallawung distributian of signs at tite integer paints df
2’:

a point (i,j, 1) gets tite sign “+“ ff1 j 1 0 mod 2 or
lmod2andij Omod2;

and it gets tite sign “-“ otiterwise.

Proposition 5.1. A T-surface X constrt¿cted using tite triangulation p
and tite distribution of signs described is att M-surface. Tite real point set

m
3 2 1RS of X Ls itonieomorpitic to tite disjoint union of -~ — ni + 1

2 7mspiteres and a spitere witit -~ — m + -~ itandíes if ni is even os- a
m3 2 7m—3projective plane witit -~ — ~ + 6 itandlesifrnisodd.

Proaf. It is easy to verify titat any integer poSt r lyingstrongly inside
2’ itas a symmetric copy s(r) witit tite following praperty: all tite neigit-
bouring vertices of s(r) (i. e. vertices connected witit s(r) by an edge of
tite triangulatian) itave tite same sign, and titis sign is opposite to tite
sign of s(r). It means titat tite surface S itas a connected companent
itomeemorpitic to a spitere contained in tite star of s(r).

vn3 2 liii. 1—
We faund -~- — ~ + 6 — hZ<>(CX) campaneras of .9. Titere is

at least one camponent of.9 more, because tite surface 5 intersects tite
ceordinate planes. On tite otiter itand, according to Titeorem 4.1, tite
number of cennected components of RX does not exceed h2’0(CX) +
1. Titus, tite real point set RS itas exactly hZO(1CX) + 1 connected
camponents.
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Using tite equalities

x(RX) a(CX), bo(R.X) — h2’0(CX) + 1,

we get b.(RX) = b4CX), i. e. X is an M-surface. Furtitermore,

b
1(RX) =

and, titus, tite topolagical type of RX coincides witit one described in
the statement of Prapositien.

u

6 Counter-examples to Viro’s conjecture

We saw in section 4 titat Vira’s cenjecture is true far T-surfaces con-
structed using a maximal triangulation. Surprisingly enougit, a non-
maximal triangulation of 2’ can produce a T-surface X in ftP

3 witit
b
1(RX) > h”

1(CX).
Let us describe, first, tite construction of att extension of a triangu-

lation of tite triangle Te = 2’ rl {2 = 01.
Suppose titat ni is even and titat a prinútive triangulation re of

Te witit tite vertices haying integer coardinates is given. Divide tite
tetraitedron 2’ hilo twa parts 2’ rl {z = 2} and 2’ fl {z = 2} by tite
plane z = 2. Take itt tite flrst pafl tite triangulation coinciding witit tite
triangulation p described in tite construction of M-surfaces.

Divide now tite second part Trl{z =2} by tite plane r+y+kz = m
(witere ni = 2k) inta tite tetraitedran tÉ witit vertices (0,0, 0), (m, 0, 0),
(0, ni, 0), (0,0,2) and tite cone C witit tite vertex (0,0,2) ayer

{(r,y,z)ET:r+y+z=ni,0=z=2}
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(see Figure 1).

m

y
7—

2

m

Figure 1

lo triangulate tite tetraitedran 2’, we take tite canes ayer aB tite
triangles of re, and subdivide (in tite unique possible way) tite canes
containing ittteger paints of tite plane z = 1 in arder ta abtain a maximal
triangulatian of T.

Ta describe tite triangulatian of tite cane C, let us consider tite cone
C witit tite vertex (k + 1,0,1) ayer tite triangle 2’ rl {r + y + kz = m}.
Tite rest of tite cone C is divided inta twa parts by tite plane z = 1 (see
Figure 2). Denote tite lower part (contained in Srl jO =z =1}) by Co,
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and denote tite upper part (contained iii C rl ji =z =2}) by C1.

2

m

Figure 2

The triangulation of tite triangle 2’ rl {x + y + kz = m} la already
fixed (it comes fram tite triangulatian of 2’). Titus, we can triangulate
tite cone (Y by tite canes witit tite vertex (k + 1,0,1) ayer tite triangles
of tite triangulatian of 2’ rl {r + y + kz = m}.

Subdivide Cg taking tite cane C’ with the vertex (0, vi, 0) over tite
facet of Co belanging ta tite plane z — 1 and tite jain J’ of segments
[(vi, 0,0), (0, ira, 0)] and {(k + 1,0,1), (ira — 1,0,1)]. Let us citoase an
arbitrary priinitive convex triangulation of tite quadrangle Corl{z = l}.
It gives a natural primitive triangulation of (Y’ (taking tite canes ayer
tite triangles of tite citasen triangulation of Co rl {z = 1}). Tite jain J’ is
triangulated by tite joins of segments [Qn — j, j, 0), (vi —5 — 1,5 + 1,0)]
and[(i,0,1),(i+1,0,1)](whereik+1,...,m2;i0,...,m1).

It remains to triangulate tite part C1. Subdivide C¡ inta tite jain of
segments [(vi — 1,0,1), (0, vi — 1,1)] and [(0,0,2), (ira — 2,0,2)] (trian-
gulated by tite joins of segments [(vi —5 — 1,5,1), (vi —5 — 2,5 + 1,1)]
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and [(i,0,2),(i+ 1,0,2)1, where i = 0,...,vi —3 5 = O vi —2)
and tite naturafly triangulated canes : witit tite vertex (0,0,2) (resp.
(0, vi — 1,1)> ever tite quadrangle Ci rl {z = 1} (resp. ayer tite triangle

=2’ rl {z = 2}).
Tite described maximal triangulatian of 2’ la called tite ertension of

tite triangulation re and is denoted by ezt(i-e).
Arguments, similar to enes used in tite previous section te sitow titat

tite triangulation p is convex, prove titat if re is canvex titen ext(re) is
also convex. Almost all tetraitedra of ext(re) are of valume 1/6. Tite
only tetraitedra of a greater volume (more precisely, of volume 1/3) are
tite cenes witit tite vertex (0, 0, 2) ever tite edd triangles of re (we cail
a triangle of re odd iL it das not itave a vertex with tite botit even
coardinates).

Suppose new titat a distribution 6e of signs at tite integer points of
To is giyen. Let us describe a distributian ext(6e) of signs at tite integer
peints of 2’ whicit we cail att extension of 6~. In tite part 2’ rl {z =2} we
take tite distribution of sigus described in tite constructian of M-surfaces.
It remaina, titus, to fix a distribution of sigus at tite integer points of
2’ rl {z = l}. We de it as follows:

take an arbitrary distribution in 2’ rl {z = 1} rl {r + y < k},
all tite integer points of tite segment [(k, 0, 1), (0, k, 1)] but
tite peint (0,k, 1) gel tite sign” “,

fer tite atiter points of 2’i we appiy tite rule: a point (i, j, 1)
gets tite sign “-“ iL 1 and 5 are botit odd, and tite sign “+“

otiterwise.

Let us take a triangulatien 4 and a distributien 6¿ of signs at tite
integer points of Te preducing a caunter-example te Ragsdale conjecture
witit p = + 1 (see [Ii], [12],[I-V]). Tite trianguiation 4 can be
obtained placing tite hexagen H sitown itt Figure 3 inside of Te (on
suppose that m =10) in sucit a way titat tite center of H has botit tite
nanzere ceerdinates odd, and extending, titen, tite triangulation of H
to a primitive convex triangulatien of Te. To eblain a distribution of
signa at tite integer peints of Te, we complete tite distribution presented
in Figure 3 by tite rule:

a point (1,5,0) gets Ihe sign “-“ if 1 and 5 are even, and
i+j < m,
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a point (i,j, 0) gets tite sign “+“ atherwise.

Remark titat titis distribution of signs at tite integer points of Te is
sligittly different form tite distribution described itt [Ii], [12], [1-y].

+

+ +

+ +

+ +

+

Figure 3

Proposition 6.1 Tite maximal triangulation ert(r¿) mitA a distribution
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of signa ertó5¿) produce a T-surface X of degree vi itt Rl’3 witit

a
x(RS) = vi 4vi—--3— + —, be(KX) = h2’0(CX) —2.3

Tite real point set RX of X Ls itovieoviorpitic lo tite disjount union

(Vm2++5)S2Hs2llsm3 m2±X~~~

5

of!?~~vi2 lUn — 5 spiteres, a spitere witit 2 itandíes and a spitere witit
—~--—m

2+~— 5 itandíes.

Proaf. Let us, flrst, calculate x(RX). It was already remarked titat
almast all tetraitedra of ext(i-¿) are of valume 1/6. Tite anly tetraitedra
of greater volume (of valunte 1/3) are tite canes ayer tite odd triangles of
i-¿. Eacit of titese tetraitedra of volume 1/3 itas 6 nonempty symmetric
copies (a tetraitedran of volume 1/3 of a maximal triangulation itas 6
nanempty copies iL tite product of signs at its vertices is positive, and
it itas 8 nonempty copies if tite praduct of signs Is negative). Titus, tite
arguments of tite proaL of Titeorems 3.2 and 3.3 sitaw titat x(R.X) =
a(CX).

Calculate now tite number of connected companents of S. Exactly
as in tite proaL of Titeorem 5.1, any integer point lying strongly inside
(2’ rl {z =2}) u (Y itas a symmetric copy witit tite star contauning a
campanera of.9 itomeomorpitic to a spitere. It is easy to see that tite stars
of integer paints lying strongly inside 2’ and belanging to tite segment
[(k, 0, 1), (0, k, 1)j also cantain tite companents of S itameamorphic to a
spitere. Consider tite integer points lying strongly inside tite tetraitedran
2’. Lot us cail even uttterios- poinis of Te tite integer paints (i, 5, 0) such
thati>0,j>O,i+j<m,iandjarebotiteyen. Titereisa
carrespandence between tite even interior points of Te and tite paints of
hntQt) rl Z3: any integer paint lying strongly inside tÉ is a middle point
of a segment joining tite paint (0, 0, 2) and an even interior potra of Te~
We denote tite middle paint of a segment [(0,0, 2), r] (where r is an even
interior paint afTa) by f(r).

Suppose titat an oven interior point r does not belong to tite itexagon
¡1. Titen r itas tite sign “-‘~. Iff(r) itas also tite sign “-‘~, titen tite union
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of stars of r and of f(r) (in tite triangulation of 2’.) cantains acomponent
of S itomeamorpitic to a spitere. II f(r) itas tite sigtt “+“, titen tite union
of stars of r and of sz(f(r)) cantains a component of S itomeomorpitic
ta a spitere.

We itave fornid h2’0(CX) —4 spiteres of S (a spitere was assocuited to
any integer point lying strongly inside of 2’ except 4 paints of tite form
f(r), witere r la an even interior paint of Te belonging ta tite itexagon
H). There are twa camíected camponents of.9 more. One companent is
itameamorphic ta a spitere witit twa itandíes aud lies inside of H Us

2(H),
witere H Ls a cone witit tite vertex (0, 0,2) ayer H. Tite remaining part
of S is conttected. Tite number bi (S) can be calculated ida tite Euler
citaracteristic.

u

Theorem 6.2. If vi is att even integer number ttot less titan 10, titen
tites-e exists att (M-2)-surface X of degree vi in RE>

3 sucit that bi(J{X) =
h”’(CX) + 2.

Proof. Let us take tite triangulation ert(r¿) of 2’ ami tite distribution
of signs ertG5~) at tite integer paints of 2’. Accarding ta Propositian 6.1
tite resulting surface S is homeomorphic to

(rfm2++5)s2us
211sm2+nns.

Remove now 4 vertices of. tite fotm 1(r), witere r is an even interior
point of 24> belonging to H (see tite praof of Propasition 6.1), witit all
tite adjacent edges. Denote tite new triangulatian (whicit is nonmaximal)
by ~rt~Qe¿) ami consider tite surface 9’ constructecl using ext’(~s-¿) and
tite restriction ert’(6¿) of tite distribution ert(4) ta tite set of vertices
of ert~(r<~). Clearly, tite surface á’ is itameomorphic to

(j1...rn2+i{ZI~~5) S
211S

2HSm32+Tli

because we added 4 itandles to tite component itomeomorpitie to
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rm2+T5~ Titus, tite number of bi(S’) is equal to

2vi3 7vi
-2m2+——+2.-r 3

u

Using caunter-exaruples of degree 2k to Ragsdale conjecture witit
more titail 3k2—3k+2 + 1 évenovals (see [Ii], [12], [1-y]), one can canstruct
surfaces X of degree 2k in ftP3 witit b

1(RX) > it”
1(CX) +2.

Theos-em 6.3. If vi = 2k Ls an even unteges- not lees titan 10, titen tites-e
existe a sus-face X of degree vi itt Rl’3 such titat

bi(RX) = h”’(CX) + 2
1(k — 3)2 + 4

]

(inhere /uJ denotes tite greatest integer witicit does not exceed u).
Ps-oef. We start frem a tdangulation rg and a distribution 6~ of signs at
tite integer pointa of To giving a caunter-example to Ragsdale conjecture
witit

3k
2—3k+2

witere a= [(k—3)2+4] 2 +0, . a

(see ¡11], [12], ¡I-V]). Tite triangulation r
0 ran be

obtained in tite fallowing way. Consider tite partition of tite triangle
Te

sitawn in Figure 4. Lot ng take in eacit shadowed itexagon tite triangu-
lation (and tite signs) of tite itexagon H. Tite triangulatian of tite union
of tite sitadowed itexagons can be extended te a primnitive cenvex trían-
gulation r~ of Te~ To obtain tite distribution 68 of signs at tite integer
peints of Te, we citoase tite signs outside of tite union of tite sitadowed
itexagens again nsing tite rule:

a point (i,j,0) gets tite sign “-“ if i and 5 are even, and
2 +j < vi~

a point (i, 5,0) gets tite sign “+“ atherwise.
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A - y’

Figure 4

Consider tite triangulation ext(r~) of T and tite dfstribution ert (68)
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of sigus at tite ittteger points of 2’. Tite resulting surface S is hamea-
morpitic to

___ 1— 40) S2 u oS
2 u(V.vi2+ uy - -r m2+~~5&

Remove now tite vertices of tite triangulatian ert(r~) (witit adjacent
edges) of tite farm 1(r), witere r is an «ven interior point of T~ belanging
ta one of tite shadawed itexagons, and take tite restriction ert’(t5g) of tite
distributian ext(t5fl) to tite vertices of tite new triangulation ext’(4). We
abtain a surface .9’ itameamorpitic ta

(jÁm2+i{!L.. í~4o).92Ha.s2Usm32±7rn

with

b1(S’) — 2vi~ 2vi2~i~h+2o.3 3

u

Remark8.
1. Remaving, if necessary, sorne of tite sitadowed itexagens in tite

constructian of Titearem 6.3, we get caunter-examples ta Viro’s conjec-
ture witit tite real point set itameomorphic ta

(nl — + 1$ —1—4) ~2 llaS2 llSi~m2+7w~a~

witere o. = 1 [(k—3)
2±4

1
2. Tite caunter-example of tite smallest degree in RE>

3 given by
Titeorems 6.2 and 6.3 is a surface of degree 10. Tite realpoint set of titis
surfaée is itomeamorpitie ta

g~~2 11.92 ~
It is unknawn if titere exist caunter-examples of degree less titan 10. Tite
smallest degree we can expect for a caunter-example ta Viro’s conjecture
is degree 5.
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3. Repeating tite pracedure described aboye lar tite new caunter-
examples ta tite Ragsdale canjecture canstructed by 13. Haas [Ha], one
can construct surfaces X of degree 2k in Rl’3 witit

bí(RX) — h”’(CX) + 2a’,

witere a’ — le2—7k+16]

4. We can obtain caunter-examples ta Viro’s conjecture witicit are
asymptatically better titan tite examples described aboye: titere exist T-
surfaces X of degree 2k in ftp3 witit b

1(RX) = h”’(CX) + 2A, witere
A — k

3/24+ terms of smaller degrees. To construct sucit surfaces, we
divide tite tetraitedron 2’ by tite planes z = 21 (witere 1 = 1,... k — 1),
and define a triangulatian and a distribution of signs itt eacit part of tite
subdivisian using tite procedure described in tite preof of Titeorem 6.3
forTrl{0=z=2}.
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