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Classification of obstructions for separation of
semialgebraic sets in dimension 3k
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Abstract
Applying general results on separation of semialgebraic séts

and spaces of orderings, we produce a catalogue of alí possible ge-
ometric obstructions for separation of 3—dimensional semialgebraic
sets and give sorne hints on how separation can be rnade decidable.

Introduction
In the last years different applications have sbown the theory of spaces
of orderings to be a very useful tool for the study of semíalgebraic sets.
Probably the best well known of them is the appllcation of spaces of or-
derings to tbe question of determining the minimal munher of functions
needed to describe semialgebrale sets, see [Bró3], [SchJ, [AnBróRz]. An-
other very important instance, which 15 onr main concern in tbis note,
has to do with the problem of separation of semialgebraic sets. In both
cases the basic idea behind the seenes is that the theory of spaces of or-
derings allows to transíate the geometrical prohlem into a combinatorial
one, since it reduces the question to deal with a finite space and a finite
number of fnnctions.
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In particular, Brócker’s characterization of separation (seo fBró2J)
roughly statos that two semialgebraic sets A, fi in an algebraic variety
M cannot be separata! by a polynomhil if and only if there exists a
finite subspace X of the space of orderings of the fleld K of rational
functions of M, in which A and .8 cannot be separata!. Moreover it
gives an uppor boimd for the chain length of that subspace so that we
actually hayo an upper bound for the number of olements of X. Since
tho number of isomorphism classes of finito spaces of orderings with
bounded chain length and stability mdcx is finite, we can evon. List (up
to isomorphism) all the spaces that must be tested in order to conclude
whether tho separation of A and B is possible.

However, still an infinito nmnber of subspaces exist for each isomor-
phism class and, afro, spacos of orderings can be quite weird objects, so
that the question of dociding whether A aud fi can be separated is, at
this point, far away from being decidable.

On the othor hand, in [AcBgFoJ, without any reference to spaces of
ordorings, there is a geometric criterion that characterizes the separation
of A and fi when dim M 3, lii terms of the separation of thoir traces
or shadows on the walls (i.o., the irreducible compononts of the common
boundary) of A and 8. This strongly suggests the possibility of working
recursively, ]oworing the am~sion, so that ono conid give an algorithmic
answer to the separation problem.

The aim of this paper is to conciliate both approaches. On the ono
hand we will show how to use the theory of spaces of orderings to prove
the quotod geometric criterion, as well as illustrato the geometry carried
by (or bohind of) dio spaces of orderings. On the othor hand, closing
the lOOp, WC will show how, in case A and fi cannot he separata!, the
geomotric criterion produces finite spacos of orderings in which separa-
tion alroady fails. Thus wo wifl produce a catalogne of ah geometric
configurations that obstruct separation in throe dimensional spaces.

Ihe koy point to extract geometric information from abstract spacos
of ordorings is to consider a special class of them, which we cail peo-
metrie. Roughly speaking, these are spaces of orderings associated to
discreto valuations of K and therefore, after possibly blowing-up M,
they are centered at geometric subvarieties. Moreovor, geometrie spaces
of orderings turn out to be dense among all spaces of orderings, so that
whatever we can decide by means of abstract spaces of orderings we can
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also decide by geornetrie ones
One main purposo of this work is to be enlightening, specially for

those not familiar with spaces of orderings. That is tho reason why we
restrict ourselves té dimension three, where geornetrical intuition works
and pictures can be drawn. We afro skip sorne proofs (which aro often
rather complicated and technical) wbich will appoar for arbitrary dimen-
sion in the forthcoming paper [AcAnBg]. In section 1 we rocalí briefly
the notions of spaces of orderings required to understand the paper, lix-
tonding to be as rnuch down-to--earth as one can possibly be. In section
2 we prove tbo equivalence botween Br5cker’s separation rosult in terms
of spacos of ordorings and tho geomotric criterion of [AcBgFo]. Finally,
in section 3 we produce the aimounced catalogue of configurations that
give riso to non-separable semialgebraic sets.

1 Geometric spaces of orderings: sorne recalis
and definitions

Let K be a finitely generated extension of It of trascendence degree u,
that is, K is the field of rational functions K(M) of sorne irreducible
real algebraic variety M with din M = u. We denoto by Spocr K the
real spectrum of K, i.e., Ihe space of orderings of 1<.

Given E c K and Y c SpecrK, ono can define

E’ — {a E SpCCrKI 1(a)> 0, Vf E E}
Y1— {f E Kfl ¡(a) > O, Va E Y} fl a

oeY

if we identifr a with the cono of its positivo elements. A snbset Y o
Spoc~ K is calla! a subspace if it verifles Y” — Y.

If we identi& an ordering of Specr K with tho element of O =

Hom (O, Z
2) which sends oach funetion to its sign, Specr K becomes an

abstract space of orderings in the senso of [Ma] (seo alsa fAnBróRz]) by
considering the couplo (Spec,. K, O) where O = K/Z, and E represents
the set of sums of squares of K. Of course, a subspace Y of Specr K is
also a subspacein the sense of ¡Maj, namely, (Y, O/Y’).
Examples 1.1. Any singleton E = {a}, a boing an ordering, is a
snbspaee which is called atomic. A set of 3 orderings {a~, ~2,o4 is
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a subspace if aud only if the product 010203 is not an ordoring of 1<
(which is mainly tho case). If a4 = aíay~ happens to be an ordering
then {aí, 02,a~, a4} is a finite subspace (in fact the subspace spanned b1/
01, 02, 03) which is calla! a ,4—element Jan. Moro generally a finito fan
F is a finito subset such that F

3 c F. Fans are very special subspaces.
Two oporations are defined between abstract spaces of orderings to

bujíd new ones.

(1) the sum: (Y
1, G~)+ (Y2, 02) = (Y, O), where Y is the disjoint union

of Y1 and Y2, O = Gí >< 02 and Y acts on O by

92) = 10(91) ifa E Y1a\91, \ a(g~) ifa E Y2

(2) the eztensiorn if H is a group which is a Z2—module the exten-
sion is definod as (X’,O)[H] = (X’x H,O x H) whore H =

Hom (H, Z2) and (a, h)(g, /t) = a(g) . h(h)

In the context of the space Spoc,. K of orderings of a field, the ad-
dition corresponda to the union of disjoint “independent”. families Xí,
X2 of orderings of 1< in tho sonso that (Xí)’ ~ — Kt Extension
corresponds to considor the family of orderinga compatible with a real
valuation and spocializing to a givon snbspace X’ of the residuo flold.
This is afro calla! the pull-back of X’. Following this idea, if X = X’[H]
is an extonsion and a = (a’, k) e X, a’ E X’, h E II, we will say that
a apecializes to a’, and we will rofer to the fiber {a’} x JI as tbe set of
generizationa of a’.

Now, the following fundamental thoorem explains tho structure of
finito spaces of orderings in terms of the operations just described.

Tbeorem 1.2. (Marshall, seo j Ma], [AnBróRz, Theorem IV.5.1]) Ány
finite apace of orderings can be built in a unique way (up to isomorphism)
by a finite sequence of suma and eztensions, .starting frvm a finite number
of atomic epaces.

Thus, to any finito space of ordorings, we may attach a weiyhted tvre,
constructed as follows.

(1) The bottom points of the treo (te. points not connected to any
lower point) represent atomic spaces.
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(2) TIte sum X1 + X2 is representa! by tho upper point of the treo
with two branches whose lowor points stand for X1 and X2.

~,

(3) The extension X[14’fl is representa! by tIte uppor point of the
treo consisting of a vertical edge witli woight m ovor the point
representing X; if m — 1 ni is omitta!.

Thns, for instance, the treo

corresponds to the space

(((2EjZ~’]) + E)[Z~
2] + 2E)[ZT3I

To any finito spaco X there aro associatod two invariants which can be
read directly ftom its treo:

(1) the stabítitx, índex s(X), which is the maximurn of the snm of
weights along a path joining a bottorn vertox to tho top vortex
plus 1;
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(2) the chain Length, which is tIte number of bottom points.

TIte key point about considering tIte treos of finito spaces of orderings
is tbat thoy allow us to work (either to define properties or to prove
them) by induction along the treo. The notion of geometric apaces of
orderinga (OSO for short in tIte soquel), which is at tho coro of tuis
papor, is a nico example of it.

Definition 1.3. Lot (X, O) be a finito subapace of Specr K. Wc say
that it ja geometrie (or OSO for short) if:

(1) X is atomie, say X {a}, and tIte convex huil W0 of It with
respoct to a ja a discreto valuation ring of rank u (remember that
dimM = u); or

(2) X is a sum (X, O) = (Xi, Oí) + (X2, 02) and both (Xi, Oi) and
(X2, 02) are goometric; or

(3) X is an extension (X,O) = (Xí,Oí)[H] of weight a and thore is
a discreto valuation ring y of K of rank a (bence ita residue fleid
kv ja a flnitoly generated oxtonsion of It of dimension u — a), such
that (Xi,Oi) ja a geometrie subapaco of Specrkv aud (X,O) is
tIte pull-back of (Xí, Oí) by y.

Por instance, a fan E C SPecr K is geometric if and only II, according
to the definition in [AnRz], it is contera! at a real primo divisor.

Asaume that X = X’[Jf} is a goometric space of orderinga and lot V
be the valuation aasociatod to tIte extonsion so that X ‘is a geomotric
apace of ordoringa of tIte residuo fleid kv. ~Yecan tallc about tIte center
of X itt M as tIte center of V, that is, tIte zoro set M’ of tIte prime
ideal p = 1Z(M) fl

911v, where RJ(M) ja tIte ring of regular functions on
M and VRv is tIte maxirnal ideal of V. In particular M’ has dirnension
losa than or equal to the trascondonce dogree of kv, and X’ induces (by
reatriction) a apace of orderinga on M’, which may be amallor than X’.

lii general, if we denote by 5x tIte family of all valuation ringa of K
compatible with sorno element of a geomotric space of ordorings X, it
follows from tIte definition that all tIte valuationa of Bx are discreto and
with flnitely generated residuo fleid. Note that tIte definition of OSO is
given in terms of valuations and therefore it might Itappen that a OSO
ja not realiza! in a particular model M. To be more precise, we say tbat
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a goomotric subapaco of ordoringa X is realized in an opon semialgebraic
subsot S of a modol M of K if any a E X apecializes in SpecrR.(M)
through a cItain of length u: a = ~(0) ... «(1) —~ — {x} E S.
Wo hayo:

Proposition 1.4.

(a) Any finite space of orderinga of stability índex s is isomorphic to
a geometric subspace realized itt arz open semia¿gebraic subset S of
dimettsion $ of a mode¿ M of K.

(b) Let X be a geometrie space of orderings of K. Then there is a
compact model of K in which X is realized. Moreover, for any
cornpact mode¿ M of K there is a sequence of b¿owings-up of M,
Mr Mr~i —* ... —. Mo = M, such that X is realized itt Mr.

Proof. Part (a) ja [Br5l, Proposition 3.3]. For part (b) it is enough
to blow np M tul a model in which all valuationa (whicIt aro a finito
number) of 8x hayo a conter of dimonsion equal to tho dñnonsion of
their residuo fleid.

u
We consider tIte Harrison topology on tIte space SPecr K, i.e., ihe

topology generated by tIte sets U(f) = {a c SpocrK;f >~ O}, where
f EX.

In a similar way as discreto valuation rings are prova! to be denso in
tIte set of all valuationa, we hayo tIte following density result for OSOs.

Theorem 1.5. Let K be a funetion fleid of dimension u and M a
compact model of .1<. Let X C SpecrK be a .finite subapace with a ele-
ments. Then X can be arbitrarily approximated iii 1/te Harrison topotogg,
of (Specr K)8 by a geometric subapace isomorphic to X.

u

Proof. [AcAnBg].
In othor words, given a finito apaco of orderinga X = {ai,. . . , a~}

and functions f¿j sucIt tItat for each i, f~(ae) > O, wo can always flnd
a OSO Y = {rí rk} isomorphic to X and such tItat fí~(rí) > O for
each 1. Rouglily spoaking, tbk implies that OSOs form a distinguishod
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aubelasa of spaces of ordoringa tbat suifices to check properties defiñed
in terma of tIte wItole collection of spaeea of ordoringa and involving only
flnitely many polynomials. Thia ja tIte case for separation as wo will seo
below.

2 Spaces of Orderings and separation of Semi-
algebraic Sets

Now, fix a compact non-singular model M of K. Remember that we
Itave a tilde map which assigns to any aemialgebraic set S c M the
conatructible aubsot S c S~ec,. K dofined by the same equationa as S.
Two semialgebraic seta Itave tIte same tilde imago if and only if tItey aro
generically equal, i.e. tliey are equal up to a aubsot of codimension at
least ono, [BoCoRy, Proposition 7.6.3]. TItus tIte study of conatructible
aubaeta of Spoc,,. K transíates into generic properties of semialgebraic
seta, that ja, what Itappena up to a set of smaller dimension.

Now, lot A, fi be disjoint opon semialgebraje seta in M. For simplic-
ity, whenever no confuaion is possiblo, wo sItail denote also by A and fi
thoir tilde images in Specr K.

Wc say that A and fi are generically separable if there exiat a proper
algobraic subset Y c M and a regular funetion 1 E k(M) sucIt that

f(A\Y)>O and f(B\Y)cO.

Wc say tItat A and fi are separable if wo can cbose Y to be tIte set

—z
AnB

i.e., tIte smalleat set it can be.
Now, a rexnarkablo theorem of Brócker ([Bró2], [AnBróRzl Theorem

IV.7.l2) atates that A and fi are genorically separable if and only if
thoir tildes are separable iii all finito subapaces of orderinga (witIt chain
longtIt bonuded, seo below) of SPOCr K. Using tIte density TIteorom 1.5,
this result can be rewritten using only geometric apacea of orderinga as
follows:

Theorem 2.1. A ansi B are generically separable itt M íf ansi on4, 1.!
br every geometric subspace of orderínga X c Spec,. K of chaín-Length
=2~’,AflX andfiflX are separable mx.
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Since any subapace of Spec,.K has stabity index < u there are only
a finito number of isomorphisia types of apaces to be tested.

(2.2) Walls. Now, we aro intereated in the poasibility of toating tIte
soparation iii tornia of tIte baundaries of A and fi. To that end, wo define
tIte walls of A and fi as tIte irreducible (u — 1)—dimensional components
of tIte Zariaki closure 8J42 U OB2 of tIte boundary of A and fi. From
now on WC asaume tItat oíl tite mali., of A arzd fi are normal crossing
mmd non-singz&lar (wbich can always be acItieved by desingularization).
Under thia. assurnption separation and generic separation coincide.

TIten, tIte main idea hero ja tItat A and fi can be separata! if and
only if they can be separata! in a neighbourhood of oach wall. TItis can
be soen from a pure geometric point of view by meansof Lojasiewicz’s
inoquality (seo [AcBgFo]), or as an application of Theorem 1.5 aboye.
Indeed, suppose that A aud fi cannot be separata!. TIten, there exista
a finito geometrie apace of orderinga X in which A and fi cannot be
separated. Take it with #(X) minimal TIten, taking into account that
if X = Xí + X

2 tIten A and fi can be separata! in X if and only if
they can be separata! in X1 and X2, tIte minimality Itypothesis implies
that X is an extenaion X = X’[Z2] aud we may asaumo (up to sorne
blowings-up) that X is centera! at a hypersurface W (in other worda,
X’ is a OSO of W).

We clairn that W is a wall. For lot A’, fi’ be tIte set of apecializationa
of A and fi to X’. Firat note that A’ and fi’ cannot be separata!, sunco
othorwise A and fi coníd be separata! in X. Now, if W la not a wall
tIten for any a’ E A’ U fi’ tIte two gonerizationa of a’ln X would he
both either in A orE. But then X’x {1}, where we write Z2 = {1, 4,
is a subapace of X in whicIt A and fi cannot be separata! (since tIte
projoction defines an isomorphism onto X’ taking A and fi to A’ and
fi’ respectively). TItia contradicts tIte minimality of X and we are done.

(2.3) Shadows and counter-shadows. Next we want to characterize
the separation of A and fi in temis of their shadows on the walls. To
be precise, we define tIte ahadoma of A and fi on a wall W as the sets
Int(XflW) and Int(rflw). Note that ifX = X’LZ2] isa OSO centered
at a wall W, the shadowa of A and fi correspond to tIte apecializationa
A’ aud fi’ of A and E, respectively, in X’. As explained aboye, if all tIte
shadows can be separata!, tIten A and fi can be soparated. However
tIte converse ta not true aa tIte following simple oxainple showa: talco
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A = {z > O,y+ 1> O} aud fi = {z < O,I—y> O}. TIteir shadows
in z = O cannot be separata!, but tIte function z separates A from
fi. To control this plienomenon we introduce the following device: br
each wall W consider a polynomial gw whicIt cItanges ita sign acroas
for instance a generator of tIte ideal Z(14/)1?(M)z(w), and consider the
semialgebrale seta

= (A n bw> O}) u (fin bw < O})
fi~ = (A fl {gw < OJ) u (fin {gw > 01)

It is easy to ver@ tItat A and fi are generically separata! II and only if
tIte same is truo for A9~ and fi~. TItus, we defino tIte couttter-shadows
of A and fi in W as tIte shadows of tIte seta A~ aud fi~.

TIte corresponding notion in the context of geometric spaces of order-
inga of tIte form X = X’[Z21 can be dofina! by taking as counter-shadows
tIte apecializationa to X’ of tIte seta:

= (A n (x’ x {1})) u (fin (x’ x {í}))
fi = (A n (x’ x {i})) u (fin (x’ x {1}))

Ihe nico tIting about tIte countor-shadows la that ono can prove that
A aud fi are separable in X = X’[Z2] Ii and only ifeitItor their shadows
or their countor—ahadows are separable tu X’. In particular, if A and
fi are opon disjoint semialgobraic subseta of M and W la a wall, tIteir
tildes A and fi are not separata! in X’[Z2], X’ = SpecrK(W), if and
only if neither tIte sItadows nor tIte counter—shadowé of A aud fi in W
are separable. TItis yielda to tIte following reault:

Theorem 2.4. (Separation criterion) La A mmd fi be as aboye: Y =
U OB

2 has non-singular irreducible components mhich are nonnal

crossirzgs. Titen A ansi fi catt be separated u, and ottiy if, for every
mali W <2 Y either tite shadows or tite counter-shadoms of A ansi fi are
separable itt W.

Proof. A purely geometric proof in dimension 3 can be fonud in
[AcBgFo]. Hero we just outline tIte proof of tIte general case, which
will appear in [AcAnBg]. Asaumo that A sud fi are not separable.
Then, by TIteorem 2.1, we flnd a finite OSO X in wbich A and fi can-
not be separata!. Moreover, ji we talco #(X) minimal we may assinne
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tItat X = X’[Z2j aud X’ is a OSO at sorne wall W’, poaaibly after sorno
blowings-up. Now, neitItor tIte sItadows nor the counter-shadowa of A
aud fi are separable in X’, which implies tItat neitIter tIte sItadows nor
tIte counter-shadaws of A and fi in W are separable. Finally, sinco tIte
walls were already at normal croasinga, we can trace back the blowings-
np to get an original wall W wItoro also neither tIte shadowa nor the
counter-sItadowa are separable.

Convorsely, if W is a wall in wIticb neither tIte shadows nor tIte
counter-shadows are separable tIten A and fi are not separable in x~[Z2J,

= SPCCr K(W), whicIt in particular imples tItat A and fi are not
separable.

u

R.emark 2.5. In tIte next section we will seo how to construct ex-
plicitoly, from a wall in wbich tIte separation criterion faila, a OSO lix
which tIte separation of A and fi is not posaible.

As a consequence of tIte separation criterion we got

Theorem 2.6. Tite separatiott problem is decidable.

Proof. Again we refer to [AcAnBg] for a complete proof. The main
ideas bohiud are: given A and fi, flrat desingularize the walls to malco
tItem normal croasinga (this can be done lxx a constructivo way, seo
[BiMil); then apply tIte critorion to lower tIte dúnonsion. After a finito
number of ateps WC are in dimension 1 wItero two opon aemialgobraic
sets aro separable ff and only if tItey are disjoint. Also, ono can stop in
dimension 2 and apply the argumenta and algorithma in [AcBgVeJ and
[Ve].

u

3 Catalogne of 3—dimensional non-separable
configurations

lxx thia section we will apply tIte aboye resulta to produce a catalogne
of all configurationa that make imposaible the soparation of two opon
semialgebraic snbsots of a non-singular 3—dimensional variety.
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Lot A and fi be tWo opon disjoint sernialgebraic subsots of M,
dim M 3. We assumo M to be compact, non-singular and the compo-
nenta of Y = 0A2 U 0fi2 be non-singular normal crossings. Wc know
from TIteorem 2.1 tItat soparation of A and fi la posaible if and only ff it
IS 50 in aIX finito geometric spacea of orderinga of Spec,. K of cItain lengtIt
<4. Thus, we may produce (and in fact it is a good oxorcise to do it)
a completo bat of all possible treos of apacos witIt cItain lengtIt =4 and
stabillty =3, and cIteck in every ono tIte posaible configurationa of A and
fi which cannot be separated. Rathor tItan doing it here (which rnight
be vory tedious) WC will use tIte geometric criterion to flnd all minimal
geometrie apacea of orderinga X and the configurationa of A and .8 in
them whicIt aro not separable. E particular note tItat X being minimal
we are restricta! to oxtensions.

Recail that by the ultraifiter tIteorem, cf. [Brb3], orderings coincide
with ultrafllters of opon somialgebraic seta, so tItat, as it ja becoming
customary, we will depict tIte orderinga as amail parallelopipeda in M
(wo use cubos in tIte three space). TItis way a E A meana tItat A con-
taina tIte parallelepiped corresponding to a. Moreover, to keep a graphic
image in mmd, We will asign tIte White color to the set A aud tIte black
to fi, and our discuasion will always be up to roversing cobra, tItat is,
reversing the roles of A and fi. Also we Will look for tIto “essentially
different” configurationa in tIte following sonso: given a non-separable
configuration, lxx a apace X, ita image by any automorphiam of X pro-
duces anothor ono wIticIt ja afro non-separable ami Which will be consid-
era! equivalent to tIte previoua ono, so that our description will be up
to isomorphism. However Wc will not entor into tIte preciso doscription
of all isomorphisma of X. Lot us just aay tItat since WC Will be dealing
with extensiona X = X’[Z

2J, wItere A?’ la a goometric apace definod in a
wall W, WO will conaider tho automorphiam group Aut(X’) x Aut(Z2),
tItat is, cither automorphinxs of X’ or coinpoaitions of them WitIt tIte

automorpItiam of X conaisting in turning it up-side down, wItich geo-
metrically corresponda to talco tIte “symmetry” WitIt respect to W.

We start by recalling that in tIte two—dñnensional case, Theorem 2.1
just says that A and fi are separable if and only thoy aro so in any
finito geometric aubapace of orderinga of chain length =2. Since spacea
cf ordoringa of cItain length 2 are fana and the stability index la < 2
WC Itave tbat A and fi are separable if and only if they aro so in any
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geometric 4-element fan of tIte aurfaco. Now, if tIte components of the
border of A U .8 are normal crosainga, diese fans can be takon contera!
at a curve, and will be depicted as in Figure 3.1 (in fact tIte heigbt of the
rectanglos sItoníd be infinitesimal witIt reapect to the width, but tItat ja
irrelevant lxx our context).

Fig. 3.1 Fig. 3.2

TItus, tIte only configuration for disjoint A and fi so tItat they caxmot
be separata! consista of three of tIte elementa being in A (whito) and
tIte fourth in .8 (black) or viceversa, so that, up to isomorpItism and
reverarng cobra, WC got tIte pattern of Figure 3.2 aboyo. Note in this
case tIte automorphism group of 9 is tIte Kloin group genoratod by the
two symmetries witIt respoct to tIte x and y axis, WhicIt moyo tIte black
aquaro to any position.

Lot us turn to tIte 3-dimensional case. lake A and fi as in tIte
statement of Thoorem 2.4, and asanme tItat tItoy are not separable.
Applying Theorem 2.4, thia meana that there is a Wali W in wbich
neitIter tIte shadoWs A’ and fi’ nor tIte counter—sItadows A” and ~ can
be separata!. We will distinguisIt several casos, but befoje entoring into
tIteir diacuasion WC nea! to introduce ono more convention. Conaider
tIte wall W (representa! by a plane) and flx a generator g for 7(W),
so tItat WC nxay talk (at loast in a Zariski opon subset of M) of tIte
positivo Italf-space and tIte negativo half-space dofinod by W (wItere tho
equation is positivo and negativo respectivoly). Wo will afro depict in
white tIte seta A’ and A”, and In black tIte sots fi’ and fi”. The apaces
WC are to construct are extonsiona of subapaces of Spec,. K (W), so tItat
all configurationa will consist of cubos (White and black) witIt ono face
on W.

We knoW from 2.3 tItat given a non—separable configuration for A and
fi, the seta A9 and fi9 give anotItor non—separable configuration. Now,
A9 and fi9 aro produced by reversing cobra in tIte negativo Italfapace of
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W, tbat is, tnrning tIte White cubos in the negativo halfapace of W into
black, aud tIte black cubos in tIte negativo halfapaco of W into wh¡te. We
Will denote this operation of revoraing cobra in tIte negativo halfapace
as chess-coloring. TItus, WO say that tWo confignrations are eqnivalent if
ono can be obtainod from tIte otIter by a sequence of automorphisma aud
chess-coloring, and WO Will determine alí minimal configurationa which
obstruct soparation np ¿o equivaiettce.

Now, consider in W a pattem llko the ono sItown in figure 3.2 corre-
sponding to a fan F contera! at curvo y WitIt three whito and ono black
element whicIt cannot be separata! and wluch representa tIte aItadows
A’ and fi’. TItus, a minimal configuration of A and fi producing these
sItadowa is obtalnod by considering 4 elemonts (cubes) lxx tIte extension
F[Z2], three white (i.e. in A) and ono black (i.e. in fi) projecting onto
~ and fi’, respectively. Moreovor, eacIt of these cubos can be in any
of ita two poasible positiona. We will cail any of those configurations a
shadoms—cnbe. TItus, we hayo a total of 16 poasible configurationa for tIte
ahadows—cube. Since for each of tItom also its symrnotric with respoct
to W bolonga to the family, tItey reduce to 8 up to iaomorphism. TIte
folloWing picture depicta four of them Wich will be of apecial relevance
ínter. Tho other four appear in Figures 3.6 and 3.7 below:

Fíg. 3.3

Consider now tIte cheas—coborod conñguration of a shadows—cubo. Notice
tItat It produces as counter—shadoWs in W tIte shadows of tIte original
ono, wItere nrnv the Wlute aquares stand for A” and the black ono for
fi”. TItia ~ WC get the 16 posaibbe configurationa (8 aftor equivalenco)
for tIte connter—shadoms—cnbe over tIte givon 3 White, 1 black pattern on
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the fan F as counter—shadoWs. Picture 3.4 below representa the cIteas-
colored configurationa of tIte ones of Figure 3.3.a Yw

F¡g. 3.4

Note that, differontly to what Itappena in tho shadowa—cubes, where wo
alWaya Itave three olomenta in A and only ono in fi, in tIte counter-
shadows—cubes wo may Itave any number of eloments (from zero to faur)
in A and fi. Our job WilI basically conaist in combining diese “olomen-
tary” ahadows and counter—ahadoWs—cubes.

Wo are now ready for tIte diacuasion of tIte 3—dimensional case. Recalí
that WC hayo a wall W in whicIt neitIter tIte aItadowa A’ and fi’ nor tIte
counter-sItadows A” and fi” can be separated. Wo distinguish sevoral
cases.

Case 3.1 A’ fl fi’ # 0, A” fl E” ~ a
Talco a’ E A’ fl B’ and a” E A” fl fi”. Sinco A liB = 0, WC get tItat

a’ ~ a” and we Itave a configuration of tIte type

Fig 35

where tIte pair of adjacent wItíte cubos be ovor ~ and the WItite aud
black pair ile ovor a’ TItís corresponds to a 4 eloment fan of M contera!
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at W. As W85 pointed out before, ita automorphism group 18 tIte Klein
group generated by tIto symmotry witIt respet to W and tIte ono wItich
intorchangos de roles of a~ aud a” and theroforo tItia configuration is
unique up to equivalence.

Case 3.2 A’ fl 8’ = 0, A” fl B” # 0.
Since tIte boundaries of A’ and fi~ are normal crossing, there ja a

geometric 4-eloment fan 9 in W, contera! at a curve -y, in wItich A’ and
fi’ cannot be separata!. Asaume tItat on W we hayo a configuration
for A’ and fi’ as lxx Figure 3.2. TIten -y muat be lxx tIte intersection of
W with another wall T of A asid B which we depict as an orthogonal
surfaco to W. TIten ono of tIte 8 (up to iaomorpItism) configurationa of
tIte sItadows—cube must be contained in A U fi. Lot us take a cloaor look
at some of tItom.

Note that wIten tIte twa paira of adjacent cubos are in tIte samo sido
of W, cf. Figuro 3.6 below, they produce a 4-element fan of M as tIte
ono already considera! lxx Case 3.1, seo Figure 3.5, but tItis time contera!
at tIte vertical wall T.

Fig. 3.6

TIterefore we cliscard these two cases, wItich reduces to 6 tho number of
non-isomorphic configurationa to be considera!. Noxt, when the pairs of
adjacent cubos are “symmetrically” displayed witIt reapect to tIte curvo
-y, cf. Figure 3.7 below, tItey afro bulíd a geometric 4-eloment Lan of
M (tItis timo contera! at -y) in whicIt separation is not posaible, so tItat
no furtIter work is neodod. lxx fact, notice that in this case taking tIte
counter—shadows we get also tItat, in tIte fan 9 on W, A” and fi” aro
not separable and A” 11 fi” = 0. TItus, wo are in tIte situation (3.4.1)
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below aud we also discard tItese configurationa Itere.

n
~rn~_

T LI
Fig. 3.7

Altogothor (alWays up to isomorphism) we are ra!uced to considor the 4
posaible configurationa for tIte ahadows—cube sItawn in Figuro 3.3 aboye.
Noiv take a goomotric ordering a E A” fl fi” auch tItat ~ ~ 9, xvhicIt
is aiwaya possiblo since ~ fl fi” ja an opon set: juat take any ordering
contera! at a point not in tIte curvo -y. Since a” E A” fl 8”, ita t’wo
generizationa in Spocr 1< are botIt in A nr botIt in B. Now, tIte minimum
geometrie apaco of orderinga of W whicIt contains {a”} and 9 is the sum
{a”} + 9, and wo may combine indepondontly the patterna over each
summand in tIte extonalon X ({a’} + F)[74J whoao atructural treo is
shown in Figure 3.12 a) boloW. Moreover, tIte automorphiam gronp of
X ja generatod by the ono of 9 aud the upL~~side doivn aymmetry on
so tItat we get 8 posaiblo nowaeparable minimal conflgurationa obtainod
by comblning each of the 4 configurationa of Figure 3.3-with a pair of
white or black boxes over a”. TIte figure 3.8 below juat shoWs tItose
combinationa for tIte flrst pattern of Figure 3.3.

w

UY LI

Fig. 3.8
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Case 3.3 A’ fl fi’ # 0, A” rl fi” = 0.
TItis case is procisely tIte cItoss-colored version of the previous ono.

TItus, we get tIte 8 chesa-colored configurationa of the ones in Caso 3.2.

Case 3.4 A’ rl fi’ = 0, A” fl fi” = 0.
Note that in particular tItia imples tItat ovor any ordering a’ E

Specr K(W) there ja at most ono generization in A U B. Now, as aboye,
thoro are geometric 4—elomont fans E’1 and ~‘2 in W such tItat A’ and fi’
cannot be separata! in E’1 and ~ and B” cannot be separata! in E’2~
Lot -y~ be tIte curve at wIticIt E’~ la contera!. We Itave to deal simulta-
neously with a sItadows-cube (wItich produces the shadows A’ and fi’
on Fi) aud ono of ita cItesa-colored configurationa (wIticIt produces tIte
countor—ahadows ~ and fi” on 92). We distingniah several subcases:
(3.4.1) F~ = E’2 = E’
Hero we get one of tIte configurationa describod in Figure 3.7 in which tho
adjacent blocks of tIte sItadows—cube ovor E’ are symmetrically diaplayod
with respect to ‘y. Notico that strictly apeaking these configurationa aro
not equivalent since they he in difforent goometric 4—element fana so
tItat they cannot be automorphic linagea of each otIter. However thore
ja an isomorphiam botween botIt fana taking ono to tIte otItor. Noto also
tItat tItese fana are contera! at the curve y matead of at tho wall W, and
tIteroforo are not extensiona of a space centered at 14’? If we want tItem
to be contera! at a wall we muat blow—up M, retriovlng tIte patterns of
Figure 3.6. Alternatively vio may seo thom as aubfana of the 8-elemont
fan FfZ2], contera! st W.

(3.4.2) Fi # E’2 but E”~E’2# 0.

TIten -n = “(2 and F~ rl F~ ja a trivial Lan witIt 2—elementa so tItat in W
vio Itave, for instance, patterns lilce

Fig. 3.9
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Since any ordering a’ E SpecrK(W) Itas at most ono gonerization ni

AUB, thia forcea tIte configurationa over E’~ and E’2 to sItare tItoir building
bloclc over Fi rl 92. Tho pictures below givo an example over oach ono
of tIte patterns of Figure 3.9. TIte four cubes on tIte left stand for tIte
aItadowa—cubo whule tIte four on tho rigItt are tIte counter—-aItadows ono.

w

Fig. 3.10

A diroct and easy inspoction sItows tItat We alWays get a configuration
wItich actually includes citItor a 4—elomont fan contera! at tho wall 2’
(cf. Figure 3.5 aboye) or a aymxnetric configuration along -y as the ono
considera! in (3.4.1). Thorefore this case does not produce any new
minimal configuration.
(3.4.3) E’1 OlE’2 = 0 but E’1 U E’2 ~ E’1 + E’2~

Thia moana tItat tIte ordoringa of F1 and 172 are not independent, whicIt
implies that ‘y~ = -ya. Thus in W we hayo a pattern of tIte typo:

Fig. 3.11

An easy computation sItoWs again that this case ja ra!undant, since, for
inatance, we can replace ono of tIte E’~’s so that we aro in tIte case just
treatod in (3.4.2).
(3.4.4) E’1 rl E’2 = 0 and E’~ UF2 = E’í + E’2~
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In particular this implies that ~yj aud “~ are difforont and tho configura-
tiona over E’í and E’2 can be combina! independently. Thus, we are ni
tIto apaco X = (Fi + F2)[Z2] witIt atructural treo as in Figure 3.12 b)

Fig. 312a) Fig. 3.12b)
and whose automorphism group is generata! by the ones of F1, E2, tIte
up-side down symmetry and tho “aymmetry” whicIt intercItanges E’1 and
E’2 (tIte aymmetry along tIte axis of tIte treo). TItus, up to equivalenco
we get tIte 16 configurationa obtained by combining tIte 4 patterns of tIte
shadows—cubos with thoir 4 chess—colored onos. TIte following picturo
just sItows some examples of tItom. Moreovor, note that ifwo choas—color
ono of diese 16 configurationa, wo get another ono of the farnily, up to
cItange the roles of Fi aud E’2~ TItus, up to oquivalenco WC only get 8
different configurationa in X.

Fig. 3.13
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Altogethor we get 19 esaential configurationa, which we summarize
in tIte following

Proposition 3.5?. Up ¿o equivalence and reversing tite rotes ofA and fi,
A attd B cattnot be separated if asid ottly for sorne mali W they contain
one tite fotiowing cottfigurations in tite correspondittg OSO:

i) tite one of Case 3.1 (Fig. 3.5); itere tite OSO is tite 4-eiernent fatt
2E[741.

u) tite 8 of Case 8.2 (Fig. 8.8); itere tite OSO is (E’ + E)1Z2] =

(2E[Z2] + Efl74].

iii) tite ¿mo of Case 8.4.1 (Fig. 8.?); here tite OSOs are 4-elernent fana
2E[712].

iv) tite 8 of Case 8.4.4 (fig. 8.13); itere tite OSO is (E’~ + E’2)1Z2] =
(2E[Z2] +2EI7Z2DIZ2i.

Remark 3.6. a) Noto that in Caso 3.2, sometimos it iniglxt be posaible
to talco a” E E’, gotting a apace X with amaller cardinal in whicIt tho
soparation ja not posaible. In this situation X = F[Z2~, tho fan of 8-
elomenta, aud we get apparontly differont pattorna, as tIte ones sItown
in Figuro 3.14. Howover, this caso produces a 4—element Lan contera! at
the vertical wall T and tIterefore ja not minimal.

Y

Fxg. 3.14

b) Also note tItat ir> Caso 3.2, iL we do not tako a” independent
from E’ (for instance we take a” specializing to tIte same curvo y), tIten
tIte minimal aubapaco contalning E’ aud a” la not their union, but Itas a
sixth elemont: the “symmetric”order to ~ witIt respect to j’. TIte apaco
spannod by E’ and a” is the union of two non-diajoint 4-oloment fana of
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W which Itas atructural treo 3E[Z2]. Oeometricaily this corresponda to
place tIte pair of cubos in A or fi ovor a” attacha! also to the curvo
getting tIte differont veraions of Br&lcer’s example of basic aemialgebraic
seta in a 3—dimensional apaco which cannot be separata!, seo [Brb2].
Again, thia apace is not minimal, since it is always poasible to talco
a” E A” rl B” which does not apecialize to the curve -y. TItus tItis
situation ja already includa! in the ones considera! aboye.
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