A multiplier theorem for the Hankel transform.

Rafał KAPELKO

Abstract

Riesz function technique is used to prove a multiplier theorem for the Hankel transform, analogous to the classical HörmanderMihlin multiplier theorem [6].

The celebrated Hörmander-Mihlin multiplier theorem [6] says that if a function m on R^{n} satisfies the following condition

$$
\begin{equation*}
\sup _{R>0} R^{-n} \sum_{|l| \leq k_{0}} \int_{R<|x|<2 R}\left|R^{||| |} D^{l} m(x)\right|^{2} d x<\infty \tag{1}
\end{equation*}
$$

for some integer $k_{0}>\frac{n}{2}$ then the operator T_{m} defined by $\left(T_{m} g\right)^{\wedge}=m \widehat{g}$ is bounded on every $L^{p}\left(R^{n}\right), \mathrm{l}<p<\infty$.

Restriction of the theorem to the set of radial functions on R^{n} gives the multiplier theorem on spaces $L^{p}\left(R_{+}, x^{2 \alpha+1} d x\right), 1<p<\infty$ with $\alpha=\frac{n-2}{2}$. The ordinary Fourier transform on R^{n} has to be replaced by the Hankel transform

$$
\begin{equation*}
\widehat{f}(y)=2^{\alpha} \Gamma(\alpha+1) \int_{0}^{\infty} f(x)(y x)^{-\alpha} J_{\alpha}(x y) x^{2 \alpha+1} d x \tag{2}
\end{equation*}
$$

where J_{α} is the Bessel function of the first kind of order α.
The assumption (1) gets even the simpler form

$$
\sup _{R>0}\left(\int_{R}^{2 R}\left|x^{k} m^{(k)}(x)\right|^{2} \frac{1}{x} d x\right)^{\frac{1}{2}}<\infty,
$$

where $k=0,1,2, \ldots, k_{0}$ and $k_{0}>\alpha+1$.
It is quite natural to expect that the multiplier theorem should have an extension to all values $\alpha \geq \frac{1}{2}$ of the real parameter. However the exact repetition of the Hörmander proof does not lead to effect, mainly because the Hankel transform of the derivative of a function has no representation in terms of the transformation of the function. In order to omit this difficulty there were developed two technics in the literature.

The first one, [2], is indirect, uses a relation between the Jacobi polynomials and the Bessel functions but the result obtained there is weaker then expected. The proof goes under stronger assumption

$$
\sup _{R>0} R^{-1} \int_{R}^{2 R}\left|x^{k_{0}} m^{\left(k_{0}\right)}(x)\right|^{2} x^{-1} d x<\infty, k_{0}=[\alpha]+2
$$

The second one, [4], developes the original Hörmander's technique but instead of the ordinary derivative of a function it makes use of the powers of a Sturm-Liouville operator. The result is like the Hörmander one, but $k_{0}>\alpha+1$ must be an even number.

The aim of the note is to prove the multiplier theorem in full generality. We assume that k_{0} is the least integer greater than $\alpha+1$. In fact k_{0} may be a real number if one uses the Weyl fractional derivatives instead of ordinary derivatives. The main idea is based on the fact that the Hankel transform of Riesz function $R_{u}^{k_{0}}\left(x^{2}\right)$ has especially simple form. Then we follow the arguments of Gosselin and Stempak [4].

For a bounded function m on R_{+}we define the multiplier operator T_{m} by $\left(T_{m} \boldsymbol{g}\right)^{\wedge}=m \hat{g}$, where ${ }^{\wedge}$ denotes the Hankel transform (2).
Theorem 1. Fix $\alpha \geq \frac{1}{2}$ and let k_{0} denote the least integer greater than $\alpha+1$. Assume that a bounded function m on R_{+}satisfies

$$
\sup _{R>0}\left(\int_{R}^{2 R}\left|x^{k} m^{(k)}(x)\right|^{2} \frac{1}{x} d x\right)^{\frac{1}{2}}<\infty
$$

where $k=0,1, \ldots, k_{0}$. Then the operator T_{m} is of weak-type $(1,1)$ and, consequently is bounded on every $L^{p}\left(R_{+}, x^{2 \alpha+1} d x\right), 1<p<\infty$.

In the proof we use the notion of the generalized convolution

$$
f * g(x)=\int_{0}^{\infty} f(y) T_{\alpha}^{y} g(x) y^{2 \alpha+1} d y
$$

where $T_{\alpha}^{\prime y}$ is the generalized translation operator

$$
T_{\alpha}^{y} g(x)=b(\alpha) \int_{0}^{\pi} g\left((x, y)_{\theta}\right) \sin ^{2 \alpha}(\theta) d \theta
$$

$(x, y)_{\theta}=\left(x^{2}+y^{2}-2 x y \cos \theta\right)^{\frac{1}{2}}, b(\alpha)=\pi^{-\frac{1}{2}} \Gamma(\alpha+1)\left(\Gamma\left(\alpha+\frac{1}{2}\right)\right)^{-1}$ and f, g are suitable functions on the half-line (cf [5]).

As usual we use C with subscripts or without subscripts for a constant which is not necessarity the same at each occurence.
Proof. The main idea of the proof is based on the fact that the Hankel transform of the function

$$
R(x)=\frac{1}{\Gamma\left(k_{0}\right)}\left(u-x^{2}\right)_{+}^{k_{0}-1}
$$

has a very simple form

$$
\begin{equation*}
\hat{R}(x)=\Gamma(\alpha+1) 2^{\alpha+k_{0}-1}\left(\frac{\sqrt{u}}{x}\right)^{\alpha+k_{0}} J_{\alpha+k_{0}}(\sqrt{u} x) \tag{3}
\end{equation*}
$$

(cf. [7, §4 Theorem 4.15]).
As usual we cut the function m into small pieces by using a fixed bump function. Let $\Psi \in C_{0}^{\infty}\left(R_{+}\right)$with support in $(1,2)$ such that $\sum_{-\infty}^{\infty} \Psi\left(2^{-j_{x}}\right)=1$ and $m_{j}(x)=m(x) \Psi\left(2^{-j} x\right)$. Define new family of functions $h(x)=m\left(x^{2}\right), h_{j}(x)=m_{j}\left(x^{2}\right)$. First using (3) and applying the method of [4], we will obtain the theorem for h. More precisisely we will prove

$$
\begin{equation*}
\left\|T_{h} g\right\|_{p} \leq C_{1, p}\|g\|_{p} \tag{4}
\end{equation*}
$$

Then we will show how to deduce the thesis for the function m from the thesis for the function h.

For h_{j} we write the reproducing formula

$$
h_{j}(x)=\frac{1}{\Gamma\left(k_{0}\right)} \int_{2^{j}}^{2^{j+1}} m_{j}^{\left(k_{0}\right)}(u)\left(u-x^{2}\right)_{+}^{k_{0}-1} d u
$$

By (3) we have

$$
\begin{equation*}
\hat{h}_{j}(x)=\Gamma(\alpha+1) 2^{\alpha+k_{0}-1} \int_{2^{j}}^{2^{j+1}} m_{j}^{\left(k_{0}\right)}(u)\left(\frac{\sqrt{u}}{x}\right)^{\alpha+k_{0}} J_{\alpha+k_{0}}(\sqrt{u} x) d u \tag{5}
\end{equation*}
$$

Then $T_{h}=\sum_{-\infty}^{\infty} T_{h_{j}}$ where $T_{h_{j}} g=\hat{h}_{j} * g$ and $g \in L^{1}\left(R_{+}, x^{2 \alpha+1} d x\right)$. In order to prove (4) it is sufficient to establish (cf. [4, p.659] and [1, p.75]) that

$$
\begin{equation*}
\sum_{j=-\infty}^{\infty} \int_{\left|x-y_{0}\right|>2\left|y-y_{0}\right|}\left|T_{\alpha}^{y} \widehat{h}_{j}(x)-T_{\alpha}^{y_{0}} \hat{h}_{j}(x)\right| x^{2 \alpha+1} d x \leq C \tag{6}
\end{equation*}
$$

with $C>0$ independent of $y, y_{0} 0$.
An application of Leibniz formula yields

$$
\begin{equation*}
\left(\int_{2^{3}}^{2^{j+1}}\left|m_{j}^{\left(k_{0}\right)}(x)\right|^{2} d x\right)^{\frac{1}{2}} \leq C\left(2^{j}\right)^{\frac{1}{2}-k_{0}} \tag{7}
\end{equation*}
$$

where C does not depend on j, and $k_{0}=\alpha+1+\epsilon$ for an $\epsilon>0$. We prove the following estimates:

$$
\begin{gather*}
\int_{t}^{\infty}\left|\hat{h}_{j}(x)\right| x^{2 \alpha+1} d x \leq C\left(\sqrt{2^{j}} t\right)^{-\epsilon} \tag{8}\\
\int_{0}^{\infty}\left|\widehat{h}_{j}(x)\right| x^{2 \alpha+1} d x \leq C \tag{9}
\end{gather*}
$$

To prove (8) observe that by definition, $\hat{h}_{j}(x)$ coincides with the Hankel transform of the function

$$
I I_{j}(y)=\frac{I^{\prime}(\alpha+1)}{\Gamma\left(\alpha+k_{0}+1\right)} \chi_{\left[\sqrt{2^{2}}, \sqrt{2^{j+1}}\right]}(y) m_{j}^{\left(k_{0}\right)}\left(y^{2}\right)
$$

with respect to the measure $d_{1} \mu(x)=x^{4 \alpha+3+2 \varepsilon}$.
Now Schwartz' inequality, the Plancherel formula applied to H_{j} and (7) give

$$
\begin{aligned}
\int_{t}^{\infty}\left|\widehat{h}_{j}(x)\right| x^{2 \alpha+1} d x & \leq\left(\int_{0}^{\infty}\left|\widehat{h}_{j}(x)\right|^{2}\left(x^{2 \alpha+1+\frac{1}{2}+\epsilon}\right)^{2} d x\right)^{\frac{1}{2}}\left(\int_{t}^{\infty} \frac{1}{x^{1+2 \epsilon}} d x\right)^{\frac{1}{2}} \\
& =\left(\int_{0}^{\infty}\left|\widehat{h}_{j}(x)\right|^{2} x^{4 \alpha+3+2 \epsilon} d x\right)^{\frac{1}{2}} t^{-\epsilon} \frac{1}{\sqrt{2 \epsilon}} \\
& =C_{\alpha, k_{0}}\left(\int_{2^{j}}^{2^{j+1}}\left|m_{j}^{\left(k_{0}\right)}(p)\right|^{2} p^{2 \alpha+1+\epsilon} d p\right)^{\frac{1}{2}} t^{-\epsilon} \frac{1}{\sqrt{2 \epsilon}} \\
& \leq C\left(2^{j}\right)^{\alpha+\frac{1}{2}+\frac{\epsilon}{2}}\left(2^{j}\right)^{\frac{1}{2}-k_{0}} t^{-\epsilon}=C\left(\sqrt{2^{j}} t\right)^{-\epsilon}
\end{aligned}
$$

To prove (9) we use (8). Now changing the variable $y=x \sqrt{u}$ in (5) we get

$$
\int_{0}^{2^{-\frac{j}{2}}}\left|\widehat{h}_{j}(x)\right| x^{2 \alpha+1} d x \leq C_{3} \int_{2^{j}}^{2^{j+1}}\left|m_{j}^{\left(k_{0}\right)}(u)\right| u^{k_{0}-1} d u \int_{0}^{\sqrt{2}}\left|J_{\alpha+k_{0}}(y)\right| \frac{y^{2 \alpha+1}}{y^{\alpha+k_{0}}} d y
$$

But Schwarz' inequality and (7) yield

$$
\int_{2^{j}}^{2^{j+1}}\left|m_{j}^{\left(k_{0}\right)}(u)\right| u^{k_{0}-1} d u \leq C_{1}\left(\int_{2^{j}}^{2^{j+1}}\left|m_{j}^{\left(k_{0}\right)}(u)\right|^{2} d u\right)^{\frac{1}{2}}\left(2^{j}\right)^{k_{0}-\frac{1}{2}} \leq C_{4}
$$

Since $J_{\alpha+k_{0}}(x)$ is $x^{\alpha+k_{0}}$ asymptotically at 0^{+}we have

$$
\int_{0}^{2^{-\frac{j}{2}}}\left|\widehat{h}_{j}(x)\right| x^{2 \alpha+1} d x \leq C_{2}
$$

Also, by (8)

$$
\int_{0}^{\infty}\left|\widehat{h}_{j}(x)\right| x^{2 \alpha+1} d x \leq C_{2}+\int_{2^{-\frac{j}{2}}}^{\infty}\left|\widehat{h}_{j}(x)\right| x^{2 \alpha+1} d x \leq C
$$

Finally, to get (6) we use inequality (8) with estimates of Gosselin and Stempak (cf. [4, p.661])

$$
\begin{aligned}
\int_{\left|x-y_{0}\right| 2\left|y-y_{0}\right|} \mid & \left|T_{\alpha}^{y} \widehat{h}_{j}(x)-T_{\alpha}^{y_{0}} \hat{h}_{j}(x)\right| x^{2 \alpha+1} d x \\
& \leq \int_{\left|y-y_{0}\right|}^{\infty}\left|\widehat{h}_{j}(x)\right| x^{2 \alpha+1} d x+\int_{2\left|y-y_{0}\right|}^{\infty}\left|\widehat{h}_{j}(x)\right| x^{2 \alpha+1} d x \\
& \leq C_{1}\left(1+2^{-\epsilon}\right)\left(\sqrt{2}^{j}\left|y-y_{0}\right|\right)^{-\epsilon}
\end{aligned}
$$

which will work for $\sqrt{2^{j}}\left|y-y_{0}\right| \geq 1$.
Since h_{j} has support in $\left(0, \sqrt{2^{j+1}}\right)$ it follows from [4, Corollary 2.2] and (9) that
which will be enough whenever $\sqrt{2^{j}}\left|y-y_{0}\right|<1$.

This completes the proof of (6) and, consequently for the function h. The result for the function m follows than from the lemma below.
Lemma 1. For $\alpha>0$ the transformation $x \rightarrow x^{\alpha}$ of $[0, \infty)$ induces the isomorphism $m(x) \rightarrow m\left(x^{\alpha}\right)$ of the space of all functions for which

$$
\|m\|_{2, k_{0}}=\sup _{R>0}\left(\int_{R}^{2 R}\left|x^{k} m^{(k)}(x)\right|^{2} \frac{1}{x} d x\right)^{\frac{1}{2}}<\infty
$$

for $k=0,1,2, \ldots, k_{0}$.
Proof. This is a simple consequence of fact that space $\|m\|_{2, k_{0}}$ is invariant under multiplication by x^{α} and Lebniz formula.

Remark. The method of Riesz function works when we use the Weyl fractional derivatives instead of ordinary derivatives.

A function f on R_{+}has the Weyl fractional derivative of order $v>0$ if there exists a measurable function g on R_{+}such that

$$
f(x)=\frac{1}{\Gamma(v)} \int_{x}^{\infty}(t-x)^{v-1} g(t) d t
$$

for almost all $x>0$. The function g is unique up to a set of measure zero. It is denoted $f^{(\nu)}$ and called v-fractional derivative of order v.

The problem is that for a positive integer v there exist smooth functions in the ordinary sense but not in the Weyl sense.

Theorem 2. Let m be a bounded function on R_{+}satisfies the condition

$$
\sup _{R>0}\left(\int_{R}^{2 R}\left|x^{v} m^{(v)}(x)\right|^{2} \frac{1}{x} d x\right)^{\frac{1}{2}}<\infty
$$

where $v>n+1, m^{(v)}$ is the Weyl fractional derivative. Then the operator $T_{n n}$ is of weak-type (1,1) and, consequently is bounded on every $L^{p}\left(R_{+}, x^{2 \alpha+1} d x\right), 1<p<\infty$.
Proof. As in the proof of Theorem 1 we define $h(x)=m\left(x^{2}\right)$ and obtain the theorem for function h. To do this we don't work with bump functions and define

$$
h_{j}(x)=\frac{1}{\Gamma(v)} \int_{2 J}^{2 J+1} m^{(v)}(u)\left(u-x^{2}\right)_{+}^{v-1} d u .
$$

Clerly $T_{h}=\sum_{\rightarrow \infty}^{\infty} T_{h_{j}}$ where $T_{h} g=\widehat{h}_{j} * g$. The rest is the exact repetition of the proof of Theorem 1. Finally the result for the function m follows from lemma below.
Lemma 2. For $\alpha>0$ the transformation $x \rightarrow x^{\alpha}$ of $[0, \infty)$ induces the isomorphism $m(x) \rightarrow m\left(x^{\alpha}\right)$ of the space of all function for which

$$
\|m\|_{2, v}=\sup _{R>0}\left(\int_{\frac{R}{2}}^{R}\left|x^{v} m^{(v)}(x)\right|^{2} \frac{1}{x} d x\right)^{\frac{1}{2}}<\infty
$$

Proof. The lemma is a modification of [3, Proposition 3.9]. The only difference is the norm $\|\cdot\|_{(\mu), 2,1}$ is changed into the norm $\|\cdot\|_{2, v}$ and the proof is essentially the same.

Acknowledgements.

I would like to thank Tadeusz Pytlik who suggested me the method I am used and Krzysztof Stempak for useful suggestions, and fruitful discussions.

References

[1] R. Coifman and G.Weiss, Analyse harmonique non commutative sur certains espaces homogénes, Springer-Verlag, vol. 242, Berlin and New York, 1971.
[2] W. C. Connett and A. L. Schwartz, Weak type multipliers for Hankel transforms, Pac. Jour. of Math., vol.63, no. 1, 1976, 125-129.
[3] J. Galé and T.Pytlik, Functional calculus for infinitesimal generators of holomorphic semigroups, Jour. of Fun. Anal., vol.150, number 2, 1997, 307-355
[4] J. Gosselin and K. Stempak, A weak-type estimate for FourierBessel multipliers, Proc. of the Amer. Math. Soc., vol.106, no. 3, 1989, 655-662.
[5] I.Hirschman, Variation diminishing Hankel transforms, Jour. d'Anal. Math., vol.8, 1960/61, 307-336.
[6] L. Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math., no. 104, 1960, 93-140.
[7] E.M. Stein and G.Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univeristy Press, 1971.

Instytut Matematyczny
Uniwersytet Wrocławski
pl. Grunwaldzki $2 / 4$
50-384 Wrocław
POLAND
Rafał Kapelko
e-mail: kapelkomath. uni.wroc.pl
Recibido: 8 de Diciembre de 1997
Revisado: 15 de Abril de 1998

