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A multiplier theorem fa the Hankel transform.

Rafal KAPELKO

Abstract
Riesz function technique is used to prove a multiplier theorem

for the Hankel transform, analogous to the classicaí H¿irmander-
Miblin multiplier theorem [6].

9)he celebrated H6rmander-Mihlin multiplier theorern [6]says that if

a function m en R~ satisfies the following condition

IRh¡IDlrn(x)12¿¡x < cg (1)supR~ >1 1R>0 ¡l¡<ko R<IrI<2Rfor sorne integer ko > ~ then 4w operator Tm defined by (Tmg) =

is beunded on every LP(R~), 1 < p < ~.

Restriction of the theorem to the set of raflial functions on R~ gives
the multiplier theorern on spaces LP(R+, x20+ídx), 1 < p < r~ with
a = The ordinary Fotírier transform en 1?» has te be replaced by
the Hanket transform

f(y) = 2O1~(a+ 1)jf(x)(y4—aJa(xY)x2a+!dx, (2)

where J
0 is the Bessel function of tlíe flrst kind of order a.

The assumption (1) gets even the simpler form

(p2R k¿k~1\
sup(~ xm’’(x)1

2—dxl
R>0 \JR
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where k=0, 1,2, ...,k0 and ko> a+1.
It is quite natural to expect that the multiplier theorem should have

an extension to alí values a > ~ of the real parameter. However the
exact repetition of the H¿irmander proof does not lead to effect, mainly
because the Hankel transform of the derivative of a function has no
representation in terms of the transformation of the funetion. In order
to omit this difficulty there were developed two technics in the literature.

The first one, [2], is indirect, uses a relation between the Jacobi
polynomials and the Bessel functions but the result obtained there is
weaker then expected. The proof goes under stronger assumption

~2R
sup 117’] Irko m~ko) (x)¡

2x’dx <x,ko = [a]+2.
R>O

The second one, [4], developes the original Hbrmander’s technique
but instead of the ordinary derivative of a function it makes use of the
powers of a Sturm-Lieuville operator. The result is like the H6rmander
one, but ko> a + 1 must be an even number.

Ihe aim of the note is to prove the multiplier theorem in fulí gen-
erality. We assurne that k

0 is the least integer greater than a + 1. In
fact k0 may be a real number if ene uses the Weyl fractional derivatives
instead of ordinary derivatives. The main idea is based en the fact that
the Hankel transform of Riesz fijnction R& (x

2) has especially simple
form. Then Wc follow the arguments of Gesselin and Stempak [4].

For a bounded function m on 11+ we define the multiplier operator
7’,,, by (Tmg[ = m4, where denotes the Hankel transform (2).
Theorem 1. Fix a> ~ and let le

0 denote the least integer greater than
a + 1. Assume that a bounded function m on R.~ satisfles

(J
2R ‘k’1~ 2

sup Ixkm~(x)I
2~~dzl < oc,

RA R

where k = 0,1, ...,k
0. Then the operator 7’,,, is of weak-type (1,1) and,

censequently is bounded en every LP(R+, x
20+Ldx), 1 <p < oc.

In the proof we use the netion of the generalized cenvolution

f * g(x) = ¡ f(y)Tgg(x)y20+ídy,
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where 2’~ is the generalized transíatien operator

T~g(x) =b(a)jg((x,y)e)sin2ú(6)dO,

(x,y)6 = (x
2 +y2 — 2zycesO)±,b(a) = r~4r(a+ 1) (r(a+ ~))‘ and

f, g are suitable functions on the half-line (cf [5]).
As usual we use C with subscripts or witheut subscripts for a con-

stant which is net necessarily the same at ea.ch occurence.
Proof. The main idea of the preof is based on the fact that the Hankel
transform of the function

R(x) = 1
17(ko) ~ —

has a very simple form
a-fha

~(x) f(a + í)
2r>ko—t Ja+k0(3F~) (3)

(cf [7, §4 Theorem 4.15]).
As usual we cnt the functien ni into small pieces by using a fixed

bump function. Ld W 6 G8
0(R) with support in (1,2) such that

Z~ ‘I’(2~x) = 1 and in
5(z) = m(x)q’(2-’z). Define íiew fainily of

functiens h(x) = m(x
2), h

5(x) = m5(x
2). First using (3) and applying

the methed of [4], we will obtain the theerem for Iz. More precisisely we
will prove

Then we will show how to deduce the thesis for the functíon ni from the
thesis for the function h.

For lz~ we write the reproducing formula

hg(z) = 1’(ko) 2’~’f rnlttu) (u — x2 ¿¡u.

By (3) we have

¡‘It a+ko

l¿
5(x) = F(a+1)2<>k13

1 t,¿ (u) ~

(5)
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Then 7’,, = EZO T,t, wbere T~,g = h~ * g and gE LI(14,x20+Idx). In
order to prove (4) it 18 sufficient to establish (cf. [4, p.659] and [1, p.75])
that

00

iP
00 L~>2~~10 ~rgA~~ — 7~oA~(x)~ x

20+ldx < C (6)
with 6’> 0 independent of Y, Yo 0.

An application of Leibniz formula yields

where C does not depend en j, and le
0 = a + 1 + for an > 0. We

prove the foilewing estirnates:
JO0 lh

3(x)Ix
2~~1dx =C(v1Wi)~, (8)

j00 ¡A~(x)ix2o--vx =C. (9)

Te preve (8) observe that by definitien, h
5(x) coincides with the Hankel

transform of the function

I’(a+ 1)
IIfty) = f(a±ko±flX[/3,v~iTTJ(Y)ni>(Y)~

with respect to the measure diy(x) —
New Schwartz’ inequality, the Plancherel fermula applied te 11¡ and

(7) give

J ¡A~(x)¡x2a+vx (j~’ AÁx)¡2(x2a4~:+4~~frdx)2 (J~ ¿2 dx)

= (j~ Ih~(xH2x4a43+2rdx) w~==
Ir2’~’ I~Y’f>(~)I2~2an+c¿¡p’~ ~ 1

= Cok0 ‘\123

< C(2ir+*+i(2i)*~kot~e = Cehii)—’.
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Te prove (9) we use (8). New changing the variable y = z~/~i in (5) we
get

Jh,(x)¡x
2~~’dx < ca

But Schwarz’ inequality and (7) yield

Im5/~O>(u)iukoídu s ~, 1m5(o>(u)I2du) (
21)ko—* ~ c4.

Since J0.~-é0 (x) is xo+ko asymptotically at 0+ we have

21

Jo
Ihg(x)1x

20+ídx =C
2.

Also, by (8)

It? Iit(x)Jz2a1dx =c2 + =c.
Finally, te get (6) we use inequality (8) with estimates of Gosselin and
Stempak (cf. [4, p.66fl)

¡r—vol2ll/--yol ~~hJz — TXOhá(x)~X2O+¶dx
<g%oí h~(x)Fx

2a± ldz+ ~ VÁX)1x20+ídx
<Cí(1 +

2—c)(~/~Yjy —

which wiil werk for V~
3~y — ~ =1.

Since Ji
5 has support in (0, ~/~3r)it follows from [4, Corellary 2.2]

and (9) that

~ír—voI
Tgh5w—Tgoh1(z)Jx20+ldx

21v—vol —.

=¡jflhJ — TX”hjIILl(.~+r2a+1dr)

=C,x/ihfly — vol IIhiIIL1(R+~2o+ld~)
< v’~CCív5YIy—yoI,

JI JIS ImY~o)(u)luko1¿¡uj

Ji

2a+1
_____ 4.

which wifl be eneugh whenever “
571y — y~¡ < 1.
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This completes the proof of (6) and, censequently for the function
h. The result for the function ti, follows than frem the lemma below.
Lemma 1. Por a > O the transformatien x -4 a? of [0,oc) induces
the isomerphism m(x) —4 mfra) ef the space of alí functions fer which

Ir <0011m112,ka = 2R km(k)(x)121dx) ~

fork=0,1,2,...,k0.
Proal’. This is a simple censequence of fact that space IlmIla,k0 15

ínvaríant under rn¡íltipLicatien by x” and Lebniz fermula.

Remark. The method of Riesz function works when we use the Weyl
fractional derivatives instead of erdinary derivatives.

A function f en R has the Weyt fractional derivative of order u > 0
if there exists a measurable function g en ~+ such that

1(x) = r(t) ¡(it — x)”’g(t)dt

for almost al! x > 0. ‘[he function g is unique np te a set of ¡neasure
zero. It is denoted f(”) and called v-fractienal derivative of erder u.

The preblem is that fer a pesitive integer u there exist smeeth func-
tions in dxc erdinary sense but net in the Weyl sense.

Theorem 2. Let m be a beunded function en R+ satisfles tbe cendition

2

sup y xvm<v)(x)I2~¿¡x¡ < oc,
R>0 R

where u > a + 1, m(v) is the Weyl fractional derivative. Then the
eperator 7’,,, is of weak-type (1,1) and, (:onsequently is betínded en every
LP(¡4,x

20+ldx), 1 <p<oc.

Proal’. As in the proef of Theerem 1 we define h(x) = mfr2) and
obtain the theorem for function It. Te do tuis we den’t work with bump
functions and define

= JI rn(’4(u) (u — x2)hí ¿¡u.
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Clerly T¡, = 2—00 Ti,
1 where 74,g = * y. The rest is the exact repe-

titien of the proef of Theorem 1. Finally the result for the function m
foilews from lemma below.
Lemma 2. For a > O the transformation x -4 z

0 of [0, oc) induces
the isomorphism m(x) —* mfra) of the space of al! function for which

IlniI¡2v = R>O (~ xvm(v) (x)12 ‘~Z) <oc

Proof. The Iernma is a modification of [3, Proposition 39]. The only
difference is the norm II.I¡(#í,2,l is changed inte the nerm 1.112v and the
preof is essentially the same.
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