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A multiplier theorem for the Hankel transform.

Rafal KAPELKO

Abstract

Riesz function technique is used to prove a multiplier theorem
for the Hankel transform, analogous to the classical Hormander-
Mihlin multiplier theorem [6].

The celebrated Hérmander-Mihlin multiplier theorem [6] says that if
a function m on K™ satisfies the following condition

sup R™" / IRM D in(2))2de < oo (1)
R0 i<k, JR<Izl<2R

for some integer ko > % then the operator T, defined by (ng)A =myg
is bounded on every L¥{R™), 1 < p < oo.

Restriction of the theorem to the set of radial functions on R™ gives
the multiplier theorem on spaces LP(R,,z*ldz), 1 < p < oo with
o = 222 The ordinary Fourier transform on B™ has to be replaced by

7
the Hankel transform

-~

) =2+ ) [ 1@ we) Taey)a* e, @)

where J, is the Bessel function of the first kind of order a.
The assumption (1) gets even the simpler form

1

2R 2
sup (/ lka(k)(m)|2—1-da:) < 00,
R T

R>0
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where £ =0,1,2,...,kg and ky > o+ 1.

It is quite natural to expect that the multiplier theorem should have
an extension to all values @ > 1 of the real parameter. However the
exact repetition of the Hérmander proof does not lead to effect, mainly
because the Hankel transform of the derivative of a function has no
representation in terms of the transformation of the function. In order
to omit this difficulty there were developed two technics in the literature.

The first one, [2], is indirect, uses a relation between the Jacobi
polynomials and the Bessel functions but the result obtained there is

weaker then expected. The proof goes under stronger assumption

2R
sup B! |zFom o) (2) 26~ dx < o0, kg = [a] + 2.
R>0 R

The second one, [4], developes the original Hérmander’s technique
but instead of the ordinary derivative of a function it makes use of the
powers of a Sturm-Liouville operator. The result is like the Hérmander
one, but kg > o + 1 must be an even number.

The aim of the note is to prove the multiplier theorem in full gen-
erality. We assume that kg is the least integer greater than ¢+ 1. In
fact kg may be a real number if one uses the Weyl fractional derivatives
instead of ordinary derivatives. The main idea is based on the fact that
the Hankel transform of Riesz function R*(z?) has especially simple
form. Then we foliow the arguments of Gosselin and Stempak [4].

For a bounded function m on R, we define the multiplier operator
Tn by (Tmg)” = m§, where ~ denotes the Hankel transform (2).

Theorem 1. Fix & > 1 and let ks denote the least integer greater than
a + 1. Assume that a bounded function m on R satisfies

1
2R 2
sup ([ |a:km(k)(.'c)|2-1-d:r:) < 00,
R>0 R x

where k£ = 0,1, ..., kp. Then the operator T}, is of weak-type (1,1) and,
consequently is bounded on every LP(R,,z**tldz), 1 < p < cc.

In the proof we use the notion of the generalized convolution

[r9(=) = /om f(y)Teg(z)y*tdy,
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where 77 is the generalized translation operator
Ti9() =b(a) [ g((z.v)s)sin®(8)d0,

(z,9)g = (&% +y* — 2zy cos 9)%, bla) = TF"%F(O: +1) (F(a + 15)) " and
f, g are suitable functions on the half-line (cf [5]).

As usual we use C with subscripts or without subscripts for a con-
stant which is not necessarily the same at each occurence.

Proof. The main idea of the proof is based on the fact that the Hankel
transform of the function

Rs) = gy (e = =06

has a very simple form
a+kg
R(c) = Mo+ 1)20+h! (?) Jotko (Vuz). (3)

(cf. [7, §4 Theorem 4.15]}.

As usual we cut the function m into small pieces by using a fixed
bump function. Let ¥ € C§°(R4) with support in (1,2) such that
T W(2772) = 1 and m;(z) = m(z)¥(2-72). Define new family of
functions k(z) = m(z?), h;(z) = m;{(z?). First using (3) and applying
the method of [4], we will obtain the theorem for h. More precisisely we
will prove

I Tudllp < C1 pllgy- (4)

Then we will show how to deduce the thesis for the function m from the
thesis for the function h.
For h; we write the reproducing formula

1 274! (ko) ) ko—1
hi(z) = T (ko) /2: m; o (u) (u—:r, )+ du.

By (3) we have

15

R gi+1 i u atky
hj(z) =T (e + 1)20 ko [2;‘ '{rn,g; ")(u) ( ) ok (Vug)du.
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Then Ty = 3% Ty, where T},.g = h; ¥ g and g € LRy, z%*+ldz). In
order to prove (4) it is sufficient to establish (cf. [4, p.659) and [1, p.75))

that
Z /1 ~o|>2ly~woi

=00

TVh(z) — Tgoﬁj(m)j 22tz <C, (6)

with C' > 0 independent of y, yo 0.
An application of Leibniz formula yields

L

(f lm&"“’(m)fd‘") Cccpyite (7)

2

where C' does not depend on j, and kg = @+ 1+ ¢ for an € > 0. We
prove the following estimates:

/t°° I () |22 de < C(V2F 1), (8)
/:0 |ﬁj(m)[m2“+1dz <C. (9)

To prove (8) observe that by definition, Bj(:c) coincides with the Hankel
transform of the function

M(a+1)

Au) = (ko) 2
Ilj(y) - F(G+ku+ I)X[\/ZTJ—,\/ZJ"H](y)mj (y )s

with respect to the measure d,p(z) = gio+3+2,
Now Schwartz’ inequality, the Plancherel formula applied to H#; and

(7) give
o0 " 2 . oo - ., 9 1 L 5 % [e =] 1 i‘
[ @ < ([T h@rarita) ([0 )
« ;‘ 2 A0t 342 4 3 l
= e - f [ g —
([ Btapatssrran) oL
i+t " % L
= Coxs ko}(y[2ptotltey e
o (/2 m{* )t dp ) e
< C@)etits(9)sheme = C(VYI)E
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To prove (9) we use (8). Now changing the variable y = 24/ in (5) we
get

2%
J

But Schwarz’ inequality and (7) yield

21+t 2a+1

|h;(z)|z2+dz < C. {mi*e) () |uko1du ﬁu (1)) Led
4 =3 g o atkolly yetko LE

27

i+l Plad)

%
f m{) () [uko~ du < € (f Imﬁ"“’(u)fd“) (@) T <an
23 27

Since Joik, (7) is 2% asymptotically at 0 we have

t
fo Ih;(2)ls®Hdz < Cs.

Also, by (8)
f [R;(2)|2Hde < Cy + / ; i@t dz < C.
0 - 2-

Finally, to get (6) we use inequality (8) with estimates of Gosselin and
Stempak (cf. [4, p.661])

f Tgﬁj(“’) - T;’°?zj (E)’w2“+ldx
le=vo] 2ly—wol - R ‘ )
< s thit@)lz? > dz + 30 [hy(z) |2+ dze
< Ci{1+ 279 (VZy — yol)~,

which will work for v/27|y — yo| > 1.
Since h; has support in (0, V27+1) it follows from {4, Corollary 2.2]
and (9) that

[lz—yol 2ly—wol

< ||Tgh; - Tehjl|1 (R, 2041 d0)
< Civ2Hy = yo| ||Ajl| o &y a2et1da)
< V2C V2 y - wl,

TVh;(z) — Tgo’ﬁj(m)] g2+ g

which will be enough whenever v2|y — yo| < 1.
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This completes the proof of (6) and, consequently for the function
k. The result for the function m follows than from the lemma below.
Lemma 1. For a > 0 the transformation £ — z* of [0, 00} induces
the isomorphism m{z) — m(z?®) of the space of all functions for which

' 2R 1 5
[lm|]2,k = sup f |Fm*)(2)|?—dz ) < o
R>0 R x

for k=0,1,2,... ko.
Proof. This is a simple consequence of fact that space [{m||zx, is
invariant under multiplication by z* and Lebniz formula.

Remark. The method of Riesz function works when we use the Weyl
fractional derivatives instead of ordinary derivatives.

A function f on R, has the Weyl fractional derivative of order v > G
if there exists a measurable function g on R4 such that

10 = 53 [ =210

for almost all z > 0. The function g is unique up to a set of measure
zero. It is denoted f) and called v-fractional derivative of order v.

The problem is that for a positive integer v there exist smooth func-
tions in the ordinary sense but not in the Weyl sense.

Theorem 2. Let m be a bounded function on R, satisfies the condition

2R 1 3
sup / letmN(z)2=d2 ] < oo,
R>0 R T

where v > a + 1, m(¥) is the Weyl fractional derivative. Then the
operator Ty, is of weak-type (1,1) and, consequently is bounded on every
LP(Ry,z%°%dz), 1 < p < cc.

Proof. As in the proof of Theorem 1 we define h(z) = m(z?) and
obtain the theorem for function h. To do this we don’t work with bump
functions and define

hi(z) = F(]v) .[21 ) (u) (u - :cz):_l du.
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Clerly Ty = 5%, Tx; where T g = Ej * g. The rest is the exact repe-
tition of the proof of Theorem 1. Finally the result for the function m
follows from lemma below.

Lemma 2. For @ > 0 the transformation z — z* of [0, c0} induces
the isomorphism m(z) — m(z®) of the space of all function for which

R 1 %
{|m||2,, = sup (/ ]m"m(”)(m)]2—d:c) < co.
R>0 \J& z
Proof. The lemma is a modification of [3, Proposition 3.9]. The only
difference is the norm [|.||(u2,1 is changed into the norm ||.||2,, and the
proof is essentially the same.
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