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Curves in P2QC) with 1-dimensional symmetry.
A.A. du PLESSIS and C.T.C. WALL

Abstract
In a previous paper we showed that the existence of a 1-

parameter symmetry group of a hypersurface X in projective space
was equivaient to failure of versality of a certain unfolding. Here we
study in detall <reduced) plane curves of degree d> 3 excluding
the trivial case of conca.

Wc enumerate ahí possible group actiona - these have to be
either semisimple or unipotent - for any degree d. A 2-parameter
group can oníy occur if d = 3. Explicit lists of singularities of the
corresponding curves are given in the cases d < 6. We also show
that the projective chassification of these curves coincides - except

the case of the group action with weights [—1,0,1]- with the
classification of the singular points.

The sum r of the Tjurina numbers of the singular points is
either d2 — 3d + 3 or d2 — 3d+ 2 wbile, for d > 5 it’ there is no
group action we have r < d2 —4d+7. We give ji = rin the
semí-simple case; in the unipotent case, we determine the values
of both ji and r.

In the semi-simphe case, we show that the unfohding mentioned
aboye is also topologically versal if d > 6; in the unipotent case
this holds at Ieast it’ d= 6.

1 Background
Throughout this section, r will be a reduced curve of degree d> 3 with
homogeneous equation f = 0.

Wc wiII say that 1’ has ‘e-dimensional symmetry it’ it admits a
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‘e-dimensional algebraic subgroup of PGL2(C) as automorphism group.
We will say that P is a-versal if adding homogeneous functions of

degree 2(d — 2) — 1 — a to f induces (in an appropriate affine chart) a
simultaneous versal deformation of the singularities of 1’; and that 1’ is
a-non-versal if this faihs.

Combining [3, 1.1] in the case of curves with [3,1.6] characterises
reduced curves with 1-dimensional symmetry:

Proposition 1.1. Tite fo¡lowing are equivalent:

(1) 1-’ itas 1-dimensional symmetry,

(2) Tlzere existe a linear vector fleid witich annihilates f,
(3) r is 1-non-versal.

Symmetry of higher dimension is usualiy not posaible:

Proposition 1.2. 1fF itas 2-dimensional symmetry, titen d = 3.

Proof. Let 4’, i¡’ be elements of the Lie algebra of the 2-dimensional
automorphism group, and Iet 4,’i be linear vector fields in C

3 hifting
these. Then 4, i~ annihilate f, so their cross-product is parallel to the
gradient Vf.

Thus, since Ihe cross-product has components of degree 2, whilst
S7(f) has components of degree d — 1, the cross-product can only be
non-zero if d — 1 =2; so 4, ,~ can only be Iinearly independent if d = 3.

The next resuht is a combination of [6, 3.2] in case r = 1 and the
arguments used in its proof. We will write r(t’) for the sum of the
Tjurina numbers of the singularities of r.
Proposition 1.3.

(1) Suppose that no non-zero linear vector fleld annihilates f.
Titen

1 if d =3,
d?—4d±7 ifd=4,
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(2) Suppose that r 18 not a cone, and titat itere exists a linear vector
field 4 which annihilates f. Then titere are Uno poesibilities:
(a) Titere is a vector fleld ,~ of degree d — 2 annihilaiing f sud>
ihat 4 x ~= Vf. Titen any vector jield anniitilating f is a linear
combination of 4, ,~ and tite Hamiltonian vector fields, and r(P) =

& - 3d+ 3.
(b) Any vector fleld annihilatingf is a linear combination of¿ and
Me Hamiltonian vector fields. Then r(r) = d2 — 3d + 2.

Corollary 1.4. Suppose that L•’ is rzot a corte.

(1) If 1’ has 1-dimensional symmetrtj, ihen r(r) — d2 — 3d + 3 or
d2—3d+2. Conversely, ifr(I’) = d2—3d+3, or ifr(r) = d2 3d+2
and d J 4, 5, titen r has 1-dimensional symmetry.

(2) r itas 2-dimensional symmetrtj if and only if d = 3 and r(r) = 3.

Proof. (1) follows at once from 1.1 and 1.3; (2) follows from these
together with 1.2 and its proof.

2 Enumeration-
A 1-dimensional algebraic subgroup of GL,.~

1 (C) is either semisimple
or unipotent.

In the semisimple case we can choose coordinates to make the matrix
of the infinitesimal generator E = ~ a¿,5x~O/8x5 diagonal, say

= c16~,5, so that the action is t.(xo, . . . ,z~) = (t~zo, . . ., t~z,j.
Notice that this implies that c0, . . . , c,, are integers. We will denote

this group by the symbol [eo,...
In the unipatent case, 4 is ni¡potent and we may take its matrix in

Jordan normal form: a direct sum of Jordan blocks of sizes b1,. . .
where a .lordan block of size b corresponds to thc vector fleid
t:1 x~8/Ox¿.~1. We write Nilb, br for the group so defined.

We now enumerate reduced curves E’ admitting a 1-dimensional alge-
braic group H’ of projective automorphisms. The calculations are very
close to those for the case of quintic curves, which was discusscd in [8].
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Let f(x, y, z) = O be an equation of 1’. Then fi’ lifts uniquely to
an algebraic 1-parameter subgroup fi of GL3(C), net contained in the
centre, and preserving f, not just 1’.

We consider first the case when H is semisimple; we may take it
as [tu1, tu2, tu3]. Thus the exponents (r, 8,t) for which the coefilcient of
1r yS zt in fis nonzero satisfy w¡r+w2s+tuat = O as well as r+s+t = d.
Notice that tu1, tu2, tu3 are only determined up to a common factor.

We plot the exponents (r, s, t) with r + s + t = d in a triangular
lattice, where the ‘eth row consists of the ‘e + 1 entries with r = d — ‘e,
and with s decreasing along the row. Since the exponents occurring in f
satisfy a linear relation, they he on a line; let L be the least une segment
containing them alí. Since 1’ is reduced, for each edge of the triangle at
least ene end of L must be at distance O or 1 from the edge: for if (e.g.)
L containa no point from the two lower rows, f is divisible by A. Hence
ene of the ends of L must be within distance 1 from each of 2 edges, so
maybetakenasA= (O,d,O),B=(1,d—1,O)orC=(1,d—2,1). The
other end of L must be within 1 of the opposite edge, so may be taken
as &r = (r, 0, d — r) or ¡ir = (r, 1, d — r — 1) for some r.

Eliminating repetitions arising from symmetries of the triangle gives
tbe following 4d — 5 line segments:

Aa~ (0< r < id), 1

1
Car(2=r= C¡342 ~ r< —(d— 1)).

The cases Aao, A$0, where the curve is just a cone en d points, are
more degenerate than the others; here an equation is annibilated by a
vector fleid of degree O. The weights can be taken tobe [—1,0,0]. There
is, of ceurse, just one singularity, with ji = r = (d — 1)2. We will not
consider these cases any further.

The only other cases where the hine segment is parallel to a side of the
triangle, so that two weights are equal, are Ra1, Bfl1, where the curve
is a cene en d — 1 points plus a hine; here the weights can be taken to be

—1), 1,1]. The cene singularity has ji = r = (d—2)2; and there are
d — 1 further A1 singularities where the extra line meeta the cone. We
note that the projective clasaification of such curves corresponda exactly
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to the K-classification of the cone singularities, and hence the multi-K-
classification of the constehíation of singularities consisting of a cone of
degree d —1 and d —1 A

1’s.
There are d — 4 moduil for this claseification.
In ahí other cases, the weights are distinct, and the choice of repre-

sentative Une segments made aboye ensures that O and tu2 líe between tu1
and tu3. We choose signs so that tu1 < tu2 < tua and tu1 <O < tu3; this
is achieved by taking (tu1, tu2, tu3) as the negative of the cross-product of
the coefficients of the given end-points, at least up to a positive factor.

The weights distinguish the line segments except in the cases noted
aboye where two weights are equal, and in the cases Aak, Ccvk(d = 2/e)
and APk, C¡ik(’e > 1, d = 2k + 1), where the weights may be taken as
[—1,0,1].

When the weights are distinct, the only poesibihities for singulari-
ties are the unit points [(1,0,0)], [(0,1,0)] and [(0,0,1)]; for the vector
(w1x, w2y, w3z) is only parallel to the kernel (spanned by (x,y, z) at
(x, y, z)) of the tangent map to the projection C

3\0 toCP2 aboye these
points. Indeed, examination of equations shows that [(0,1,0)] does not
even he on the curves corresponding to une segments with end-point A
(where the equation has non-zero coefficient for ir’), is a non-singular
point of those with end-point B, and is an A

1 singularity of those with
end-point C; whilst there is a singularity at [(1,0,0)] except in the case
Bad...l, and there is a singularity at [(0,0,1)] except in the case Aa1.

Ahí these singularities are in fact weighted-homogeneous. For, using
the Euler relation df = xOf/Oz + yOf/Oy + zbf/Oz, we find

o = wixOf/Ox + w2ybf/Oy+ wazt9f/Oz
— —{(—tuid)f — (w2 — tuí)yOf/Oy — (wa — wi)z8f/Oz},

so that the weights at [(1,0,0)]are (tu2 — tui, tua — tui)! — dw,. Similarly,
the weights at [0,1,0)], [(0,0,1)] are (tu2 — tuí, u’2 — tva)/dw2, (tu3 —

tu1, tu3 — w2)/dtu3, respectively.

When the weights are distinct, the connected component of the iden-
tity in the subgroup of GLa(C) which preserves the weights consists of
the diagonal matrices ahone, correspanding to scahing the variables. It
follows that tite projective claseification of the curves with these weights
has N — 2 moduli, where N is the number of lattice points on tite cor-
responding une segment L - art appropriate normal form for tite corre-



122 A.A. du Plessis and CLU Wal)

sponding equations has coefficients 1 for tite monomials corresponding
to the end-points of L, witilst tite coefflcients of tbe otiter monomials
give tite moduhi.

As to tite multi-K-classification of tite singular points, we have:

Proposition 2.1. Let L be one of tite line segments of (1).
Ifd= 2/e andL = Aak, or ifd= 2’e+1 andL = 48k, then, fos’

eacit posaible multi-K-class, there is a 1-parameter family of projectively
inequivalent curves witit line segment L witose singular poinis have titis
class.

In alí otiter cases tite multi-K-classification of tite singular points of
curves with line segment L coincides witit tite projective claseification of
the curves.

Proof. We may restrict altention to curves witit tite equation implied
by tite corresponding hine segment.

For tite flrst statement, note titat tite equation is of form p(zz, td,
where p 18 a pohynomial in two variables weigitted-itomogeneous with
respect to (2, 1)/d. Tite curves with equations p(xz + ty2, y) also have,
except for one value of t where tite coefficient

0fyd vanisites, une segment
L, and are projectively distinct for distinct t E C. Qn tite other itand,
the singularities of titese curves at [(1,0,0)] and [(0,0,1)] itave equations
p(z + ty

2, y) and p(x + ty2, y), so have constant K-class for alt t E C.
Tite statement is proved.

Tite second statement was sitown earlier in tite cases witere two
weigitts are equal; so we suppose titat tite weights are distinct. Since
K-equivalence of weigitted homogeneous functions is the same as equiva-
hence with respect to weight-preserving coordinate citange, tite statement
fails for a given L onhy if tite weigitts at botit [(1,0,0)] and [(0,0,1)] ad-
mit weight-preserving diffeomorpitisms otiter titan simple scaling. Titis
requires titat tite weigitts be (1,/e) and (1, 1) at titese points, witit ‘e, ¿
positive integers. Titus ~}tua—wi) = u’

3—w2 and 1(w3—wi) = w2—tu1.
Adding, we find j±~ = 1,so’e = £ = 2. Moreover, for the statement to
fail for L, applying tite transformation z —* z + ty

2 to m¡a,1, where vn
is a monomial represented on L, must yield, on itomogenizing to degree
d witit x, a C-linear combination of monomials represented on L. Titus,
if a

3 is tite greatest power of z occurring in a monomial represented on
L, titen titere must exist a1, a2 ~ O sucit that 2aI~2a3+2 is represented
on L; so a1w1 + (2a3 + a2)tu2 = O. Simiharly, working at [(0,0,1)], titere
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exist b
1 > O, b2, b3 > O sucit that (2b1 + b2)w2 ~ b3w3 0. Since u’í, sc3

have opposite signs, we conclude titat a2 = b2 = 0, and so sc2 = O. Hence
tu1 = —11)3, and, since (0,2a3+a2,0) EL, Lis Aak ifd= 2k, and A/ii,
if d = 2/e + 1. Tite proof is complete.

We turn to tite case witen H is unipotent. It is titen conjugate to
one of tite subgroups

Nil1,2 : t.(x, y, z) = (x, y, z + ty),
Nil3 : t.(x,y,z) = (x,y+tx,z+ty+ 4±%).

Now a Nili,rinvariant function is independent of z, so in titis case
1’ is a cone. We wihl not consider titis case furtiter.

For Nil3 tite ring of invariant polynomials is generated by x and
y2 — 2xz. Titus a reduced Nil

3-invariant function of degree d = 2k is
a scalar multiple of a product flL~ (y

2 — 2xz + 4a~x2), with the a, ahí
distinct; witihst if d = 2k + 1 it is the product of such a function by x.
Tite projective classification titus has ‘e — 2 modulí.

Geometrically, tite curve is, if d = 2/e, tite union of ‘e smoatit conics
meeting in just one point, or, if d = 2/e + 1, the union of/e smooth conics
and a une which meet in just one point. In eacit case, titen, titere is just
one singularity, at [(0, 0, 1)].

This singularity is not quasí-itomogenenus for d> 5 titougit titis is
quite difficult to see directly. It will follow from the results of 3.1, whicit
show titat tite singularity’s Milnor and Tjurina numbers are not equal
witen d> 5.

Proposition 2.2. Tite projective classification of curves witit unipotent
svmmetr!, coincides with tite K-classification of tite singular point.

Proof. Apart from scaling, tite only projective transformations preserv-
ing tite normal form given aboye are of form 2 —*2 + az. Titus we can
arrange that a

1 = O, a2 = 1, whilst tite remaining a¿ are moduli for tite
projective classification.

For tite K-classification, we work in tite affine citart z = 1, and use
tite local coordinate system X = y

2 2xz, y. Titus, writing y =

we itave

g(X,y) = 1 fl~
1(X + a<(X — t)

2) if d = 2k,
1. X~y2)fl~...í(X+aí(X~y2)2) ifd=2’e±1.
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We assign weights 4,1 to X, y respectively. Titen tite lowest-weigitt
terms in g are { fl~...1(X +aiy

4) if d= 2k,4(X,y)= »2nk(x+<¡y4) ifd2’e+ 1.

Now let h = (it
1, it2) be a germ of diffeomorpitism of (C

2, (0,0)), and
write h = (It’, it

2) for its terms of least weigitt. Titen tite terms of least
weigitt of goit are h,84/Ox , or h204/Oy, or titeir sum if titese itave equal
weigitt. If It is tite source component of a K-transformation preserving
tite normal form of g, we see titat 1¿~ must be of weight 4, h2 of weigitt
1, and titat h preserves tite normal form of 4 up to multiplication by
a non-zero constant. We conclude titat, apart from scaling, tite only
transformations preserving 4 are of form X —* X + ay

4. So we can
arrange titat a

1 = O, a2 = 1, whilst tite remaining a, are moduli for
tite K-classification. Titus tite .C-classification is at least as fine as tite
projective classification. Since it cannot be finer, tite proof is complete.

We conclude titis section by giving tables witit explicit lists for tite
cases d = 3,4, 5, 6. Our notation for singularities in general follows titat
of Arnold, witit some modifications; tite notation for trimodal singular-
ities is introduced in [9].

Tite tables are arranged in order given by tite nature of tite singu-
larities, and a horizontal rule is placed at a point in tite table witere
tite modality increases; we list tite semi-simple cases first and titen tite
unipotent cases.

In tite equations, ar(ux, y2) denotes a itomogenenus polynomial of de-
gree rin y1, y2. For tite corresponding curve tobe reduced, tite equation
must itave no repeated factors; so tite polynomial a,. must itave distinct
roots, and in sorne cases one or botit of tite coefllcients of ~r,v must
also be non-zero.

We also give tite sums ji and r of tite Milnor and Tjurina numbers
of tite singularities witicit appear.

Cubic curves with 1- and 2-dimensional symmetry
Group Segment Equation Singularities r = ji

[—1,0,1] Afi, 9+xyz 2A, 2
[—2,0,1] Aa1 t+xz

2 A
2 2

[—1,0, 1].[O,—1, 1] Ba,,B/i1 xyz 3A1 3
[—2,1,4].NI¿3 Ba2 x(y

2 — 2xz) 4~ 3
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Ah cubic curves witit r = 2 have 1-dimensional symmetry, witilst
titose witit r = 3 itave 2-dimensional symmetry. To see tite second
statement directhy, observe titat curves corresponding to tite segments
Sai, Bf3~ are projectively equivalení to xyz, witilst curves correspond-
ing to tite segment Sa

2 are projectivehy equivalent to x(y
2—2xz). Titese

types are alí projectivehy unique.

Quartic curves with 1-dimensional symmetry

Group Segment Equation Singulariiies r = p
[—1,0,1] Aa

2 a2(xz, y
2) 2A

3 6
[—1,0,1] Ca2 xy

2z + x2z2 2A
3 + A1 7

[—3,1,3] Ba2 x
2z2 ±x9 A

5+A2 7
[—3,1,1]Boj, Rl)1 za3(y, z) 1)4 + SA1 7
[—2,0,1] Ah1 y

4+xyz2 D
5+A1 6

[—3,1,51 Sf32 x9+x
2yz D

6+A1 7
[—3,0,1] Aa1 y

4+zz3 £6 6
[—3,1,9] Ra

3 xt+x
3z £7 7

Nil
3 a2(x

2,y2 — 2xz) A
7 7

The classification arises in tite titeory of del Pezzo surfaces: for (see
[2, p.67]) tite anticanonical model of a del Pezzo surface of degree two is
a double plane brancited along a quartic curve witit simple singularities.

Ahí quartic curves witit r = 7 itave 1-dimensional symmetry; as do
titose with singuharities 2A3. Titere are two FOL2 (C)-orbits of curves
with singularities D5 + A1 (a cuspidal cubic and cuspidal citord), one
wititout 1-dimensional symmetry and one witit (witen tite citord passes
titrough the flex). Similarly, titere are two FCL2(C)-orbits of curves
witit an E6 singularity; for tite curves witit 1-dimensional symmetry, tite
two flexes coalesce to a ityperflex.

There is a 1-parameter family of projectively inequivahent symmetric
curves witit singularities 2A3; alí tite otiter types are projectively unique.

125
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Quintie curves with 1-dimensional symmetry

Bquat ion
ya2(xz, y

2>
4

xy +x2yz2
xy4 + z2z3
xyaz + x2za
t+x2z3
xa

4(y, z)
za2 (y

2, xz)
5 3y +xyz
4

xy +x3yz
y5 +xz4

4

rl, +z42
xa4z’, y’ — 2xz)

Singularities

2D~ + A
1

A7 + £~
E, + A5 + A1

E8 + A4
2’2,4,4 + 4A1
T2,3,6 + A3
Z11 + A1
Z12 + A1

w12
wIa

Our interest in quintic curves arose from tite study of tite stratifi-
cation of singularities in tite p-constant straturn denoted N16. Tite Ugt
aboye was already obtained in [8].

AII quintic curves witit r = 13 have 1-dimensional symmetry; as do
titose witit singularities 2D6. Titere are two PGL2(C)-orbits of curves
with each of tite singularity constel¡ations E8 + A4, Z11 (qh) + A1 and
W12 (<¡It) (itere qh signifies tite quasi-itomogeneous K-class).

One of titese orbits contains curves witit 1-dimensional symmetry
and one curves without. Normal forms, taken from [8], for those wititout
1-dimensional symmetry are

y
5 + (y2 + xz)2z

y5 + x31z3 + z2y3
y5 + :rz4 + z3y2

(E
8 + A4),

(Z11 (qh) + A1),

Titere are 1-parameter families of projectively inequivalent symrnet-
nc curves with singularities 2Da, T2,4,4+4A1 and T2,a,s+A3; ah tite otiter
types are projectively unique. The curves with singularities of given
muhti-K-class in T2,4,4+4A1 or T2,a,6+ A3 form a single PGL2(C)-orbit.

Croup
[—1,0,1]
[—1,0,1]
[—8,2,7]
[—12,3,8]
[—9,1,6]
[—3,0,2

]

[—4,1,1]
[—4,1,6]
[—3,0,1]

[—4,1,11]
[—4,0,1]
[—4,1,16]

Segment

Cfi2
B132
RO2
Ca2
Aa2

Baí,B¡3~
Boa
Af31
Rl)3
Aa1
Ra4

7-ji

13 13
13 13
13 13
13 13
12 12
~TIi
13 13
12 12
13 13
12 12
13 13
u-iT
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Sextic curves with 1-dimensional symmetry

£quation
x? + x~z~

5 23rl, +zyz
4 23

zy z + x yz
6 23

y +z l,z
rl,5 + z2z4
Xl,4Z + ~

xya2<y2, xz)
02(9, zA)

5 42rl, +X Z
xas(x, y)

6 4

y +Xl,Z
rl,5 + X4l,Z

6 5

y -I-zz
xy5 + z5z

xza
2frz, 9)

y’ — 2xz)

Sinytdariiies
E13 + Es
zíl + Día

Z12 * D~ + A1
Zis + 1)7
tY12 + A9

W13 + A, + A1
z1,0 + j~6
W1,0 + A5
w17 + A4

NA0,0 + SAi
NC19 + A1
NC20 + A1

NF20
NF2í

2T2,3,6 + A1
£4,0

AII sextic curves witit r = 20 or 21 itave 1-dimensional symrnetry.
Several of titese cases describe parametrised families of FGL2(C)-

orbits. In tite case of singuharities 2T2,3,6 this yields a 1-parameter family
of FOL2 (C)-orbits for eacit multi-K-class, but in ahí otiter cases titere is
a unique FGL2(C)-orbit for each multi-K-class.

3 Properties

We begin by computing sorne invariants of symmetric curves.

Proposition 3.1- Let 1’ be an H-invariant curve witich is not a corte;
and supposc titat tite equation f for 1’ is in one of tite forras given in §2.

Suppose H is semi-sirnple. Titen r(I’) = g(t’) = d
2 — 3d + 3

aud x(E’) = 3 if ~d itas non-zero coefficient in f, whilst otitertuise
r(1’)=ji(I’)=&—3d+2 andx(I’)=2.

Suppose H is nilpoieni. Titen r(F) = d2 — 3d + 3. If d = 2k titen
¡41’) = (‘e — 1)(4’e — 1) and x(1’) = ‘e + 1, witilst if d = 2/e + 1 tIten
¡¿(1’) = ‘e(4/e — 1) and x(1’) = ‘e + 2.

Group
[—5,1,5]
[—5,1,3]
[—11,1,7]
[—3,0,2]

[—10,2,5]
[—8,1,4

]

[—5,1,7]
[—2,0,1]

[—5,1,10

]

[—5,1,1]
1—4,0,1]
[—5,1,19]
[—5,0,1]

1—5,1,25

]

[—1,0,1]
[—1,0,1]

N11
3

Segment
Ra3
B132
Cfi2
Al)2
Ra2
Ca2

Aa2
Ra4

Ra1, E/ii
A/31
.8/34
Aa1
Ra5
Aa3
Ca3

7-1’

21 21
21 21
20 20
21 21
21 21
~i~T
20 20
21 21

20 20
21 21
20 20
21 21

21 21
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Proof. In fact, ¡¡(1’) can be calculated from x(I’), because, by a general
property of projective plane curves, p(Fj—x(I’)—d2+3d. Forfcanbe
deformed to a smootit curve 1’; we itave x(I’) = —(&—3d), titis being tite
Euler citaracteristic of any smootit curve in P2 (C). Now 1’ is obtained
from 1’, topohogically speaking, by replacing a cone-iike neigitbouritood
of eacit singular point by tite corresponding Milnor fibre. Titis Milnor
fibre itas x = 1— ji, so x(F) = x(i’) —¡41’).

We calculate x. Consider first tite semisimple cases, witere tite sym-
metry group is C. Since eacit non-trivial C*~orbit has x = O, we itave
x(L’) = x(F), where F is tite set of fixed points of tite action con-
tained in 1’. If al! weigitts are distinct, titere are just titree sucit fixed
points, tite unit points: E contains [(1,0,0)] and [(0,0,1)] in alí cases,
and [(0,1,0)] if and only if y” does not appear in 1~ Otiterwise tite
weights are [—1,—1, d — 1], tite fixed points are [(0,0,1)] and tite une
z = 0. Titese he in 1’; so x(r’) = 1 + 2 = 3.

Now we turn to tite nilpotent cases, witere tite symmetry group is U.
We tecali from §2 titat there is only one singular point, at witicit titere are
‘e smooth brancites if d = 2/e, ‘e + 1 srnootit branches if d = 2/e + 1. Each
non-trivial C-orbit itas x = 1. Titese orbits are tite brancites with tite
common point removed; so titat x(F) is 1 plus tite number of brancites,
as claimed.

Finally, we determine r(I’). In tite semi-sirnple cases, ah the singu-
larities are weighted itomogeneous, and titus itave tite same Milnor and
Tjurina numbers, so ¡41’) = r(F).

For tite unipotent case we must work itarder. We sitow titat (a) of
1.2, (2) applies. We take 4 as tite infinitesimal generator xO/Oy+yO/Oz
of N11

3. Titis annihilates f, so zbf/Oy + ydf/Oz = 0. Hence Of/by
and Of,‘Oz have a non-zero common factor K of degree d — 2, witit
Of/by = Ky, Of/Oz = —Kx. Since 1’ is singular at [(0,0,1)],the
partial derivatives of f vanisit titere, so are contained in tite ideal (x, y).
Tituswecan write Of/Ox = Lx+My,witit L, Mofdegreed—2,sotitat
¡<Of/Ox = KLx + KMy = —LOf/Oz + MOf/Oy. Titus tite vector fleld
KO/Oz—MO/Oy+LO/Oz, of degree d—2, anniitilates f; and ¿xj = VI.
Titus r(1’) — d

2 — 3d+3.
Now we turn our attention to topological versality. Wc will say titat

a reduced curve 1’ c P2 (C) is topologically a-versal if perturbing 1
by adding itomogeneous functions of degree 2(d — 2) — 1 — a induces a
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simultaneous topologically versal deformation of tite singularities of 1’.

Proposition 3.2. Let E’ be a reduced curve of degree d > 6 which is
not a corte, and witit 1-dimensional semí-simple symmetrtj. Titen 1’ is
topologically 1-versal.
Proof. We take tite equation for E’ to be in one of thc forms given in
§2, (1), and sitow titat one of tite singularities of 1’ is not simple.

In tite case witere two weigitts are equal, titere is a cone singuharity
of degree d — 1 at [(0,0,1)];titis is not simple if d> 4.

Now consider tite cases witit distinct weights. Tite singularity at
[(1,0,0)] Ls weighted itomogeneous witit respect to weigitts (in

2—wí, tus—
sci)/—dwi. It is simple ifand only if tite weigitt of its Hessian Ls less titan
tite weigitt of its equation, that is, if and only
if 2(-.-dw1) — 2(tu2 — sc’) — 2(sca — tu1) < —dw1, or, simplifying,
(4—d)wi—2zu2—2sc3 <0. Similarly, tite singularity at [(0,0,1)],whicit is
weigitted homogeneous witit respect to weights (tu3—tui, sca—tn2)/dw3, is
simple ifand only it’ (d—4)tua+2tu1+2w2 < 0. Adding titese inequalities
gives (d — 6)(w3 — u’1) <0; since tu3 > sc1, we see that if d> 6 titen at
heast one of tite singuharities at [(1,0,0)] and [(0,0,1)] Ls not simple.

Next we note titat tite infinitesimal generator 4 of tite group does not
vanisit at tite non-simple singularity. Titis folhows because in ah cases 4
is of form trizO/Ox + tu2yO/Oy + tus zO/Oz with sc1, tus non-zero; so it
does not vanish at eititer [(1,0,0)] ar [(0,0,1)].

It folhows that [3, 2.1] can be applied; and 1’ is indeed topologically
1-versal.

We are onhy able to prove tite corresponding result in tite unipotent
case when d = 6.

Proposition 3.3. Let 1’ be a reduced curve of degree 6 which is not a
corte, and with 1-dimensional unipotent symmetry. Titen 1’ is topologi-
cally 1-versal.
Proof. According to §2, we may suppose titat 1’ itas itomogeneous equa-
tion f a non-degenerate cubic in A and y

2—2xz witit non-zero (y2—2xz)3
term. After a coordinate citange of form z —* z+cz, wecan suppose titat
f itas tite form f(z, y, z) = (y2 — 2xz)5 + p(9 — 2xz)(2x)4 + q(2z)6, witit
49 + 27q2 # O. Tite singularity of E’ is at [(0,0,1)]. According to 1.3,
(2), tite Lift 4 = xO/Oy + yO/Oz to C3 of tite infinitesimal generator of
tite symmetry group generates (A(f)/H(f))í = A(f),.



130 A.A. dv P)essis and C.T.C. WaIJ

We set X = 9 — 2x; titen X, y are local analytic coordinates at
(0,0) E C2. Tite germ g of f(z, y, 1) at (0,0) can be written as
g(X, y) — X3 + pX(y2 — X)’ + <¡(y2 — X)6 witit respect to titese coor-
dinates. We assign weigitts 4 to X, 1 to y. Let It, sc be tite function-
germs at (0,0) witich are given by It(X, y) = X3 + pXy8 + <¡y12, and
tn(X, y) — 2y6(2pX2 + 3qXy4). Titen g — (it + sc) is a sum of mono-
mials of weight at least 15.

We recognise It as representing a weigitted homogeneous K-class in
E

4,o; and sc represents the socle, of weight 14, of O/J(It). Since y
and It + tu differ by terms of weigitt at least 15, we itave sc «
(g,J(g)) = (tu,J(h)), and, by tite weigitted determinacy titeorem of [1,
5.2], y ~ it + tu. It follows also, from tite second of titese statements,
that r(g) = dimc(O/(g, J(g))) = 21, confirming the result of 3.1 in titis
case.

Let y be tite function-germ at (0, 0) given by v(X, y) =
—2y

5(2pX2 + 3qXy4). Titen tite projection of y generates tite part of
V/J(It) of weigitt 13, so titat (v,g,J(y)) = (v,tu,J(h)) and
dimc(O/(v, g,J(g))) = 20. It follows titat y represents an element of
tite socle of O/(g, J(g)). Since tite restriction to z = 1 of tite 0/Oz-
coefficient of 4 is y, and yv = sc ~ J(g), [3, 2.2] sitows titat u projects
to a generator for tite reduced Kodaira-Spencer map of tite deformation
of y induced by perturbing f by itomogeneous functions of degree 6. Let
G be tite corresponding unfolding of y.

Let 1< be tite K-invariant manifold (in a suitable itigit-order jet-space)
generated by {It + sv + tu’ : s, t E C}. (In fact, K consists of titree
K-classes; titose of h, h + u’ and It + u, witit Tjurina numbers 22, 21
and 20, respectively). By tite weighted determinacy titeorem [1, 5.2],
g+sv ~r¿ h+sv for s JO. Hence titejets of tite family {g+sv : ~E C}
he in K. Titus [3, 2.3] sitows that O is transverse to K.

By tite complex avatar of [4, 10.5.33], K is civilised; from titis tite
topological versahity of tite unfolding O of y follows by tite arguments of
[4, 9.4], titus giving tite topological 1-versality of 1’, and completing tite
proof.

Reduced curves of degree d = 3 and 4 are versally deformed by tite
family of ahí curves of degree d, e.g. by tite results of [3]. This afro holds
witen d = 5 except at tite cones; but for titem tite deformation is topolog-
ically versal (titis fohlows from tite case a = O of [3, 2.1]; it is essentially a
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speciah case of Wirtitmiiller’s titeorem [10]). Tite results of 3.2 for d = 6
and 3.3 come close to sitowing a similar result in tite case d = 6; it re-
mains only to see titat tite cones are topohogicahly versally deformed in
titis case. Proving tite required civilization will require an improvement
to [4, 9.6.6], itowever, to allow higiter-dimensional instability loci to be
considered.
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