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Curves in P?(C) with 1-dimensional symmetry.

A.A. du PLESSIS and C.T.C. WALL

Abstract

In a previous paper we showed that the existence of a 1-
parameter symmetry group of a hypersurface X in projective space
was equivalent to failure of versality of a certain unfolding. Here we
study in detail (reduced) plane curves of degree d > 3, excluding
the trivial case of cones. B

We enumerate all possible group actions - these have to be
either semisimple or unipotent - for any degree d. A 2-parameter
group can only occur if d = 3. Explicit lists of singularities of the
corresponding curves are given in the cases d < 6. We also show
that the projective classification of these curves coincides - except
in the case of the group action with weights {~1,0,1] - with the
classification of the singular points.

The sum 7 of the Tjurina numbers of the singular points is
either d® — 3d + 3 or d® — 3d + 2 while, for d > 5, if there is no
group action we have 7 < d? — 4d + 7. We give g = 7 in the
semi-simple case; in the unipotent case, we determine the values
of both y and 7.

In the semi-simple cage, we show that the unfolding mentioned
above is also topologically versal if d > 6; in the unipotent case
this holds at least if d = 6.

1 Background

Throughout this section, T’ will be a reduced curve of degree d > 3, with
homogeneous equation f = 0.
We will say that I' has k-dimensional symmetry if it admits a
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k-dimensional algebraic subgroup of PGLg (C) as automorphism group.
We will say that I' is a-versal if adding homogeneous functions of
degree 2(d —2) — 1 — a to f induces (in an appropriate affine chart) a
simultaneous versal deformation of the singularities of I'; and that T is
a-non-versel if this fails,
Combining [3, 1.1] in the case of curves with [3, 1.6] characterises
reduced curves with 1-dimensional symmetry:

Proposition 1.1. The following are equivalent:

(1) T has 1-dimensional symmetry,
(2) There ezists a linear vector field which annihilates f,

(3} T is 1-non-versal.
Symmetry of higher dimension is usually not possible:
Proposition 1.2. If I has 2-dimensional symmetry, then d = 3.

Proof. Let &', ' be elements of the Lie algebra of the 2-dimensional
automorphism group, and let £, 5 be linear vector fields in C2 lifting
these. Then &, # annihilate f, so their cross-product is parallel to the
gradient V f.

Thus, since the cross-product has components of degree 2, whilst
V(f) has components of degree d — 1, the cross-product can only be
non-zeto if d - 1 < 2; so0 &, # can only be linearly independent if d = 3.

The next result is a combination of [6, 3.2] in case r = 1 and the
arguments used in its proof. We will write 7(I') for the sum of the
Tjurina numbers of the singularities of I

Proposition 1.3.

(1) Suppose that no non-zero linear vector field annihilates f.

Then
1 if d=3,
(I < 6 if d = 4,
d>-4d+7 ifd> 5.
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(2) Suppose that T is not a cone, and that there ezists a linear vector
field € which annihilates f. Then there are two possibilities:

(a) There is a vector field n of degree d — 2 annihilating f such
that £ x n =V f. Then any vector field annihilating f is a linear
combination of £, n and the Hamiltonian vector fields, and 7(I') =
d’>—-3d+3.

(b) Any vector field annihilating f is a linear combination of £ and
the Hamiltonian vector fields. Then 7(I') = d* — 3d + 2.

Corollary 1.4. Suppose that I is not a cone.

(1) If T' has 1-dimensional symmetry, then 7([) = d* — 3d + 3 or
d?—3d+2. Conversely, if r([') = d®*-3d+3, or if r(I') = d%~3d+2
and d # 4, 5, then T' has 1-dimensional symmetry.

(2) T has 2-dimensional symmetry if and only if d = 3 and 7(I') = 3.

Proof. (1) follows at once from 1.1 and 1.3; (2) follows from these
together with 1.2 and its proof.

2 Enumeration-

A 1-dimensional algebraic subgroup of GL,4+1(C) is either semisimple
or unipotent.

In the semisimple case we can choose coordinates to make the matrix
of the infinitesimal generator § = ) ¢ icp @i ;2:0/0%; diagonal, say
a; ; = ¢;4; ;, so that the action is £.(zo, ... ,_zk) = (t%zg,. .., t%2g).

Notice that this implies that cg,...,c, are integers. We will denote
this group by the symbol [co, . .., ¢k

In the unipotent case, £ is nilpotent and we may take its matrix in
Jordan normal form: a direct sum of Jordan blocks of sizes b,,...,b,,
where a Jordan Dblock of size b corresponds to the vector field

b1 2,8/8z;41. We write Nily, s, for the group so defined.

We now enumerate reduced curves I' admitting a 1-dimensional alge-
braic group H’ of projective automorphisms. The calculations are very
close to those for the case of quintic curves, which was discussed in [8].
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Let f(z,y,z) = 0 be an equation of I'. Then H’ lifts uniquely to
an algebraic 1-parameter subgroup H of G La(C), not contained in the
centre, and preserving f, not just .

We consider first the case when H is semisimple; we may take it
as [wy, wg, ws). Thus the exponents (r, s,t) for which the coefficient of
z"y*z! in f is nonzero satisfy wyr+wos+wst = Qaswellasr+s+1=d.
Notice that w;, ws, w3 are only determined up to a common factor.

We plot the exponents (r,s,t) with r + 84+t = d in a triangular
lattice, where the k'® row consists of the k + 1 entries with r = d — k,
and with s decreasing along the row. Since the exponents occurring in f
satisfy a linear relation, they lie on a line; let L be the least line segment
containing them all. Since I' is reduced, for each edge of the triangle at
least one end of L must be at distance 0 or 1 from the edge: for if (e.g.}
L contains no point from the two lower rows, f is divisible by z?. Hence
one of the ends of [, must be within distance 1 from each of 2 edges, so
may be taken as A= (0,d,0), B=(1,d~1,0)or C = (1,d - 2,1). The
other end of L must be within 1 of the opposite edge, so may be taken
as o, = (r,0,d—r) or f, = (r,1,d - r — 1) for some r,

Eliminating repetitions arising from symmetries of the triangle gives
the following 4d — 5 line segments:

d)s Aﬁr (OS "S %(d'—l))s
1), BB (l<r<d-2),
24, CB@<r<s(d-1).

The cases Aag, Afy, where the curve is just a cone on d points, are
more degenerate than the others; here an equation is annihilated by a
vector field of degree 0. The weights can be taken to be [-1,0,0}. There
is, of course, just one singularity, with g = 7 = (d — 1)2. We will not
consider these cases any further.

The only other cases where the line segment is parallel to a side of the
triangle, so that two weights are equal, are Boy, B, where the curve
is a cone on d — 1 points plus a line; here the weights can be taken to be
{—(d-1),1,1]. The cone singularity has y = 7 = (d — 2)%; and there are
d — 1 further A, singularities where the extra line meets the cone. We
note that the projective classification of such curves corresponds exactly
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to the K-classification of the cone singularities, and hence the multi-X-
classification of the constellation of singularities consisting of a cone of
degree d — 1 and d — 1 A;’s.

There are d — 4 moduli for this classification.

In all other cases, the weights are distinct, and the choice of repre-
sentative line segments made above ensures that 0 and w, lie between w,
and ws. We choose signs so that w; < w; < w3 and w; < 0 < wa; this
is achieved by taking (w;, we, w3) as the negative of the cross-product of
the coefficients of the given end-points, at least up to a positive factor.

The weights distinguish the line segments except in the cases noted
above where two weights are equal, and in the cases Aay, Coi(d = 2k)
and Ay, CPBr(k > 1,d = 2k + 1), where the weights may be taken as
[-1,0,1].

When the weights are distinct, the only possibilities for singulari-
ties are the unit points [(1,0,0)], [(0,1,0)] and [(0,0,1)]; for the vector
(wrz, wey, wsz) is only parallel to the kernel (spanned by (z,y,z) at
(z,y, z)) of the tangent map to the projection C3\0 to C P? above these
points. Indeed, examination of equations shows that [(0, 1,0)] does not
even lie on the curves corresponding to line segments with end-point A
(where the equation has non-zero coefficient for y?}, is a non-singular
point of those with end-point B, and is an A; singularity of those with
end-point C; whilst there is a singularity at [(1,0,0)] except in the case
Bay_y, and there is a singularity at {(0,0,1)] except in the case Ao;.

All these singularities are in fact weighted-homogeneous. For, using
the Euler relation df = z0f/8z + y3f /0y + 28f /8=, we find

0=wz8f/0z + wayd f /Oy + waz8f/0z
= —{(~wd)f — (w2 — w1)ydf/By — (w3 — w)28f/0z},

so that the weights at [(1,0,0)] are (wq — wy, ws—w, )}/ — dw,. Similarly,
the weights at [0, 1,0)], [(0,0,1)] are (wg — w;, wy — w3)/dws, (w3 —
wy, w3 — we)/dws, respectively.

When the weights are distinct, the connected component of the iden-
tity in the subgroup of GL3(C) which preserves the weights consists of
the diagonal matrices alone, corresponding to scaling the variables. It
follows that the projective classification of the curves with these weights
has N — 2 moduli, where N is the number of lattice points on the cor-
responding line segment L - an appropriate normal form for the corre-
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sponding equations has coefficients 1 for the monomials corresponding
to the end-points of L, whilst the coefficients of the other monomials
give the moduli.

As to the multi-K-classification of the singular points, we have:

Proposition 2.1. Let L be one of the line segments of (1).

Ifd=2k and L = Ay, orifd = 2k + 1 and L = ABy, then, for
each possible multi-K -class, there is a 1-parameter family of projectively
ineguivalent curves with line segment L whose singular points have this
class.

In all other cases the multi-K -classification of the singular points of
curves with line segment L coincides with the projective classification of
the curves.

Proof. We may restrict attention to curves with the equation implied
by the corresponding line segment.

For the first statement, note that the equation is of form p(zz,y),
where p is a polynomial in two variables weighted-homogeneous with
respect to (2,1)/d. The curves with equations p(zz + ty?,y) also have,
except for one value of t where the coefficient of y? vanishes, line segment
L, and are projectively distinct for distinct ¢ € €. On the other hand,
the singularities of these curves at [(1, 0,0)] and [{0, 0, 1)] have equations
p(z + ty?,y) and p(z + ty?, y), so have constant K-class for all ¢t € C.
The statement is proved.

The second statement was shown earlier in the cases where two
weights are equal; so we suppose that the weights are distinct. Since
K-equivalence of weighted homogeneous functions is the same as equiva-
lence with respect to weight-preserving coordinate change, the statement
fails for a given L only if the weights at both [(1,0,0)] and [(0, 0, 1)] ad-
mit weight-preserving diffeomorphisms other than simple scaling. This
requires that the weights be (1,k) and (£,1) at these points, with k,£
positive integers. Thus (w3 —w;)} = ws— w3 and J{ws~wy) = wz—wy.
Adding, we find 1:—+% = 1,50 k = £ = 2. Moreover, for the statement to
fail for L, applying the transformation z — z 4+ ty? to m|y=), where m
is a monomial represented on L, must yield, on homogenizing to degree
d with z, a C-linear combination of monomials represented on L. Thus,
if a3 is the greatest power of z occurring in a monomial represented on
L, then there must exist a;, a; > 0 such that z%1y293+92 ig represented
on L; s0 aywy + {2a3 + ag)wz = 0. Similarly, working at [(0, 0, 1)], there
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exist by > 0, by, b3 > 0 such that (2b; + bz)w; + bsws = 0. Since wy, w3
have opposite signs, we conclude that a; = b, = 0, and so wz = 0. Hence
wy = —w3, and, since (0,2a3+ a2,0) € L, L is Aoy if d = 2k, and AS;
if d = 2k + 1. The proof is complete.

We turn to the case when H is unipotent. It is then conjugate to
one of the subgroups

Nillﬂ : t‘(z1 Y 2) = (Ia Yy 2+ ty)'r
Nily : t.(z,y,2) = (z,y+ tz, z + ty + 32z).
Now a Nily yinvariant function is independent of z, so in this case
I' is a cone. We will not consider this case further.
For N:il3 the ring of invariant polynomials is generated by z and
y? — 2z2. Thus a reduced Nilzinvariant function of degree d = 2k is
a scalar multiple of a product [[5, (2 — 222 + 4a;2?), with the q; all
distinct; whilst if d = 2k + 1 it is the product of such a function by z.
The projective classification thus has k — 2 moduli.

Geometrically, the curve is, if d = 2k, the union of k smooth conics
meeting in just one point, or, if d = 2k + 1, the union of k¥ smooth conics
and a line which meet in just one point. In each case, then, there is just
one singularity, at [(0,0,1)].

This singularity is not quasi-homogeneous for d > 5, though this is
quite difficult to see directly. It will follow from the results of 3.1, which
show that the singularity’s Milnor and Tjurina numbers are not equal
when d > 5.

Proposition 2.2. The projective classification of curves with unipotent
symmetry coincides with the K-classification of the singular point.

Proof. Apart from scaling, the only projective transformations preserv-
ing the normal form given above are of form 2 3 2 4 az. Thus we can
arrange that ¢; = 0, a2 = 1, whilst the remaining a; are moduli for the
projective classification.

For the K-classification, we work in the affine chart z = 1, and use
the local coordinate system X = y2 — 2zz, y. Thus, writing ¢ = f|,=1,
we have

- Ty (X + ai(X — y%)?) if d = 2k,
Xy} = { (X - y"’)lfl!;l(x +ai(X -y?)?) ifd=2k+1.

123
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We assign weights 4, 1 to X, y respectively. Then the lowest-weight
terms in g are

1 — Hf:l(x + a’iy4) lf d = 2k1
§X.9) = { —2 T (X + ay?) ifd=2k+1.

i=1
Now let A = (h1,hz) be a germ of diffeomorphism of (C?,(0,0)), and
write b = (hy, k) for its terms of least weight. Then the terms of least
weight of goh are k,8§/0X, or h20§/dy, or their sum if these have equal
weight. If h is the source component of a K-transformation preserving
the normal form of g, we see that h, must be of weight 4, h; of weight
1, and that % preserves the normal form of g up to multiplication by
a non-zero constant. We conclude that, apart from scaling, the only
transformations preserving § are of form X — X + ay*. So we can
arrange that a; = 0, a; = 1, whilst the remaining a; are moduli for
the K-classification. Thus the K-classification is at least as fine as the
projective classification. Since it cannot be finer, the proof is complete.

We conclude this section by giving tables with explicit lists for the
cases d = 3,4, 5,6. Our notation for singularities in general follows that
of Arnold, with some modifications; the notation for trimodal singular-
ities is introduced in [9].

The tables are arranged in order given by the nature of the singu-
larities, and a horizontal rule is placed at a point in the table where
the modality increases; we list the semi-simple cases first and then the
unipotent cases. .

In the equations, a,(v;, v;) denotes a homogeneous polynomial of de-
gree r in vy, va. For the corresponding curve to be reduced, the equation
must have no repeated factors; so the polynomial a, must have distinct
roots, and in some cases one or both of the coefficients of v, vj must
also be non-zero.

We also give the sums u and 7 of the Milnor and Tjurina numbers
of the singularities which appear.

Cubic curves with 1- and 2-dimensional symmetry

Group Segment  Egquation  Singularities T=yu
[~1,0,1] ApBy ¥ + Tyz 24, 2
[—2, 0, 1] Aay y3 +z2? As 2

["'1,0, 1][0,"'1,1] BQ],Bﬂl TYyz 3A1 3
[-2,1,4]. Nils Bos z(y* — 2zz) As 3
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All cubic curves with ¥ = 2 have 1-dimensional symmetry, whilst
those with 7 = 3 have 2-dimensional symmetry. To see the second
statement directly, observe that curves corresponding to the segments
Bay, Bf, are projectively equivalent to zyz, whilst curves correspond-
ing to the segment Bea, are projectively equivalent to z(y?>—2zz). These
types are all projectively unique.

Quartic curves with 1-dimensional symmetry

Group  Segment Equation Singularities =4
[-1,0,1] Aay az(zz, y*) 243 6
[-1,0,1) Cay Pz + 2222 243 + A; 7
[-3,1,3] Ba, z22% 4 2y Ag + Ag 7
1—3, 1, 1] Bo,;, B za;;(y, z) Dy + 34, 7
[_2: 01 1] A}Gl yq + Iyzz D5 + A 6
[—3, 1, 51 Bj, :y3 + z"‘yz Dg+ Ay 7
[-3,0,1] Aay v+ Es 6
[-3,1,9) Bag P + 252 E; 7

Nﬂa 02(1‘2, yT— 2222) A7 7

The classification arises in the theory of del Pezzo surfaces: for (see
[2, p.67]) the anticanonical model of a del Pezzo surface of degree two is
a double plane branched along a quartic curve with simple singularities.

All quartic curves with 7 = 7 have 1-dimensional symmetry; as do
those with singularities 243. There are two PG L;(C)-orbits of curves
with singularities Ds + A; {a cuspidal cubic and cuspidal chord), one
without 1-dimensional symmetry and one with (when the chord passes
through the flex). Similarly, there are two PG L2(C)-orbits of curves
with an Fg singularity; for the curves with 1-dimensional symmetry, the
two flexes coalesce to a hyperflex.

There is a 1-parameter family of projectively inequivalent symmetric
curves with singularities 2A3; all the other types are projectively unique.

125
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Quintic curves with 1-dimensional symmetry

Group  Segment Equation Singularities r u
[-1,0,1} A yax(zz,y*) 2D 12 12
[-1,0,1] Chs 2Pz + zlyz? 2D + A 13 13
[~8,2,7] BgS» a2yt + 2y2? Dg + Dy 13 13
[—12, 3, 3] Baq zy* + z223 A7+ Eg 13 13
[—9,1,6] Cay ez + %28 E;+As+ 4 13 13
{—3, 0, 2] Ay y"' + z2z? Eg+ Ay 12 12
[-4,1,1] Bay,BS zaq(y, z) T244+44; 13 13
[~4,1,6] Bas zay(y?, vz) Tyas+As 13 13
[—3, 0, 1] Aﬁl y5 + Iy23 le + Al 12 12

[—4,1,11} BB zyt + 23yz Zi2 + A 13 13
[-4,0,1] Aay ¥+ xz? Wi 12 12
[—4,1,16] Bay zyt + 2z Wis 13 13

Nilg zay(z®, y* — 2z2) T23,10 13 14

Our interest in quintic curves arose from the study of the stratifi-
cation of singularities in the u-constant stratum denoted Nyg. The list
above was already obtained in [8].

All quintic curves with 7 = 13 have 1-dimensional symmetry; as do
those with singularities 2Dg. There are two PGL,{C)-orbits of curves
with each of the singularity constellations Eg + A4, Z1; (k) + 4; and
Wiz (gh) (here gh signifies the quasi-homogeneous K-class).

One of these orbits contains curves with 1-dimensional symmetry
and one curves without, Normal forms, taken from [8], for those without
1-dimensional symmetry are

Y+ (¥ +22)2 (Es+ Ag),
¥’ + 2y + 22 (Zyy (gh) + A)),
¥ x4+ By (W (gh).

There are 1-parameter families of projectively inequivalent symmet-
ric curves with singularities 2Dg, T3 4,4+44; and T, 3 6+ A3; all the other
types are projectively unique. The curves with singularities of given
multi-K-class in T3 4 4+ 44y or T2 36+ A3 form a single PG L, (C)-orbit.
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Sextic curves with 1-dimensional symmetry

Group  Segment Equation Singularities 1 U

- [-5,1,5] Bas 2y + 227 Eia+ Eg 21 21
[~5,1,3] Bpy 245 + 2%y Zu+ Do 21 21
[-11,1,7] CBs eytz +2%y2®  Zyp+ D+ A 21 21
[-3,0,2] Aps y® + 22y2° Z1s+ Dy 20 20
[-10,2,5]  Ba 245 + 2224 Wis+A4s 21 21
[=8,1,4] Cay zytz +222' Wis+Ar+ A 21 21
[-5,1,7] Bj; ryas(y*, zz) Zyo+ Ds 21 21
[—2, 0, 1] Aog ag(y3, 322) Wl,ﬂ + Asg 20 20
—5,1,10] Bay zy® + iz’ Wiz + Ag 21 21
[—5, l, 1] BQ1,Bﬂ1 xas(::,y) NA0,0 +5A1 21 21
[-4,0,1] ABy ¥ + zyzt NCig+ A1 20 20
[-5,1,19]  Bp, 2y + 2lyz NCo+A; 21 21
[-5,0,1] Ay ¥ + z2° NFy 20 20
{-5,1,25] Bag, ey’ + 02 NFy, 21 21
[-1,0,1] Aas az(zz, y*) 215,36 20 20
[~1,0,1] Cos xza2(z2,9%) Myae+ A1 21 21
Nils aa(z?, F — 2z7) Eso 21 92

All sextic curves with 7 = 20 or 21 have 1-dimensional symmetry.

Several of these cases describe parametrised families of PG Ly(C)-
orbits. In the case of singularities 27 3 ¢ this yields a 1-parameter family
of PG Ly{C)-orbits for each multi-K-class, but in all other cases there is
a unique PG L3(C)-orbit for each multi-K-class.

3 Properties

We begin by computing some invariants of symmetric curves.

Proposition 3.1. Let ' be an H-invariant curve which is not a cone;
and suppose that the equation f for I' is in one of the forms given in §2.

Suppose H is semi-simple. Then 7(T) = pu(l) = d*> - 3d+3
and x(T) = 3 if y* has non-zero coefficient in f, whilst otherwise
7(T) = u(T) =d* —3d + 2 and x(I') = 2.

Suppose H is nilpotent. Then 7(T') = d®* — 3d + 3. If d = 2k then
w(lY = (k=1)(4k — 1) and x([) = k + 1, whilst if d = 2k -+ 1 then
w(l) = k(4k — 1) and x(I') =k + 2.
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Proof. In fact, u(T') can be calculated from x(I'), because, by a general
property of projective plane curves, u(I') — x(I'} = d2 + 3d. For I can be
deformed to a smooth curve T'; we have x(I') = —(d?—3d), this being the
Euler characteristic of any smooth curve in P2(C). Now I is obtained
from T, topologically speaking, by replacing a cone-like neighbourhood
of each singular point by the corresponding Miinor fibre. This Milnor
fibre has x =1 — g, so x(f‘) = x(I') — u(T).

We calculate x. Consider first the semisimple cases, where the sym-
metry group is C*. Since each non-trivial C*-orbit has y = 0, we have
x(T) = x(F), where F is the set of fixed points of the action con-
tained in I'. If all weights are distinct, there are just three such fixed
points, the unit points: T' contains [(1,0,0)} and [(0,0,1)] in all cases,
and [(0,1,0)] if and only if y¢ does not appear in f. Otherwise the
weights are {—1,—1,d ~ 1], the fixed points are [(0,0,1)] and the line
z=0. Theseliein I'; so x([')=1+2=3.

Now we turn to the nilpotent cases, where the symmetry group is C.
We recall from §2 that there is only one singular point, at which there are
k smooth branches if d = 2k, k + 1 smooth branches if d = 2k + 1. Each
non-trivial C-orbit has y = 1. These orbits are the branches with the
common point removed; so that x(I') is 1 plus the number of branches,
as claimed.

Finally, we determine 7(I'). In the semi-simple cases, all the singu-
larities are weighted homogeneous, and thus have the same Milnor and
Tjurina numbers, so u(I') = 7(I').

For the unipotent case we must work harder. We show that (a) of
1.2, (2) applies. We take £ as the infinitesimal generator z8/8y+y0/9z
of Nil3. This annihilates f, so zdf/dy+ ydf/8z=0. Hence df/dy
and 9f/3z have a non-zero common factor K of degree d — 2, with
0f/0y = Ky, 8f/0z = —Kz. Since T is singular at [(0,0,1)], the
partial derivatives of f vanish there, so are contained in the ideal (z,y).
Thus we can write 8f/3z = Lz + My, with L, M of degree d—2, so that
K3f/0z = KLz + KMy = —L3f/0z+ MA8f/dy. Thus the vector field
K08/0z—MJ/By+Ld/8z, of degree d—2, annihilates f; and Exn = V.
Thus 7(I') = d% ~ 3d + 3.

Now we turn our attention to topological versality. We will say that
a reduced curve T' C P?(C) is topologically a-versal if perturbing f
by adding homogeneous functions of degree 2(d — 2) — 1 — a induces a
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simultaneous topologically versal deformation of the singularities of I'.

Proposition 3.2. Let I be a reduced curve of degree d > 6 which is
not a cone, and with 1-dimensional semi-simple symmetry. Then I is
topologically 1-versal.

Proof. We take the equation for I' to be in one of the forms given in
§2, (1), and show that one of the singularities of I' is not simple.

In the case where two weights are equal, there is a cone singularity
of degree d — 1 at [(0, 0, 1)]; this is not simple if d > 4.

Now consider the cases with distinct weights, The singularity at
[(1,0,0)] is weighted homogeneous with respect to weights (w; —w;, w3—
wy )/ —duw;. It is simple if and only if the weight of its Hessian is less than
the  weight of its equation, that is, if and only
if 2(—dwy) — 2(wp — wy) — 2(w3z — w1) < —dw,, or, simplifying,
(4—d)wy — 2wz —2w; < 0. Similarly, the singularity at [{0, 0, 1}], which is
weighted homogeneous with respect to weights (w3 —wy, w3—w2)/dws, is
simple if and only if (d —4)ws+ 2w+ 2w, < 0. Adding these inequalities
gives (d — 6){ws — wy) < 0; since w3 > w), we see that if d > 6 then at
least one of the singularities at [(1,0,0)] and [(0,0,1)] is not simple.

Next we note that the infinitesimal generator £ of the group does not
vanish at the non-simple singularity. This follows because in all cases £
is of form wyz28/3x + woyd/8y + w328/02z with wy, ws non-zero; so it
does not vanish at either [(1,0,0}] or [(0,0, 1)].

It follows that [3, 2.1] can be applied; and T is indeed topologically
1-versal.

We are only able to prove the corresponding result in the unipotent
case when d = 6.

Proposition 3.3. Let T be a reduced curve of degree 6 which is not a
cone, and with 1-dimensional unipotent symmetry. Then ' is topologi-
cally 1-versal.

Proof. According to §2, we may suppose that I' has homogeneous equa-

tion f a non-degenerate cubic in z? and y?—2z2 with non-zero (y?—2z2)3

term. After a coordinate change of form z — 2+ cz, we can suppose that

f has theform f{z,y, z) = (y? — 222)® + p(y? — 222)(2x)* + ¢(22)%, with
4p® 4 27¢%? # 0. The singularity of T is at [(0,0,1)]. According to 1.3,

(2), the lift £ = z8/8y + y0/8z to C? of the infinitesimal generator of
the symmetry group generates (A(f)/H(f)1 = A(f)1-
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We set X = y? — 2¢; then X, y are local analytic coordinates at
(0,0) € C®. The germ ¢ of f(z,y,1) at (0,0) can be written as
(X, ) = X3+ pX(y° — X)*+ ¢(y* — X)® with respect to these coor-
dinates. We assign weights 4 to X, 1 to y. Let h, w be the function-
germs at (0,0) which are given by A(X,y) = X3+ pXy® + ¢y'?, and
w(X,y) = ~245(2pX?% + 39X y*). Then g — (h + w) is a sum of mono-
mials of weight at least 15.

We recognise h as representing a weighted homogeneous K-class in
E40; and w represents the socle, of weight 14, of @/J(h). Since g
and h + w differ by terms of weight at least 15, we have w ¢ J(g),
(9.J(9)} = (w, J(h)), and, by the weighted determinacy theorem of [1,
5.2], g Zx h + w. It follows also, from the second of these statements,
that r(g) = dim(O/(g, J(9))) = 21, confirming the result of 3.1 in this
case.

Let v be the function-germ at (0,0) given by v(X,y) =
—2y°(2pX? + 3¢Xy*). Then the projection of v generates the part of
O/J(h) of weight 13, so that (v,g,J(g)) = (v,w,J(h)) and
dim(O/(v, g,/ (g))} = 20. It follows that v represents an element of
the socle of O/(g,J(g)). Since the restriction to z = 1 of the 8/8z-
coefficient of £ is y, and yv = w ¢ J(g), [3, 2.2] shows that v projects
to a generator for the reduced Kodaira-Spencer map of the deformation
of g induced by perturbing f by homogeneous functions of degree 6. Let
G be the corresponding unfolding of g.

Let K be the K-invariant manifold (in a suitable high-order jet-space)
generated by {h+ sv +tw : s,t € C}. {In fact, K consists of three
K-classes; those of k, h + w and h 4+ v, with Tjurina numbers 22, 21
and 20, respectively). By the weighted determinacy theorem [1, 5.2,
g+8v = h+sv for s # 0. Hence the jets of the family {g+sv : s € C}
lie in K. Thus [3, 2.3] shows that G is transverse to K.

By the complex avatar of [4, 10.5.33], K is civilised; from this the
topological versality of the unfolding G of g follows by the arguments of
(4, 9.4], thus giving the topological 1-versality of T, and completing the
proof.

Reduced curves of degree d = 3 and 4 are versally deformed by the
family of all curves of degree d, e.g. by the results of [3]. This also holds
when d = 5 except at the cones; but for them the deformation is topolog-
ically versal (this follows from the case a = 0 of [3, 2.1}; it is essentially a
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special case of Wirthmiiller’s theorem [10]). The results of 3.2 for d = 6
and 3.3 come close to showing a similar result in the case d = 6; it re-
mains only to see that the cones are topologically versally deformed in
this case. Proving the required civilization will require an improvement
to [4, 9.6.6], however, to allow higher-dimensional instability loci to be
considered.
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