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Monotone coeflicients and monotonicity of
Orlicz spaces.

Yanming Lii, Junming Wang and Tingfu Wang

Abstract

The criteria for uniform monotonicity, locally uniformly meonotonic-
ity and monotonicity of of Orlicz spaces with Luxemburg and Oz-
licz norms are given. The monotone coefficients of a point and of
the spaces are computed.

The monotonicity and the uniform monotonicity are important prop-
erties of Banach lattices. In 1985, Akcoglu and Sucheston [1] showed
how these properties are related to ergodic theory. Moreover, in 1992
Kurc [8] discovered that the role of monotonicity properties in Banach
lattices is similar to the role of rotundity properties in Banach spaces.
For example, he proved that for any Banach lattice X the following
statements are equivalent: (1) X is monotone; (2) for every z € X and
every order interval [y, z] in X satisfying z > [y, 2], Card (P[y'z] (m)) <1,
where Px(z) = {y € K || z — y ||= d(z, K}}; (3) for every sublattice
subset K of E and every z > K, Card(Px(z)) € 1. H. Hudzik and
W. Kurc obtained the following important result recently: Let X be an
uniformly monotone Banach lattice, then the dominated best approxi-
mation problem with respect to any closed sublattice subset F of X is
strongly solvable (i.e. for any z € X, z > K, we have Card(Pk(z})) =1
and limy, d(zn, Px{z)) = 0 for any minimizing sequence (z,)). For the
discussion of monotonicity, uniform monotonicity and locally uniform
monotonicity see [1-5, 7-8]. The uniformly monotone coefficient of the
space X and of a point of X are the quantitative characteristics of
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monotonicity. We expect that they will be useful in estimations of the
errors of the approximation.

Let X be a Banach lattice and let X1 denote the positive cone of
X.

Ifllz{=1andy#0imply || z+y ||> 1 for any z,y € X* then X is
said to have the monotonicity. Moreover, if for every € > 0 there exists
8 > 0 such that for every z,y € X satisfying || z }|I=1and || y ||> € we
have ||  +y ||> 1+ 4, then X is said to have the uniform monotonicity.
For ¢ € [0, 1], define

nx(E=inf{z+yll-1:z,ye XF |l2z|=1,(yl>e}.

We call
m(X) = sup fe €o,1]: nx (€) = 0}

the monotone coefficient of X. Obviously, X has uniform monotonicity

if and only if m(X) = 0. Moreover, for a point z of the unit sphere
S(X) we define

n(z,e)=inf{fz+y|-1:y€ X* |yl>e}.

We call m(z) = sup{e € [0,1] : n(z,£) = 0} the monotone coefficient of
z. If m(z) = 0 then z is called an uniformly monotone point. If every
point of S(X ) is an uniformly monotone point then X is said to have
locally uniform monotonicity.

In this paper, we will discuss the criteria for monotonicity, uniform
monotonicity and locally uniform monotonicity of Orlicz spaces and
monotone coefficients of these spaces will be computed. Let M(u) be a
N—function, N(V) its complemented function and p(u) the right deriv-
ative of M(u). We say M (u) satisfies Ay—condition (M € A;) for large
u provided that there exist uo > 0 and k > 2 such that M (2u) < kM (u)
for any u > up. Let (G,X, 1) be a nonatomic finite measure space and
Lo the space of all equivalence classes of E—measurable functions equal
p—almost everywhere. The linear set

{z € Ly :da > 0,ppm(az) = j;; M(az(t))dp < oo}
endowed with Luxemburgoe norm

2 l=inf {c > 0 : pag(/c) < 1)
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or Orlicz norm .
Il 2 |I°= inf = (14 pa(kz))

are all Banach spaces, we call them Orlicz spaces and denote them
by Lar or LY, respectively. We have known from Th 1.31 of [6] that
for every 0 # ¢ € L%, || z ||°= ; (1 + pm(kz)) if and only if k €
K(z) = [k, k2*], where k} = inf{k > 0: pn(p(k | 2 1)) > 1}, and k7" =
sup k> 0 pu(p(k | 2 1) < 1}.
0, i Me Ay
1, f M¢A,
Proof. If M € A,, by Th. 1.39 in [6), for each £ > 0, there exists § > 0
such that || z ||> € implies par(z) > 8. For this &, we have § > 0 such
that pas(z) > 1+ 6 implies |j 2 ||> 1+ 6.

Fix z,y € LJT,, satisfying || z ||= 1 and || y ||> €. Since M € Az, it is
easy to check that pps(z) = 1. Noticing | M (u) - M(v) |> M(u—v) for
any u > 0 and v > 0, we have

pu(e+y) ~1= pula+y) = pu(e) = [ (M (2(t) +y() = M (=(0))) dn

Theorem 1. For an Orlicz space Ly, m{Lpg) = {

> fGM(y(t))du=pm(y) > 6

ie. ppm(z+y) > 1+4. Therefore, |z +y |[> 148,17, () 20>0
So, we have m(Lpy) = 0.

If M ¢ A,, take E C G satisfying 0 < uE < pG. Foreverye € (0, 1),
by Th. 1.13 in [6], we have u, T oo such that M{uj)uE > £ and
M (14 1/n)up) > 2°M(us)(n = 1,2,--). Let {E,} 7, C E be such
that E;NEy = ¢(i # 7) and pE, =_,,—Lm”m_(_n: 1,2,--). If

s(t) = 3 unxe, (1)

[o <]
then ppm(z) = Z M (u)pE, =€ < 1. And for any A > 0 we have

n=1
o (1 X)2) = 3o M (14 Xu) pBa 2 3 M ((1+1/7) o) uEn
n=1 n>-}

> E: 2"M(up)puE, = oo,
ﬂ>'x
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So || z ||= 1. Choose ug > 0 such that M(uo)p(G\E)=1—¢. If
y(t) = voxe\u(1),

then par(y) = 1 — 2. Hence ppr (TE_) 2 land || y{>1-¢. Since

£
PM(T +y) = pm(z) + pa(y) = 1, we obtain || z +y [|= 1. This shows
Mg, (1—c) = 0. Moreover m(Lps) > 1 —e. By the arbitrariness of €, we
have m(Lps) = 1.

Theorem 2. The following three statements are equivalent:

1) The space Las has the uniform monotonicily,

2) The space Lys has the monotonicity,

3} MeA,.
Proof. 1)= 2} is trivial. Let us suppose 3) does not hold, then from the
proof of the Theorem 1, we can get z,y € L}, such that || z|=1Ly#0

and [| z +y {|= 1. This contradicts 2), so 2)=> 3) is true. 3)=> 1) is the
Theorem 1.

Theorem 3. The space LY, has the monotonicity.

Proof. For any z,y € Lg} satisfying || z ||°= 1,y # 0. Taking k €
K(z + y), we obtain

—

le4ylP =1 = Jotylo~ o= (- om (e +u) = e
> 1 (Ut par (k(z ) — & (14 par(ha)
> %PM(ky)>0-

0 Ff MEAZ:
1 if M¢gA,.

Proof. If the first statement is not true, then there exists £ > 0 such
that 7 13, (€) = 0. So we can find z,,y, € LY} satisfying I} zn |l°= 1,]|

Yn |]°> gand || z, + y, ||°= 1.

Theorem 4. For space LY, m (LS,) = {
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Since M € A,, by Th. 1.39 of [6], there exists & > 0 such ‘that
| z{j°> § implies pas(2) > 4.
Taking k, € K (%n + tn), such that | zatyn [I°= = (1 + pm (kn(2n + Un)))
forn=1,2,--Since || £, 4 ¥a [|°< 2 we have ky, > § for large n. Hence

1
“ Zn+ Yn “o -1 = " Zn+Yn “a - “ In “02 k_ (1 +pM (kn(zn + yn)))
1
— = 1+ paa (ko)

1 n
> Lpu ko) > 20w () 226
which contradicts the condition || zp, + ¥ |I°— 1.

Now, let us prove the second statement. Since M ¢ Ag, then by
§2.3 (1) of [7], for every € € (0, %) there exists large v > 0. Such

that M{(u) < sup(u). Without loss of generality, we may assume that
N(p(u))uG > 1. Take asubset E of G satisfying N{(p(u))pE = 1. Define

k=14 M(u)uE
and
1
z(t) = EuxE(t).

It is easy to check that k € K(z), whence we have || z ||°= H1+
pum(kz)) = 1.
Since

E = 1+M@uE <1+eup(u)pE=1+¢(N (p(u))pE + M(u)}pE)
= l4+e(l+ M(upE)=1+c¢k,

we obtain that k < T%E
Since M ¢ As, for every 8 € (0,¢), there exists a large v > 0 such

that M ((1+ 8)v) > ﬁ}ﬂ We can assume M (v)u{G\E) > @ and take
F C G\E satisfying M (v)uF = 6. Denote

y(t) = %pr(t).
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Noticing that par ((1+ 0)ky) = M ((1+ 8)v) uF > FMW)uF =1,
we have ||y [|°>]l v ||> (1—4_‘—@: > iﬁ Since k > 1, it follows that

Iz +ylP =1 = 24yl =2 1°< £ 0+ pae (k(a + 1))
- £ (14 p(k2))
= 2omlky) < pur(ky) = MO)UE =0

This shows M0 (—i;—;) < 0. By the arbitrariness of 8 we get
M

7,0 ( iﬁ) = 0. Moreover m (L3;) > {5. By the arbitrariness of ¢ we
M
get m (LY,) = 1.
Next, we will discuss the monotone coefficient of a point of the unit
sphere,

0 if MeA,,
1 if M¢A,.
Proof. The first statement is a consequence of Theorem 1.

Take ¢ > 0 such that E = {t € G : z(t) < ¢} has positive measure.
Since M ¢ A, for any € € (0,1/3) and & > 0, there exists a large u such
that u > £ and M ((1+¢)u) > }M(u). Assume M(u)uE > & and take
Eq C E such that M(u)uFEg = 4. Put

y(t) = (v~ 2(t) x5 (¢).

Theorem 5. For everyz € S (Lj}) , m(z) = {

Then
par (1 +36)y) = [ M ((1+36) (u~ 2(0))) du
> [ M((1+36) (- 0)du
> [EOM((1+35)(1—5)H)4F
> [Eo M ((L+€)u) dp > sM(w)pBo = 1.

This shows || y ||> ﬁ But

paa(z +y) = fc\E M®)du+ [ M{u)dp <146

0
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Hence || 2 +y II< 1+ 6] z+y | -1 < 6. So (2, 55) < 6. By
the arbitrariness of § we get 7 (z, H}W) = 0 and m(z) > 5. By the
arbitrariness of £ we have m(z) = 1.

Corollary 1. Everyz ¢ X (LL) ts @ uniformly monotone point if and
only if M € A,.

Corollary 2. The space Ly has locally uniformly monotonicity if and
only if M € A,.

Now let us discuss these properties of Orlicz spaces with Orlicz norm.

Theorem 6. For every

0 o MeA,,
zGS(L?J),m(x):{x!: i MﬁA:

Proof. The first statement is a consequence of Theorem 4.

If M ¢ Ay, take ¢ > 0 such that theset E = {t € G : k*z(t) < ¢} has
positive measure. For every £ € (0,1/3) and & > 0 there exists v > £
such that M ((1+¢)u) > }M(u). We can assume M(u)uE > & and
take Ey C E such that M(u)uEy = §. Put

v(®) = (7 - =) xe. ()
Since
pu((+300kt) = [ M((1+3¢) (u - Ka())) dp
> M((143e)(u—c))pEg > M ((1+&)u) pFy > 1.

we have |l y 2] y > 33y But

o (2] o ]'
lz+yll°=1 = [lz+y]| —IImIISk:

1 .
- F (1 + M (kxz))
z

1+ pm (k3 (z + )

1 )
EM(M)#E{) = E < .
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So "(m'ZT:;s'ﬂc_;) < 8. By the arbitrariness of & we have

7 (z, ﬁﬁ!ﬁ—;—) = 0. Moreover m(z) > ?l-'r_;zﬁ By the arbitrariness of
£ we get m(z) > é

We prove m(z) > -le is false. Assuming there exists g9 > 0 satisfying
m(z) > é + g9, we can find {y,}32, C LR}' such that || yn ||°> 7;1-;— +£p
and |2+ yn [°< 1+ 31 forn=1,2,-- For

kn, =k

s+ there holds

” T+ ¥n ||°= kl_n (1 + oM (kn(ﬂt +yn))) (nz 1,2, )

Obviously k, < kI for n = 1,2,--- We show that hm kn = k5. In

fa.ct suppose k, < ki — &§(0 <4 < kl). Since the "Ranction F(k) =
1 (1+ pu(kz)) strlctly decreases on (0, k%), we have

o (1 paa(kn2) > 1 (1 par (K2 = §)2)) = o (1+ o (K22)) 40

1
kz i
where 8 > (0. Hence

ety I” -1 = fle+u |I° = | 2 °= 7= (L + par (kn (2 + ¥n)))

1
k,
1 N
& (1+pur (kzz)) > 0

which contradicts the condition || z + g, |°< 1+ £ for n = 1,2,--.
So ﬂler;o kn, = k. By the Fatou Lemma (passing to a subsequence if

necessary)

1 1
ky ey — —=k*—1- =
pM( :r.) > pM( z:c) k:r: 1

when n is large enough. Thus

1
kn (1 + ;;) 2 ko || @tyn |°= 1+pm (knl(z + yn)) 2 1+pm(knz)+orr(kaya)

1
S|l Entin [I” 4031 (kn2) > kn ( E teo) +hi-1- 3,

and so k > k(1 + €o), a contradiction. Hence m(z) = &.
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Corollary 3. Everyz € § (LR}) is an uniformly monotone point if
and only if M € A,.

Corollary 4. The space LY, has locally uniformly monotonicity if and
only if M € As.
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