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Extending algebraic actions.

Arthur G. WASSERMAN

Abstract

There is a well-known procedure -induction- for extending an
action of a subgroup H of a Lie group G on a topological space
X to an action of G on an associated space. Induction can also
extend a smooth action of a subgroup H of a Lie group G on a
manifold M to a smooth action of G on an associated manifold.
In this paper elementary methods are used to show that induction
also works in the category of (nonsingular) real algebraic varieties
and regular or entire maps if & is a compact abelian Lie group.

Introduction

If H a closed subgroup of the Lie group G and f : X — Y is an
H —equivariant function then f may be extended to a G'—equivariant
function F: Gxyp X =5 Gxy Y by Flg,z) = gf(z). Here G xyg X
denotes the quotient space of G x X obtained by identifying (gh, z}
with (g, hz), cf. [P], page 31 or [B], page 79. The set G xy X is usually
denoted by indg(X) and the map F is usually denoted by indg(f). If
is a smooth H —equivariant imap between H—manifolds X and Y then
indG(f) : ind§(X) = ind$§(Y) is a smooth G—equivariant map of
G ~manifolds. If X and Y are {nonsingular) real algebraic H —varieties
and H has finite index in G and G is compact then it was shown in [DM]
that ind%(X) and nd$(Y) can be given the structure of (nonsingular)
algebraic varieties such that if f is a regular (resp. entire rational)
H —equivariant map then ind$(f) : ind$(X) — ind§(Y) is a regular
(resp. entire rational) G'—equivariant map. In this note we show that
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the same result is true if & is a compact abelian Lie group-the assump-
tion that A has finite index in & is not necessary. The proof is entirely
elementary.

A much stronger resuit has recently been obtained by G. Schwarz [S];
he shows, among other results, that if X is a (nonsingular) real algebraic
H —variety, H is a closed subgroup of G and G is compact then indﬁ(X)
can be given the structure of a (nonsingular) algebraic G—variety in a
functorial way.

A good reference for definitions and background is [D].

I would like to thank the Departamento de Matematica of the Uni-
versidade Federal de Santa Catarina, Florianopolis for their hospitality
and CNPq for their support during the preparation of this paper.

1 Definitions

Let G be a compact Lie group and V a representation space of G, that
is, a real vector space on which G acts via linear maps. Let p; : V —
R,7=1,2,.---,n be polynomial maps. Then the set M = {v € V |
pi(v) =0fori=1,2,---,n} is called a real algebraic G— variety if it is
invariant under the action of G. If the differentials {dp;} at z € M span
a space of constant rank then M is said to be a nonsingular real algebraic
G —variety.

If X CV and Y C W are real algebraic varieties a map f: X =+ VY
said to be regular if it is the restriction of a polynomial map F : V —
W. We say that f is an entire rational map if there polynomial maps
h:V =3 W, k:V — R,such that k does not vanish on X and f = h/k.
If X CV and Y C W are real algebraic G—varieties and f : X = Y is
equivariant as well as regular then f is a regular equivariant map. Is is
shown in [DMS] that if f is a regular equivariant map then there is an
equivariant polynomial map F : V — W such that f is the restriction
of F to X; similarly, if f is an equivariant entire rational map, there
exist equivariant polynomial maps A :V — W, k: V — R, such that
k does not vanish on X and f = h/k.
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2

Theorem. Let H be a closed subgroup of the compact abelian Lie
group G. There is a functor indg(] from the category of (nonsingu-
lar) real algebraic H —varieties and regular H —equivariant maps (resp.
H —equivariant entire rational maps) to the category of (nonsingular)
real algebraic (G —wvarieties and regular G—equivariant maps (resp.
(G —equivariant entire rational maps).

The proof will follow from a series of lemmas.
The following lemma allows us to reduce the proof to a special case.

Lemma 1. Let G be a compact abelian Lie group, let H be a closed
subgroup and let n = dimension G - dimension H; n > 0. Then there is
a sequence of groups H = Gy C Gy C ...Gy, C G such that G;41/G; =
St for § =0,1n—1 and G, has finite indezx in G.

Proof of lemma. If n = 0 then H and G have the same components
of the identity, H. = G, so G/H is a quotient of G/G. which is finite
s0 G has finite index in G. If n > 0 we proceed by induction on n.

There is a one to one correspondence between (closed) subgroups of
G containing H and (closed) subgroups of G/H. If n > 0, let K be
a circle subgroup of G/H, let # : G — G/H be the projection and let
ql = n~1(K). Now dimension G—dimension G| = n—1 so we are done.

Remark 1. Let H be a closed subgroup of the compact abelian Lie
group G with dimension G = 14 dimension H and G/H = S'. Choose
a circle subgroup S!' C G such that S! is not contained in H; then G is
the quotient of S! x H by a cyclic group Z,, = SI1NH. (If S'NnH =
e then m = 1}, We will henceforth assume that such a circle group has
been chosen once and for all. We let ¢ = e?™/™;( is a generator for the
group Z,, = S'N H.

We wish to define the induction functor ind%() from the category
of (nonsingular) algebraic H —varieties and regular H —equivariant maps
(resp. H —equivariant entire rational maps) to (nonsingular) algebraic
G —varieties and regular G—equivariant maps (resp. G—equivariant en-
tire rational maps). In view of Lemma 1 it suffices to define ind§ () as
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the composition of induction maps from G5 to G4 for j = 0,1, n 1
and from G, to G. Since G, has finite index in G, the functor ind& ()
exists by the result of [DM1]. Thus, we need only consider the special
case (7 to 4, that is, we have proved:

Lemma 2. [t suffices to prove the theorem in the special case in which
dimension G = 1+ dimension H and G/H ~ §'.

We next show that without loos of generality we may assume that
our H —varieties are imbedded in complex representations on which G
acts.

Lemma 3. Let H be a closed subgroup of the compact abelian Lie group
G with dimension G = 14+ dimension H and G/H =~ S'. Let X be a
(nonsingular) H —varicty in the real H-representation space V. Then
we may find a complez G—representation space V! = V@RrC such that X
is an H —invariant (nonsingular) real algebraic variety in V'. Moreover,
this procedure is functorial, that is, if f : X -+ Y is an H —equivariant
reqular (resp. entire rational) map between algebraic H—varieties X C
Viand Y C W where V and W are real H—representation spaces then
there is an H —equivariant polynomial map F' : V' = W' between the
complex G—representation spaces V' and W' such that F' | X = f (resp.
f=HR/[k where ' : V! = W/ k' : V! 5 R are polynomial maps such
that k' does not vanish on X ).

Proof. Let p; : V — R,i =1,2,...,n, be polynomial maps such that
X={veV|pw)=0fori=12...n}) (If X is nonsingular we
assume that the differentials {dp;} at z € X span a space of constant
rank). Then we have that X = {v e V@Or Clv =8,p!(v) = 0fori =
1,2,...,n} where pl(v) denotes the same polynomials but with complex
arguments rather than real arguments. We note that the equations
v = 9, pi(v) = 0 may be regarded as real polynomial equations oun the
underlying real vector space of V/. Moreover, if f : X -4+ Y is an
H —ecquivariant regular map then the H —equivariant polynomial miap
F' oV — W between the complex G'—representation spaces V' and W/
given by extending the definition of F' to complex arguments satisfies
' |x=f. Similar remarks apply if fis an entire rational f —equivariant
map.

We need only verify that the H action on V can be extended to a ¢/
action ot V', Since /{ is abelian every irreducible complex representa-
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tion of H is one dimensional; in particular, we may write V' as a sum of
one (complex) dimensional H —irreducible spaces, V' = S8, Vs. Thus,
to prove that we may extend the action of H on V' to G it is sufficient
to show that we may extend the action of H on each V; to G. In view of
remark 1 above, that means defining an action of the circle subgroup 5!
on each V, that extends the action of Z,, on each V;. The element ¢ in
H acts on V; via complex multiplication by (" for some r that depends
on 5. Welet t € S! act on V; via complex multiplication by t". That
extends the action to G. (Complex multiplication by ¢" for r’ = r mod
m would also work).

Definition. Let H be a closed subgroup of the compact abeliun Lie
group G with dimension G = 1+ dimension H and G/H ~ S'. Let
a 1 G = 8! = U{1) be the homomorphism with kernel H given by
at) =t™ fort € S, a(h) =1 for h € H. We denote by C the complez
numbers with the G action given by o.

Notation. We denote the action of the complex number t on the vector
v by t % v;tv will denote multiplication of the vector v by the complex
number ¢.

The proof of the following lemma can be found in [P}, page 31. It is
given here for the sake of completeness. The assertion is that V/ x 1 is
a slice in V' x §' at (0,1).

Lemma 4. Let H be a closed subgroup of the compact abelian Lie group
G with dimension G = 14 dimension H and G/H =~ S'. Let X be
a (nonsingular) H —variety in the complez G—representation space V'
and let 1 X — V' be the inclusion. Let 7 : G xyp X = Vig C be
given by j(g,7) = (gi(z), alg)). Then 7 is a G—equivariant imbedding
of Gxy X = ViaC.

Proof. To see that j is G—equivariant we note that j{g'(¢g,z)) =
i(g'g, =) = {¢'gi(z), a(g'g)} = ¢'(gi(z), o(9)) = ¢'5 (9. %)

If j{g, z) = j{¢', y) then (g} = a(g’) so ¢’ = hg for some h in H.

Then j(g, z) = (9i(z), a(g)) and j(g'. y) = j{gh. y) = (¢hily), o(gh)) =
(gi(hy)}, o{gh)) so i(z) = i(hy) and thus, since i is an imbedding,
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z = hy. Hence j is one to one. The statement that j is an imbed-
ding follows from the fact that ¢ is a closed map and G is compact.

We will now show that (G xyx X) is a (nonsingular) algebraic
G—variety in V'@ C. Since every point in §(G xy X) is of the form
g{z, 1) for some z € X, and X is the zero set of some polynomials P
we must try to write (v, w) as g(z, 1) for some ¢ and some z and then
verify that pi(z) =0fori=1,2,...,n. If ww =1 then w € S! and that
is necessary and sufficient for w to equal a(g) for some g € G since « is
onto. By remark I, any g in G is of the form ¢t h forsome t € S! and some
h € H soif w=a(g) then w = t™ and w = t~™. (Note that ¢ is only
determined up to an m** root of unity). Then (v, w) can be written as
t* (t*v,1). Thus, we only need the equations wd = L, pi(@!/™ « v) =0
fori=1,2,...,n. (Since ¢ is not unique, the equations do not appear
to be well defined no less polynomial in v and w and their conjugates).

We interpreted the equations as follows: V' = e-1 Vs; the action
of t € ST C Gon V; C V' is given by t « v; = t"u; for some integer
r;. Now we extend the action of S' on V/ to an “action” of ¢ on V'
by ¢ x v; = g™ v; for ¢ in C. Finally, define p/(w'/™ * v) by pi(w™ +
v} = pi(g * v) where ¢ is any m!* root of w, the ~ indicates complex
conjugate, and the * indicates the “action” of C on V', To put it more
concretely, one computes pi{v, w) by first choosing ¢ an m*”* root of w
(recall Z,, = STNH) and then replacing every occurrence of the variable
v; in the polynomial F by §™v;.

Then we have:

Lemma 5. Under the assumptions of Lemma § let X be the H —variety
in the complex G—representation space V' given by {v € V' | pi(v) =10
Jor i = 1,2,...,n}; then j(G xy X) = {(v,w) € V@ C | wo =
Lpiw ™ xv) = 0 for i = 1,2,...,n}. Moreover, j(G xy X) si a
(nonsingular) G —variety in V' & C.

Proof. We will show that

i) the zeroes of the ps do not depend on which m** root ¢ is chosen
to compute the value of p;,

ii) the “equations™ vanish exactly on j{Gay X),
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iii) the equations are equivalent to (have the same zero set as) poly-
nomial equations in the variables, v, w and their conjugates, and

iv) if X is nonsingular then j(GzyX) is nonsingular.

i) If p/(@!/™ x v) = 0, that is, if pi(§ * v) = 0 for some choice of ¢
then for any choice of ¢, pi{§ * v) = 0 because the p; are H—invariant,
and two ¢'s differ by an m'" root of unity any m' root of unity is a
power of { € H.

ii) We note that a point of the form (z,1) satisfies w& = 1 and
p:-(ﬁ;”m +v) = 0fori= 1,2,...,n, if and only if z in X since we
may take ¢ = 1. Since the equations are invariant under G they vanish
precisely on j(G Xy X).

iii) As interpreted, p;(v, w) is a polynomial in v and ¢; we must show
that it is equivalent to polynomials in v and w.

Fix ¢ and write

O p:(‘U, ’UJ) = PO(U'I w)+Pl(Ur w)q+P2(U: w)q2 ot P (’U, ,w)qm-—l
by grouping together monomials that have the same power of ¢ mod m
and replacing each occurrence of g™ by w. Thus Fy(v, w) consists of all
those monomials in which q appears to a power divisible by m. Each F;
is a polynomial in v and w.

Now let (v, w) be a point in 7(GzyX), that is, pi(v, w) = 0. Con-
sider the system of m linear equations obtained from ) by substituting
g¢? for ¢. By 1) the result in each cases is pi(v, w) = 0 so we get:

0= Po(v, w) + P (v, w)g + Pa(v, w)g® .. .+ Ppoy (v, w)g™™!
0 = Pofv, w) + Pi{v, w)qC + Pa(v, w)g*?
it Py (v, w)g™ !

0= PO('U, 'IU) + P (U, 1u)q<m—l + PQ(U, ,w)qZC'Z(m—l}
coot Py (v, w)qm—lg(m—l){m—l)

469
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These equations have the form:

1 1 1 | B 0
¢ ¢ gt Piq 0
1 C2 C4 . C?(m—l) PQQ‘? — 0
1 Cm—l CZ(m-—l) . C(m—l)2 Pm_lqm-l 0

Since the coeflicient matrix is a Vandermonde matrix with nonzero de-

terminant H (Cj - Ci) there is a unique solution to the system
0<i<j<m

of equations which is P;(v, w)g? = 0 for all j. Thus, pi(vw) = 0 if and

only if the polynomials Pj{vw) =0 for all j = 1,2,...m — 1. (There

is a different set of ijs for each i; we write them as P if we need to

be precise). Hence, the set j(G xy X) is the zero set of a family of

polynomials, t.e., (G xgy X) is a real algebraic G—variety.

iv) If X is a nonsingular variety then the differentials {dp'} at 2 €
X span a space of constant rank = dimension V’/—dimension X. To
see that the differentials de and d(ww) span a space of constant rank =
dimension V/&C~dimension j(GzyX) = 2+dimension V' —(1+ dimen-
sion X') = 1+ dimension V/—dimension X at points (z, 1) in dimension
J(Gzp X) we note that the dp! are linear combinations of the de be-
cause the p! are linear combinations of the P; and that ww does not
involve the v; coordinates. Hence, the dimension of the space spanned
is ai least 14 dimension V/—dimension X; it cannot be more since di-
mension j{GzyX) = 1+ dimension X. To check at other points (v, w)
in j(GzpX) one translates the problem to V' x 1 by multiplying by a
suitable element of G.

In view of lemma 5 we may make the following definition.

Definition. Let i be a closed subgroup of the compact abelian Lie
group G with dimension G = 1+ dimension H and G/H =~ 5'. Let X
be a (nonsingular) H—variety in the complezx G—representation space
V' given by {v € V' | pi(v) = 0 for i = 1,2,---,n}. Then ind$§(X} is
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the (nonsingular) G—variety in V' ® C given by
{(v,w) eV'SClww = I,P;(u, w) =0

for
i=1,2,--,m,j=0,1,2,---,m—1}.

Lemma 6. Let H be a cluosed subgroup of the compact abelian Lie
group G with dimension G = 1+ dimension H and G/H =~ S'. Let
F V= W be an H—equivariant polynomial map between the complex
G —representation spaces V' and W', then there is a G—equivariant poly-
nomial map F' : V'&C — W'SC between the compler G —representation
spaces V' @& C and W' @ C such that F'(v, 1) = (F(v), 1).

Proof. Since G is abelian we have that W’ = ;=1 W; where the W;
are one dimensional G—invariant subspaces. Since the map F’ will have
the desired properties if and only if the projections of F* onto each of
the factors has the desired properties it suffices to prove the lemma in
the case that W’ is one dimensional. That is, we consider a polynomial
F(vy, vz, -, v,) from V'’ to W’ where the action of t € S! C G on V'
is given by  * v; = t"v; for some integer r; and where the action of
t € 81 C G on W' is given by t + w = t%w for some integer d. As in
lemma 5 we extend the action of S! on V/ and W' to an “action” of C
on V' and W' by g +v; = ¢v; and g+ w = ¢?w for ¢ in C. Finally,
define F'(v,z) = (g * F(§ *+ v), z) where q is any m** root of z, the =
indicates complex conjugate, and the * indicates the “action” of C on
V' and W’'. To put it more concretely, one computes F'{v, z) by first
choosing g, an m'* root of z (recall Z, = §'N H) and then replacing
every occurrence of the variable v; in the polynomial F' by ¢ v; and
then multiplying the result by ¢

We will now verify that.

i) F" is well defined, that is, that (v, z) is independent on the
choice of q.

if}) I is G'—equivariant.

iii} F'(v, 1) = (f'(v), 1) and
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iv) F'is a polynomial in v and z.

i) Note that g is only determined up to an m'* root of unity and any
m*? root of unity is a power of ( € H. Then F'(v,z) = (g% F(§*v), z) =
(q(f * F'(§*v),z), which, by the H—equivariance of F is equal to

(Cq* F((§*v),z)so F'is well defined.

ii) If h € H we have by definition that F(h * (v,2)}) = F'(hv,z) =
(g+ F(ghxv),2) = (gh*x F(g+v),z) = hF(v, z) since H acts trivially on
C. If t € 5! we have

F(tx(v,z}) = F'(tv,t™z) = (gt « F(git x v),t™2)
= t*x(F(g*v),z) =t F(v,z2).

i) F'(v,1} = (g% F(g*v), 1) and the result follows by taking ¢ = 1.

iv) F'(v, z) is a polynomial in v and ¢; we must show that it is a
polynomial in v and z.

Write
OO)FM(U‘l Z) = PO(Us Z) + PI(Uv Z)C]-f— PZ(U:' Z)qz oot Pm—l(v'» z)qm-—l

by grouping together monomials that have the same power of ¢ mod m
and replacing each occurrence of ¢™ by z. Thus Fy(v, z) consists of all
those monomials in which ¢ appears to a power divisible by m. Each P
is a polynomial in v and 2.

Now consider the system of m linear equations obtained from $¢§)
by substituting ¢¢? for ¢. By i) the result is F'{v, z) in each case.
F'(v, 2) = Py(v, 2) + Pi(v, 2)g+ Po(v, 2) ...+ Pn_1 (v, z)g™ !
Ff(va Z) = PD(”! Z) + Pl (Us z)q<+ PZ(Us z)qZC2
coit Py (v, :a')g'm_lcm'_1

F'(v, 2) = Py(v, 2) + Pi(v, 2)g{™ " + Py(v, z)g*¢Hm=V
oot Py (U, z)qm—lc(m—l)(mwl)
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These equations have the form

1 1 ‘e 1 PO F’(v, z)
¢ ¢? TR S Pig F'(v; z)
1 CZ C4 .. CZ(m—l) quz — F’(‘U, z)
1 Cm_l C?(m—l) .. C(m—l)2 Pm_lqm—l F’(‘U, z)

Since the coefficient matrix is a Vandermonde matrix with nonzero de-

terminant there is a unique solution to the system of equations which is

Pa(v, 2) = F'(v, z}, P, =0fori > 0. Thus, F/(v, z) is a polynomial in v

and z. [ ]
An immediate consequence of lemma 6 is

Lemma 7. Let H be a closed subgroup of the compact abelian Lie
group G with dimension G = 1+ dimension H and G/H =~ S!. There
15 a functor indfl() from the category of (nonsingular) real algebraic
H —varieties and regular H —equivariant maps to the category of (non-
singular) real algebraic G—varieties and regular G —equivariani maps.

Remark 2. Lemma 6 also applies to the case in which F is an
H —invariant real or complex function. Hence we have another corollary
of lemma 6.

Lemma 8. Let H be a closed subgroup of the compact abelian Lie group
G with dimension G = 1+ dimension H,G/H ~ S!. There is a functor
indg() from the category of (nonsingular) real algebraic H —varieties
and H —equivariant entire rational maps to the category of (nonsingular)
real algebraic G—varieties and (G—equivariant entire rational maps.

Remark 3. Choices were made in defining indg(X); there was a choice
as to the extension to G of a linear action of H on the vector space V/
in lemma 3 and there was a choice made in the “composition series”
H=Gy,CGy C...Gp C Ginlemma 1. For any H—variety X
the identity map ¢ : X — X is an H —equivariant regular map and if
ind$(X) and ind$ (X)' are the varieties that result from two different
choices of extension in lemma 3 there are regular G—equivariant maps
ind$(3) : ind%(X) = indG(X), ind% (@) : indG(X) — ind§(X) by
lemma 6 with ind$(2)'? ind$ (i) and ind$(:)° ind§(¢)’ the identity so
that the result is, in fact, unique. It is a priori possible that different
choices in lemma 1 might lead to different functors.
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The proof of the theorems is now complete.
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