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An approach to shape covering maps.

. POP

Abstract

In this note we give an approach to shape covering maps which
is comparable to that of *—fibrations [5}. The introduced notion
conserves some important properties of usual covering maps.

1 Introduction

in [2] D.S. Coram and P.F. Duvall, Jr. introduced the notion of approxi-
mate fibration and showed that several important properties of Hurewicz
fibrations carry over, with suitable modifications, to approximate fibra-
tions. Coram and Duvall proved, for example, that the fibers are FANRs
and that if the base space is path connected then all the fibers have the
same shape.

In [5,6] S. Mardesi¢ and T.R. Rushing introduced the notion of shape
fibrations. Shape fibrations are defined in the spirit of the ANR-sequence
approach to shape theory. It is shown that shape fibrations coincide
with approximate fibrations whenever the base space and total space
arc ANR's.

Recently, A. Giraldo [3] and A. Giraldo and J.M.R. Sanjurjo [{] have
given an intrinsic description of shape fibrations with the near lifting of
near multivalued paths property.

The multifibrations introduced by these authors represent a formally
stronger concept than that of shape fibration.

Because the theory of covering maps appears much richer in geo-
metric content than that of Hurewicz fibrations we consider to he very
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appealing to have a comparable theory of shape covering maps.

In this paper we define a notion of shape covering map which is
comparable to that of *—fibration.

At first we recall from [5,6] some notions and properties concerning
x—fibrations and shape fibrations.

We consider inverse sequences (towers) £ = (E;,qi;), B = (Bi,ri;)
of metric compacta (called for short compact sequences). If all E; and
B; are compact ANR’s we speak of ANR-sequences. A level preserving
map of sequences (abbreviated as level map) p: £ — B is a sequence of
maps p = (p;), where p; : E; — B;, and for every i and every j > 1 the
following diagram commutes

(1) pi | 1 »

Definition 1. [5] A level map p : E — B has the homotopy lifting
property (H LP) with respect to a space X provided that each i admits a
J 2t such that for any maps h; : X — E;, Hj: X x [ — B; with

(2) pih; = Hjo,

there ezists a homotopy H; : X x I — E; with

(3) Hy = gi;h; and

(4) pilH; =ri;H;.
Every such j is called a lifting indez for 1.

Definition 2. [7] Let p: E — B be a level map of compact sequences.
Let Ijﬂ] E = (F,q) and i*if_l B = (B,r)), where ¢; : E ~» E; and
ri : B — B; are the natural projections. The unique mapp: E — B
such that for every i the following diagram commutes

E; ¢~ E
(5) i | l »
B, & B

is said to be induced by p or to be the limil of P
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Definition 3. [5] A map between metric compacta p : E —s B is called
a x—fibration provided it is induced by a level mapp: £ — B between
compact sequences satisfying the HLP with respect to any melric space
X and the lifting indez does not depend on X.

If E and B are required to be compact ANR-sequences and if the
HLP for p is replaced with the AHLP (approximate homotopy lifting
property) which means that each i and each £ > 0 admit a 5 2 i such
that (2) and (3) imply

(6) d(p:Hi,ri; H;) < g,

then p: E — B is called a shape fibration.
In [5] it is proved that every shape fibration p : £ —3 B between
metric compacta is a *—fibration but the converse is false.

2 A characterization of x—fibrations

We give a characterization of +fibrations by analogy with the case of
Hurewicz fibrations.

For a level map p = (pi) : E = (Ei,qi5) — B = (Bi,rij) be-
tween metric compacta and for an index i, we consider the space D; =
{(e;,wi) € By x B! | piles) = w;(0)}.

Then, for § > i, we can define a map d;; : D; — D; by d;;(e;,w;) =
(gij{e;),rijw;} and then we obtain an inverse sequence D = (D; d;;).
On the other hand, we can consider the inverse sequence E'= (E‘-’, €ij},
with e;; : EJI — E! given by e;;(8;) = ¢:;0; for j > 1.

Definition 4. A lifting morphism for a level map p = (pi} : E =
(E:, qi;) — B = (Bi,ri;) is a morphism of inverse systems

(7) A=(\j):D— E',  where

(8) Aij i Dj — Ef, for a j > t, and satisfying
(9) Aij(ej,w;)(0) = gij{e;), and

(10) pidijlej,wi) = rijw;, for any (e;,w;) € D;.

We say that p has an approximate lifting morphism if each ¢ and
each € > 0 admit an index j and a map A;; : D; — E/ such that the
function i —» j and the maps A;; define a morphism of inverse system
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from D to Bl satisfying the condition (9} and
(11} d(pidij(ej,w;) rijw;) < e for any (ej,w;) € Dj.

Theorem 1. Let p : E — B be a map belween metric compacta
induced by a level map p: E — B between compact sequences. Then p
ts @ «-fibration if and only if p has a lifting morphism.

Proof. Suppose that p has a lifting morphism. For an index ¢, de-
note by j the index from Definition 4 corresponding to 7. Let X be
an arbitrary space and two maps h; : X — E;, H; @ X x 1 —
B; with H;(z,0) = p;h;(z), (V)r € X. For z € X, define wj(z) :
I' — Bj by w;{z)(t) = Hj(z,t). Then we have w;(z)(0) = H;(z,0) =
pihj(z) and therefore p;(qi;h;(z)) = ri;(pshj(z)) = (ri;H;)(=,0). Hence

(¢ijh;(z), ri;(w;(z))) € D; and we can define H; : X x [ — £ by
Hi(z, t) = Aij(h;(z),w;(2))(t). For this we have: Hy(z,0) = gijh;{z} and
pilli(z,t) = pidij(h;(z), wi(z)) (1) = pidi; (hy(2),wi(2))(t) = rijw;(x) =
ri;H;(z,t). Then p: E — B has the HLP with respect to X and
therefore p: E —» B is a —fibration.

Conversely, suppose that p: E — B is a *—fibration. For an index
i, denote by j > 1 its corresponding index by Definition 1. We can
consider the maps hj : D; — FE; given by h;((ej,w;)) = e; and H; :
D; x [ — Bj with Hj((ﬂj,wj),t) = wj(t).

For these maps we have Hj((¢;,w;},0) = w;(0) = p(e;) =
pjhj((gj,wj)). Then, by hypothesis, there exists H; Dy x I —
with Hi((ej,w;)),0} = qijhilej,w;) = gisle;) and pifi((e;,w;),t)
r',-jHj((ej,wj),!.) = 7‘,']‘L|.Jj(t). Define /\;j D, — Eil by /\,'j((ej:wi))(l) =
Ht-((ej,wj),t.). Then:~ A,’j((t’:j,wj'))(()) = H,'((Ej,w]'),ﬂ) = q,'j((ij) and
pidijle;,wi)(t) = piHi((ej,w;), 1} = rijw;(t). This proves that the Xj;
define a lifting morphism for p.

Analogously we can prove:

It

Theorem 2. Let p : E — B be a map between metric compucta
induced by a level map p: k£ — B.of ANR-sequences. Then p is a
shape fibration if and only if p_has an approzimate lifting morphism.

-3 Shape covering maps

Definition 5. A map between metric compacta p : £ — 3 is called
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a shape covering map provided it is induced by a level map p = {p;) :
E = (F;,qi;) — B = (B, ;) between compact sequences satisfying
the following condition:

For every space B; there exists an open cover U; such that j > 1
implies ri;(U;) C U; (i.e. ri;(U;) € U; for any U; € Uj)!, for U € U;
we have pi_l(U,-) = UU; a disjoint union of open subset of £; and each i
admits a j > i with the property that p; | qal(ﬁ;) : qal(l—};) —3 r‘-_j‘(U,-)
is a homeomorphism.

Remark 1. Easily follows that a shape covering map is surjective.

Remark 2. Obviously, if p; : E; — B; are covering maps for any index
1, then lim p; is a shape covering map.
—

Corollary 1. If p: E — B is a shape covering map, then any of ils
fibers p~1(b) is a discrete subspace of E.

Proof. Choose an index ¢ and let 7 > ¢ be as in Definition 5. We
can prove that p~!(b) N q;l(q'-}l(U‘-)) consists of a single point. In-
deed, if we suppose that e;,e; € p~1{B) N qj'l(qa-l(ﬁ,-)) then we have

pler) = plez) = b and g;(er), gj(e2) € g5' (Ui). But pjgj(er) = rjpler) =
rip(e2) = p;g;(e2) and this implies g;{e;) = g;(e2).

Then gi(e1) = qi;q;(e1) = qi;q;(e2) = gi(e2). Because this equality
holds for each index 1, we have e; = e;.

Theorem 3. Lefi p: E — B be a shape covering map and f,g: X —
F two maps which are liftings of the same map (i.e. pf = pg). Then if
the space X is connected and if the maps f and g coincide in a point of
X, it follows the equality f = g.

Proof. Consider an arbitrary fixed index ¢ and let j > ¢ be the index
correspoding Lo i by Definition 5.

Let X1 = {z € X | ¢; f(z) = q;jg(x)}. We prove that X is open in X.
If z € X1, let U; € U; containing r;(pf(z)) = ri(pg(z)) or pi{qif(z)) =
pilgig(z)) € U; and therefore ¢;(f(z)) € p; ' (U;). Then, there exists U;
such that ¢;(f(z)) € U;. This implies that gi;¢;(f(z)) € U; or ¢;(f(z)) €
qal([—;’g). Then (qjof)“(qal([j;))n(qjog)‘l(qa'((j';)) is an open set of X.

! As the referee observes, this condition can be replaced by the condition: r{{/,}
is contained in some open set of U; because later only this condition is used.
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This intersection contains z because (g;0 f)(z} = ¢;(f(z)) € q{}l (U’t) and
since « € X\, it follows (g; 0 g)(z) = (¢, f)(z) € qal(ﬁ;). Moreover, this
intersection is contained in X. Indeed, if z; belongs to this intersection,
then (4,/)(z1) € ¢5'(T0), (g;9)(s1) € g3'(T5) and pf(zr) = py(s1)
implies r;pf(z1}) = rjpg(z,) which in turn implies that p;(g; f(z1)) =
?;{g;9{z1)} and because p; | qigl (U;) is a homeomorphism, it follows that
(g;f)(z1) = (g9)(z1) and thus z; € X,. In this way we proved that X,
is an open set in X. But on the other hand, since £; is a Hausdorff
space, it follows that Xy = {z € X | ¢;f(z) # ¢,;9(z)} is also an open
set of X. Then, since X; # @ and X is a connected space, it follows that
X3 = 9. Hence ¢;f = ¢;g. Then we deduce: ¢;f = ¢ijq;f = ¢:;¢;9 = G:9
and this, by the definition of the inverse limit, implies the equality f = g.

Corollary 2. Every shape covering map has the unique lifting property.

Proof. Let p: E — B be a shape covering map. The uniqueness of the
lift of a path w: I — B follows from Theorem 3. Then ifw: [/ — B
is a path with w(0} = b and e € p~1(b), we deduce from Definition 5
that there exists for each ¢ a path &; : ] — E; such that p;&; = rw
and &;(0)} = g;(e). But the homeomorphism from Definition 5 implies
gijw; = w; for j > 1. It follows that there exists & : I — E satisfying
pi@ = w;. For this we have @(0) = ¢ and p& = w.

Theorem 4. Every shape covering map is a *-fibration.

Proof. Let p: £ — B be a shape covering map. We will prove that p is
a x—fibration by constructing for p a lifting morphism and using Theorem
1.

For an index ¢, denote by j > 7, the index correspoding to i by De-
finition 5. Let (e;,w;) € D;. Then {w;'uj)} is an open cover of the
compact metric space [ = [0, 1]. By Lebesgue’s Theorem, there exists a
division 0 =tg <t < -+ < tm = 1 such that w;j({ty_y,t]) C Usj € U;.
Hence w;([to, 81]) C Ur; and since pj(e;) = w;(0) € Uyj ==5_p;(qi;(e)) =
(ri;w;}(0). If rij(w;(0)) € Ui € Ui, then gi;(e;) € p7'(Us) and suppose
that g;;(e;) € Uy with pj|q§31(U1;) : qi}l(UH) — 1';'-1((],-) a homeomor-
phism. Denote by w;|[tx—1,tx] the path defined by (w;|[te-1,2])(t) =
wil(1 = &)tk_1 + tte] and let &y; = g5 0 (p; | 5" (Ua)) ™" o w0, 8],
We have w;f{t), t:](7) C Us;, suppose that &;;(1) € U,; and define
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@oj = Gij © (pjlqi;-l(fjg{))—l o w;ift1, t2]. We continue until W,y ; and
then we define X;;{e;,w;) = @1 * Wy; * -+ % Wy ;. Easily follows that
Aij 1 D — E! is a continuous map and then it is immediate that these
maps define a lifting morphism for p.

By Theorem 4 and by Theorem 3 from [5], we obtain:

Corollary 3. Ifp: E — B is a shape covering map, and z,y € B
can be joined by a path in B, then the fibers p~'(z) and p~!(y) have the
same shape.

Remark 3. By Corollary 1 it follows that in the conditions of Corollary
3, the fibers p~1(z) and p~!(y) have the same cardinality.

Corollary 4. If p: E — B is a shape covering map as limit of a level
map p : E — B belween compact ANR-sequences then p is a shape
fibration.

Using now Theorem 3 from [6], Corollary 1 and Corollary 5 from [7,
p.117] we deduce:

Corollary 5. Ifp : B — B is a shape covering map as limit of a
level map p: E — B between compact ANR-sequences and if e € E,
b = p(e), then the following sequence of pro-groups

(12) 0 —s pro — 7, (E, €) 2apro — m(B,b) — 0

is ezact for n > 2 and p. is a monomorphism of pro-groups for n > 1.
Corollary 6. If in Corollary 5 FE and B are compact ANR’s, then
(13) Pe T (E,e) — mn (B, 1)

is an isomorphism for n > 2 and a monomorphism for n = 1.

Corollary 7. Let p : E — B be a shape covering map, with E a path
connected space. If ey, g3 € E, then there ezists a path w in E from p(ea)
to p(ey) for which

(14) ptﬂ'l(E1el) - h[w]p*ﬂ'l (Ey62)-

Conversely, for any path w in B from p(e1) to by € B there exisls a
point eg € p~t(by) for which the above relation holds.
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Proof. Let & be a pathin E from e) toe;. Then 7, (E, ¢;) = h[;]?rl(E, ez)
and therefore p.m(E, e1) = hgp.mi (E, €2).

Conversely, for w there exists & : I — E {Corollary 2) with &(0) =
e1 and pio = w. If e = w(1), then the required relation holds.

The proof of the following theorem is a logical adaptation of the

proof of the corresponding result for covering maps [8, Theorem 5, §2,
Ch.4].

Theorem 5. Let p : E —s B be a shape covering map, € € E and
b = p(e). Let X be a connected and locally path connected space. If
f:(X,z) ~— (B,b) admits a lift f:(X,z) — (FE,¢) then

(15) (X, 2) C pury(E ).

Conversely, if p is induced by the level map p=(p)  E= (L ¢;) —
B = (B, r;;) between compact sequences such that

(16) faomi(X, z) C piami (E:, gi(e))

where f; = r;f, then f admilts a lift with respect to p: (E,e) — (B, b).

4 A construction of shape covering maps

Consider a pointed metric compact space (B, b) and suppose that this is
the limit of a pointed compact ANR-sequence B = ((B;, b;}, r;;). Let U,
be an open cover of B;. Then we can constder the group mi (U, by). We
recall that (24, b;) is the subgroup of the group =, (B;, b;) generated
by the classes of the paths (w; * wi) * wi"l, where w; is a loop situated in
a term of U; and w; is a path from b; to wi (0).

If we suppose that r;(U;) C U, for j > i, then the relation
[(wy *w;)*wj_l] € m (U5, b;) implies [(;".l-jwj*rijw;-)*(r,‘jw}-)_l] € my{ld;, b;)
and in this way we obtain an inverse sequence of groups ({4, bi), {ri;).)
and we can consider the limit IET 71 (Ui, ;). The inclusion morphisms

m1{l;, b;) — 7y (Bi, b;) induce the inclusion lim 7 (Ui, b)) = lim 7y ( By, b;)
— —
= 71 {B,b), because lim is an exact functor.

Let p: 2 —= B be a shape covering map induced by a level map
p=(pi) E=(Fiq) — B = (Bi,r;) of compact. ANR-sequences.
Let U; an open cover of B; satisfying the conditions of Definition 5.
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Then if ([w; * w!) * W) € ]*i_n_l m{Ui, rip(e)), for e € E, denote by
oy, o I —3 E; the lifts of wj,w; : I — Bj as in Definition 1. By
Definition 5, if w] is a loop situated in a term of I; then &/ is a loop in
E; and this implies that (w; * w;) * :);_l is a loop in E;. It follows that
we have

(17) lim ) (Ui, (p(e)) C P (71 (E €)),

where p. is induced by the morphism of compact ANR-sequences

2= () : ((Biqi(e)), @i;) — ((Bi, pigile), rij)-

The proof of the following theorem is very technical and long but it
is a logical adaptation of the proof of Theorem 12 from [8, Ch.2,§5).

Theorem 6. Let p: E — B be @ map between metric compacta which
is induced by a level map p: E = (Ey, qi;;) — B = (B:,ri;) of compact
ANR-sequences. Suppose that p is a +-fibration (shape fibration) with
the unique lifting property and that the spaces E, B are path connccled.
Then p is a shape covering map if and only if there exists a pointe € I
and each i admits an open cover U; of B; such that for j > 1, rij(U;) C U;
and the inclusion (17) is verified.

Theorem 7. Let B be a compact metric space so that B = lim({B;, r,)).
‘_

where B = (B, ri;) is a compact ANR-sequence with B; connecied and
locally path connected space and let b be a point of B.

Let H be a subgroup of the group 7y(B,b) and suppose that each i
admits an open cover U; such that ri;(U;} C U; andl(iLn m (U, ri(BYY C H.
Then there exists a shape covering map p: (E,e) — (B, b). induccd by
a level map p = (p)) 1 £ = (B, €i)), 4i5) — ((Bi, (b)), ri;) of pointed
compact ANR -sequences, such that p.7(E,e) = H.

Proof. #,{3,b) = l‘it_n 7 (Bi, (D)), for r; : B — B, the inverse canon-

ical projections. Then for each 7, (ry).(H) is a subgroup of the group
71 (B;, 7 (b)) and, by hypothesis, each 7 admits j > 7 such that

(18} (rig}emi (U5, 5 (D)) C (re)u(H).

[f wy, wi are two paths in B; with w;{0) = WH(0) = ri(b). we put w, ~wiif
w;i(1) = wi(1) and [w; *w’l_'] € (r:;).({f}. This is an equivalence relation.

99
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The equivalence class of a path w; is denoted by {w;) and we consider
the set E; of all these classes. A topology on E; can be considered in
the following way: if D; is an arbitrary open set in B; and if w; is a path
from r;(b) at a point of D, then we consider the following subset of Ej,

{wiy D) = {{wi + o) | (0) = w;(1),'() C D;}.

Then {{w;, Di) | Di an open set of B;, w; a path in B;, w;(0) = r;(b)
and w;(1) € D;} is a base for a topology on the set E;. With respect
to this topology E; is a compact ANR. This fact follows using Theorem
5.1 from [1, Ch.1V, p.88]. For j > i, we define ¢;; : E; — E; by
gi; ({w;)) = {ri;w;) and in this way we obtain a compact ANR-sequence
E = (E;, ¢i;). Also we can define the maps p; : E; — B; by p;({(w;}) =
w;(1) which are continuous. Indeed, if D; is an open set of B;, then
pi_I(D;) D {wi, Di), where {(w;) € pfl(D;). The map p; is also open
because p;({w;, D;)) is a path component of the set D; which contains
wi(1) and since B; is a locally path connected space, this component is
an open set. The sequence p = (p;} : E = (E;,q;;) — B = (B;,ry) is
a level map of compact ANR-sequences and we consider p:E— B
the map induced by p. Now it is immediate that p: E — B is a shape
covering map. Indeed, if 4! = {V; | V; a path-component of an U; € U}.
We have p7'(V;) = Uiwiyer= (Vi) (w;, V) and then U! are open covers of
B; satisfying with respect to p : E. — B the conditions of Definition 5.
This proves that p: £ —3 B is a shape covering map.

By Definition 5 and by analogy with the calculations made in the
proof of Theorem 13 from [8, Ch.2, §5] we deduce the equality
(pi)-(g:5)em1(E;, g;(e)) = (ri)o(H) if j corresponds to ¢ by Definition 5.
By this and because #,(F,e) = !{iﬂ;(wl(Ej, g;{(€)), (¢i5).), we obtain the
required equality p, (7{E,e)) = H.

Example. Let B be a compact metric space which is the limit B =
l‘iLn B for a compact ANR-sequence B = (B;, ri;} and suppose that the

projections r; : B — B; are open maps (see for example the Hawaiian
earring or the Overton-Segal star construction [8, p.184-185)). If for a
point b € B and an open cover &/ of B we have 7 (U, b} C H C #1(B,b),
then the open covers r;(I{} satisfy the conditions from Theorem 7 and the
shape covering map p : E — B is induced by a sequence of covering
maps p; @ By — By, with (p;).71(E;, gi(e)) = (r:).(H), for a point
e € p~l(b).
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