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AN EXTENSION OF SIMONS’ INEQUALITY

AND APPLICATIONS∗

Robert DEVILLE and Catherine FINET

Abstract

This article is devoted to an extension of Simons’ inequality.
As a consequence, having a pointwise converging sequence of func-
tions, we get criteria of uniform convergence of an associated se-
quence of functions.

I Introduction

Simons’ inequality is a useful tool in Banach space geometry. Simons
has observed in [S1] that this inequality allows to prove that if (fn) is
a uniformly bounded sequence of real valued continuous functions on
a compact space which converges pointwise to a continuous function g,
then there is a sequence of convex combinations of the fn’s that converges
uniformly to g. Later, Godefroy ([G]) found other applications of this
inequality (see also [FG] and [GZ]). And more recently, Acosta and
Galán ([AG]) improved James theorem in the case of smooth Banach
spaces. Our main result is the following extension of Simons’ inequality
[S1]. We believe that this extension may have applications in non linear
analysis.
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II. Main result

Theorem 1. Let B be a set and C be a non empty subset of a lin-
ear normed space that is stable with respect to taking infinite convex
combinations. Let f : C × B → R be a bounded function such that
the mappings x → f(x, b) are convex and Lipschitz continuous, with a
Lipschitz constant independant of b. Let us also assume that

(�)
{

for every x ∈ C there is a b ∈ B such that
f(x, b) = supβ∈B f(x, β)

Then if (xn)n is a sequence in C, we have

inf
x∈C

sup
β∈B

f(x, β) ≤ sup
β∈B

lim sup
n

f(xn, β).

In particular, if we take as C a certain subset of �∞(B), the Banach
space of all bounded real functions on B, we get the “classical” Simons’
inequality.

Corollary. (Simons’ inequality). Let B be a set and C be a non empty
bounded subset of �∞(B) that is stable with respect to taking infinite
convex combinations. Let us assume that for every x ∈ C, there is a
b ∈ B such that

x(b) = sup
β∈B

x(β)

Then if (xn) is a sequence in C, we have

inf
x∈C

sup
β∈B

x(β) ≤ sup
β∈B

lim sup
n

xn(β)

Let us now discuss the assumption “C is stable by taking infinite convex
combinations”. This assumption is clearly satisfied if C is a closed con-
vex subset of a Banach space. On the other hand, it is always satisfied
by bounded convex subsets of a finite dimensional vector space V . This
can be proved by induction. Indeed, this is clear if the dimension of the
space is equal to 1. We can assume that 0 ∈ C. C satisfies one of the
following conditions: either C is contained in a linear proper subspace of
V or C has non empty interior. In the first case, the statement follows
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from our assumption. If C has non empty interior, let us assume that
the result holds for vector spaces of dimension ≤ n. Let C be a bounded
convex subset of a vector space V of dimension n + 1. Let us assume

that there exist points xn in C and scalars λn > 0 such that
+∞∑
n=1

λn = 1

and
+∞∑
n=1

λnxn /∈ C. By Hahn-Banach Theorem, there exists ϕ ∈ V ∗ such

that

ϕ

(
+∞∑
n=1

λnxn

)
= 1 and ϕ(x) ≤ 1 for x ∈ C

There exists n0 such that ϕ(xn0) < 1. Indeed, otherwise the induction
hypothesis would not be satisfied for the convex C ∩ {ϕ = 1}. But

ϕ

(
+∞∑
n=1

λnxn

)
=

+∞∑
n=1

λnϕ(xn) < 1

and this gives us a contradiction.

Looking at the extension of Simons’ inequality we got, it is natural to
recall a Min-Max Theorem (see [A], see also [S2]) and to compare both
results. Recall that if C is a convex subset of a vector space V , the
finite topology on C is the strongest topology for which, for each n
and for each n-uple K = (y1, y2, ..., yn) of elements in C, the mappings
fK : C+

n → C defined by fK(λ1, λ2, ..., λn) =
∑n

i=1 λiyi are continuous,
where C+

n is the set of all (λ1, λ2, ..., λn) ∈ R
n such that λi ≥ 0 for all i

and
∑n

i=1 λi = 1.

Min-max theorem. Let B be a compact space and let C be a convex
subset of a vector space V , supplied with the finite topology.
Assume that

i) for all x ∈ C, b → f(x, b) is upper semicontinuous on B,

ii) for all b ∈ B, x → f(x, b) is convex.

Then there exists b0 ∈ B such that

inf
x∈C

f(x, b0) = sup
b∈B

inf
x∈C

f(x, b) = sup
c∈C(C,B)

inf
x∈C

f(x, c(x)).
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where C(C,B) denotes the space of continuous functions from C to B.

The authors conjecture that this Min-Max Theorem should be deduced
from Theorem 1.

Proof of theorem 1. Let us consider, for x in C, σ(x) = sup
b∈B

f(x, b)

and let us put,

m = inf {σ(x), x ∈ C}
M = sup {σ(x), x ∈ C} .

Since f is bounded on C × B, we have −∞ < m ≤ M < ∞. Let (xn)n

be a sequence in C and put

Cp = conv {xn, n ≥ p} .

We can assume m > 0. Let 0 < δ < m. Let (ap) be a sequence such that
0 < ap ≤ 1,

∑
p≥1

ap = 1 and
∑
p>n

ap ≤ δ
M an, and let (εn) be a sequence

such that

0 < εn ≤ an+1(an + an+1)
2An+1

δ.

where An =
∑

1≤p≤n
ap.

Let y1 ∈ C1 be such that σ(y1) ≤ inf
y∈C1

σ(y) + ε1.

If y1, y2, . . . , yn−1 have been chosen, we write zn−1 =
n−1∑
k=1

akyk and take

yn in Cn such that

σ

(
zn

An

)
≤ inf

y∈Cn

σ

(
zn−1 + any

An

)
+ εn,

Now, put z =
∑
p≥1

apyp. Clearly, z ∈ C, so, by assumption, there exists

b in B such that, f(z, b) = σ(z). Since

z = An−1
zn−1

An−1
+ anyn +

(∑
p>n

ap

) ∑
p>n

apyp∑
p>n

ap
,
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by convexity of f with respect to the first variable, we get :

f(z, b) ≤ An−1f

(
zn−1

An−1
, b

)
+ anf(yn, b) +

(∑
p>n

ap

)
f

⎛
⎜⎝
∑
p>n

apyp∑
p>n

ap
, b

⎞
⎟⎠ .

Therefore,

anf(yn, b) ≥ σ(z) − An−1σ

(
zn−1

An−1

)
−
∑
p>n

apM

Hence, by the choice of (an),

(1) anf(yn, b) ≥ σ(z) − An−1σ

(
zn−1

An−1

)
− δan.

Since f is Lipschitz continuous with respect to the first variable, with
Lipschitz constant independent of the second variable, σ is Lipschitz
continuous. Therefore, since lim

n
An = 1, then lim

p
σ
(

zp

Ap

)
− σ(zp) = 0,

and so σ(z) = limp Apσ
(

zp

Ap

)
, and

σ(z) − An−1σ

(
zn−1

An−1

)
=
∑
p≥n

[
Apσ

(
zp

Ap

)
− Ap−1σ

(
zp−1

Ap−1

)]

≥
∑
p≥n

([
Ap−1

(
σ

(
zp

Ap

)
− σ

(
zp−1

Ap−1

))]
+ apm

)
.

Let us put Δp = σ
(

zp

Ap

)
− σ

(
zp−1

Ap−1

)
. The following lemma will lead us

to a good estimate of
∑
p≥n

Ap−1Δp. We will give the proof of this lemma

after the end of the proof of the theorem.

Lemma. We have, for every n ≥ 2, Δn ≥ −anδ.

It follows from the lemma that∑
p≥n

Ap−1Δp ≥ −δ
∑
p≥n

Ap−1ap ≥ −δ
∑
p≥n

ap
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Therefore,

σ(z) − An−1σ

(
zn−1

An−1

)
≥
∑
p≥n

ap(m − δ) ≥ an(m − δ).

This estimate and (1) yield

f(yn, b) ≥ m − 2δ.

As yn ∈ Cn, by convexity of f in the first variable, for each n there exists
k(n) ≥ n such that f

(
xk(n), b

) ≥ m − 2δ. So, sup
b

lim supn f(xn, b) ≥
m − 2δ, for all δ > 0. Thus the theorem is proved.

We now give the proof of the lemma:

Proof of the lemma. We first claim that : Δ2 ≥ −ε1 and for n > 2,
Δn+1 ≥ γnΔn − 2εn, where γn = an+1

an

An−1

An+1
.

Indeed, Δ2 = σ

(
z2

A2

)
− σ

(
z1

A1

)
. As z2

A2
∈ C1, z1

A1
= y1, by definition

of y1, Δ2 ≥ −ε1.

Let rn =
an+1

an
and y =

yn + rnyn+1

1 + rn
. Since y ∈ Cn, by the choice of zn

it holds

σ

(
zn

An

)
≤ σ

(
zn+1 + rnzn−1

An (1 + rn)

)
+ εn.

We have An (1 + rn) = An+1 + An−1rn, so

σ

(
zn

An

)
≤ σ

(
An+1

zn+1

An+1
+ rnAn−1

zn−1

An−1

An+1 + rnAn−1

)
+ εn.

And, by convexity,

(An+1 + rnAn−1)σ
(

zn

An

)
≤ An+1σ

(
zn+1

An+1

)
+ rnAn−1σ

(
zn−1

An−1

)
+(An+1 + rnAn−1)εn.

This inequality can be rewritten as follows :

An+1

[
σ

(
zn+1

An+1

)
− σ

(
zn

An

)]
≥ rnAn−1

[
σ

(
zn

An

)
− σ

(
zn−1

An−1

)]
− (An+1 + rnAn−1)εn
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finally we get that

Δn+1 ≥ rn
An−1

An+1
Δn −

(
1 + rn

An−1

An+1

)
εn ≥ γnΔn − 2εn

this proves the claim.

The lemma then follows easily by induction from the claim and from the
choice of the sequence (εn).

III Applications

In this section, we present some applications of Theorem 1 which cannot
be deduced from Simons’ inequality. Recall that the convex hull of a

sequence (xn) is the set of finite combinations
N∑

n=1

λnxn with λn ≥ 0 for

all n and
N∑

n=1

λn = 1.

Theorem 2. Let B be a set, X be a Banach space, C be a closed
convex subset of X and f : C × B → R be a bounded function such that
the mappings x → f(x, b) are convex and Lipschitz continuous, with a
Lipschitz constant independent of b. Let us assume that for every x ∈ C
there exists a b ∈ B such that

f(x, b) = sup
β∈B

f(x, β)

If (xn) is a sequence in C such that for every β ∈ B, f(xn, β) ≥ 0 and
lim
n

f(xn, β) = 0, then, for all ε > 0, there exists x in the convex hull of

the sequence (xn) such that

sup
β∈B

f(x, β) ≤ ε
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Of course, when f takes values in the positive real numbers, if for every
β ∈ B, f(xn, β) converges pointwise to 0, the conclusion of Theorem 2
is that there exists a sequence (yn) of convex combinations of (xn) such
that f(yn, β) converges to 0 uniformly with respect to β.

Proof. Indeed, we have sup
β∈B

lim sup
n

f(xn, β) = 0. Let us denote C̃ the

closed convex hull of the sequence (xn). Theorem 1 shows that

inf
x∈C̃

sup
β∈B

f(x, β) ≤ 0

Since the convex hull of the sequence (xn) is dense in C̃, the above
inequality and the Lipschitz continuity of f with respect to the first
variable imply Theorem 2.

If we take B = N in the above theorem, we get the following result.

Corollary. Let C be a closed convex subset of a Banach space X and
(fn) be a sequence of convex continuous functions from C to R, which
is uniformly bounded and uniformly Lipschitz on C. Let us assume that
for every x ∈ C there exists a n0 ∈ N such that

fn0(x) = sup
n

fn(x)

If (xn) is a sequence in C such that for every p ∈ N, fp(xn) ≥ 0 and
lim
n

fp(xn) = 0; then, for all ε > 0, there exists x in the convex hull of

the sequence (xn) such that

sup
p∈N

fp(x) ≤ ε

Remark. The hypothesis of the convexity of (fn) cannot be dropped.
Indeed, consider X = R, fn(x) = inf {(x + n)+, 1} and a sequence (xn)
tending to −∞. On the other hand, if you take fn(x) = (x + n)+, you
see that the hypothesis of the uniform boundedness of the sequence (fn)
also cannot be dropped.

Let us recall the following result (see [S1, Corollary 10]). Let K be a
compact space and (fn)n be a uniformly bounded sequence of continuous
functions on K. If the sequence (fn) converges pointwise to zero on K
then it converges weakly to zero.
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We now give a vector-valued extension of this result.

Proposition. Let K be a compact space, X be a Banach space and
(fn)n be a uniformly bounded sequence of continuous functions from K
to X. If the sequence (fn) converges pointwise to 0 on K then there ex-
ists a sequence of linear convex combinations of (fn) which is uniformly
convergent on K.

Proof. Let us denote C the closed convex hull of the functions fn in
the Banach space C(K, X) of continuous functions from K into X. The
function F : C × K → R defined by F (f, x) := ‖f(x)‖X is bounded,
convex and continuous with respect to the first variable, and, for every
f ∈ C, there exists x ∈ K such that ‖f(x)‖X = supy∈K ‖f(y)‖X . By
assumption, sup

x∈K
lim sup

n
‖fn(x)‖X = 0. According to Theorem 1,

inf
f∈C

sup
x∈K

‖f(x)‖X ≤ 0

This proves the proposition.

Let us mention that, by a remark of the referee, this result is also a
consequence of Simon’s inequality. The subset K × BX∗ is a boundary
of C(K, X). If (fn) converges pointwise to zero on K, it converges
pointwise on the boundary and so, it converges weakly to zero.
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