ON THE SINGULAR NUMBERS FOR SOME INTEGRAL OPERATORS

A. MESKHI

Abstract

Two-sided estimates of Schatten-von Neumann norms for weighted Volterra integral operators are established. Analogous problems for some potential-type operators defined on \mathbb{R}^{n} are solved.

Let H be a separable Hilbert space and let $\sigma_{\infty}(H)$ be the class of all compact operators $T: H \rightarrow H$, which forms an ideal in the normed algebra \mathbb{B} of all bounded linear operators on H. To construct a Schattenvon Neumann ideal $\sigma_{p}(H)(0<p \leq \infty)$ in $\sigma_{\infty}(H)$, the sequence of singular numbers $s_{j}(T) \equiv \lambda_{j}(|T|)$ is used, where the eigenvalues $\lambda_{j}(|T|)$ $\left(|T| \equiv\left(T^{*} T\right)^{1 / 2}\right.$) are non-negative and are repeated according to their multiplicity and arranged in decreasing order. A Schatten-von Neumann quasinorm (norm if $1 \leq p \leq \infty$) is defined as follows:

$$
\|T\|_{\sigma_{p}(H)} \equiv\left(\sum_{j} s_{j}^{p}(T)\right)^{1 / p}, \quad 0<p<\infty,
$$

with the usual modification if $p=\infty$. Thus we have $\|T\|_{\sigma_{\infty}(H)}=\|T\|$ and $\|T\|_{\sigma_{2}(H)}$ is the Hilbert- Schmidt norm given by the formula

$$
\begin{equation*}
\|T\|_{\sigma_{2}(H)}=\left(\iint\left|T_{1}(x, y)\right|^{2} d x d y\right)^{1 / 2} \tag{1}
\end{equation*}
$$

for an integral operator

$$
T f(x)=\int T_{1}(x, y) f(y) d y
$$

We refer, for example, to [2], [6], [7] for more information concerning Schatten-von Neumann ideals.

2000 Mathematics Subject Classification: 26A33, 42B15, 47B10, 47G10.
Servicio de Publicaciones. Universidad Complutense. Madrid, 2001

In this paper necessary and sufficient conditions for the weighted Volterra integral operator

$$
K_{v} f(x)=v(x) \int_{0}^{x} f(y) k(x, y) d y, \quad x \in(0, a)
$$

to belong to Schatten-von Neumann ideals are established, where v is a measurable function on $(0, a)(0<a \leq \infty)$.

Two-sided estimates of Schatten-von Neumann p-norms for the weighted Riemann-Liouville operator

$$
R_{\alpha, v} f(t)=v(x) \int_{0}^{x} f(t)(x-t)^{\alpha-1} d t
$$

when $\alpha>1 / 2$ and $p>1 / \alpha$, were established in [13] (for $\alpha=1$ and $p>1$ see [14]). Analogous results for the weighted Hardy operator

$$
H_{v, u} f(x)=v(x) \int_{0}^{x} u(y) f(y) d y
$$

were obtained in [3]. Similar problems for the Riemann-Liouville operator with two weights

$$
R_{\alpha, v, u} f(x)=v(x) \int_{0}^{x} u(t) f(t)(x-t)^{\alpha-1} d t
$$

when $\alpha \in \mathbb{N}$ and $p \geq 1$, were solved in [4]. Further, upper and lower bounds for Schatten-von Neumann p-norms $(p \geq 2)$ of certain Volterra integral operators, involving $R_{\alpha, v, u}$ only for $\alpha \geq 1$, were proved in [4] and [18].

Our main goal is to generalize the results of [13] and [14] for integral transforms with kernels and to give two-sided estimates of the above-mentioned norms for these operators in terms of their kernels.

We denote by $L_{w}^{p}(\Omega), \Omega \subseteq \mathbb{R}^{n}$, a weighted Lebesgue space with respect to the weight w defined on Ω.

Throughout the paper the expression $A \approx B$ is interpreted as $c_{1} A \leq$ $B \leq c_{2} A$ with some positive constants c_{1} and c_{2}.

Let us recall some definitions from [10] (see also [8]).
We say that a kernel $k:\{(x, y): 0<y<x<a\} \rightarrow \mathbb{R}_{+}$belongs to $V(k \in V)$ if there exists a positive constant d_{1} such that for all x, y, z with $0<y<z<x<a$ the inequality

$$
k(x, y) \leq d_{1} k(x, z)
$$

holds. Further, $k \in V_{\lambda}(1<\lambda<\infty)$ if there exists a positive constant d_{2} such that for all $x, x \in(0, a)$, the inequality

$$
\int_{x / 2}^{x} k^{\lambda^{\prime}}(x, y) d y \leq d_{2} x k^{\lambda^{\prime}}(x, x / 2), \quad \lambda^{\prime}=\frac{\lambda}{\lambda-1} .
$$

is fulfilled.
For example, if $k_{1}(x)=x^{\alpha-1}$, where $\frac{1}{\lambda}<\alpha \leq 1$, then $k(x, y)=$ $k_{1}(x-y)$ belongs to $V \cap V_{\lambda}$ (for other examples of kernel k see [10], [8]).

First we investigate the mapping properties of K_{v} in Lebesgue spaces.
The following statements in equivalent form were proved in [10] (see also [8], [11]).

Theorem A. Let $1<p \leq q<\infty, a=\infty$ and let $k \in V \cap V_{p}$. Then
(a) K_{v} is bounded from $L^{p}(0, \infty)$ into $L^{q}(0, \infty)$ if and only if

$$
D_{\infty} \equiv \sup _{j \in \mathbb{Z}} D_{\infty}(j) \equiv \sup _{j \in \mathbb{Z}}\left(\int_{2^{j}}^{2^{j+1}} k^{q}(x, x / 2) x^{q / p^{\prime}}|v(x)|^{q} d x\right)^{\frac{1}{q}}<\infty .
$$

Moreover, $\left\|K_{v}\right\| \approx D_{\infty}$.
(b) K_{v} acts compactly from $L^{p}(0, a)$ into $L^{q}(0, a)$ if and only if $D_{\infty}<$ ∞ and $\lim _{j \rightarrow+\infty} D_{\infty}(j)=\lim _{j \rightarrow-\infty} D_{\infty}(j)=0$.
Theorem B. Let $1<p \leq q<\infty, a<\infty$ and let $k \in V \cap V_{p}$. Then
(a) K_{v} is bounded from $L^{p}(0, a)$ to $L^{q}(0, a)$ if and only if

$$
D_{a} \equiv \sup _{j \geq 0} D_{a}(j) \equiv \sup _{j \geq 0}\left(\int_{2^{-(j+1) a}}^{2^{-j} a}|v(x)|^{q} k^{q}(x, x / 2) x^{q / p^{\prime}} d x\right)^{\frac{1}{q}}<\infty .
$$

Moreover, $\left\|K_{v}\right\| \approx D_{a}$.
(b) K_{v} acts compactly from $L^{p}(0, a)$ into $L^{q}(0, a)$ if and only if $D_{a}<$ ∞ and $\lim _{j \rightarrow+\infty} D_{a}(j)=0$;

Analogous problems for the Riemann-Liouville operator for $\alpha>1 / p$ were solved in [9] (For boundedness two-weight criteria of general integral operators with positive kernels see [5], Chapter 3).

Let $0<a \leq \infty, k:\{(x, y): 0<y<x<a\} \rightarrow \mathbb{R}_{+}^{1}$ be a kernel and let $k_{0}(x) \equiv x k^{2}(x, x / 2)$.

We denote by $l^{p}\left(L_{k_{0}}^{2}(0, a)\right)$ the set of all measurable functions g : $(0, a) \rightarrow \mathbb{R}^{1}$ for which

$$
\|g\|_{l^{p}\left(L_{k_{0}}^{2}(0, \infty)\right)}=\left(\sum_{n \in \mathbb{Z}}\left(\int_{2^{n}}^{2^{n+1}}|g(x)|^{2} k_{0}(x) d x\right)^{p / 2}\right)^{1 / p}<\infty
$$

if $a=\infty$ and

$$
\|g\|_{l^{p}\left(L_{k_{0}}^{2}(0, a)\right)}=\left(\sum_{n=0}^{+\infty}\left(\int_{2^{-(n+1)} a}^{2^{-n} a}|g(x)|^{2} k_{0}(x) d x\right)^{p / 2}\right)^{1 / p}<\infty
$$

if $a<\infty$, with the usual modification for $p=\infty$.
We shall need the following interpolation result (see, e.g., [19], p. 147 for the interpolation properties of the Schatten classes, and p. 127 for the corresponding properties of the sequence spaces. See also [1], Theorem 5.1.2):
Proposition A. Let $0<a \leq \infty, 1 \leq p_{0}, p_{1} \leq \infty, 0 \leq \theta \leq 1$, $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$. If T is a bounded operator from $\operatorname{lp}_{i}\left(L_{k_{0}}^{2}(0, a)\right)$ into $\sigma_{p_{i}}\left(L^{2}(0, a)\right)$, where $i=0,1$, then it is also bounded from $l^{p}\left(L_{k_{0}}^{2}(0, a)\right)$ into $\sigma_{p}\left(L^{2}(0, a)\right)$. Moreover,

$$
\|T\|_{l^{p}\left(L_{k_{0}}^{2}\right) \rightarrow \sigma_{p}\left(L^{2}\right)} \leq\|T\|_{l^{p_{0}}\left(L_{k_{0}}^{2}\right) \rightarrow \sigma_{p_{0}}\left(L^{2}\right)}^{1-\theta}\|T\|_{l^{p_{1}}\left(L_{k_{0}}^{2}\right) \rightarrow \sigma_{p_{1}}\left(L^{2}\right)}^{\theta}
$$

The next statement is obvious when $p=\infty$; and when $1 \leq p<\infty$ it follows from Lemma 2.11.12 of [15].
Proposition B. Let $1 \leq p \leq \infty$ and let $\left\{f_{k}\right\},\left\{g_{k}\right\}$ be orthonormal systems in a Hilbert space H. If $T \in \sigma_{p}(H)$, then

$$
\|T\|_{\sigma_{p}(H)} \geq\left(\sum_{n}\left|\left\langle T f_{n}, g_{n}\right\rangle\right|^{p}\right)^{1 / p}
$$

Now we prove the main results.
In the sequel we shall assume that $v \in L_{k_{0}}^{2}\left(2^{n}, 2^{n+1}\right)$ for all $n \in \mathbb{Z}$.
Theorem 1. Let $a=\infty, 2 \leq p<\infty$ and let $k \in V \cap V_{2}$. Then K_{v} belongs to $\sigma_{p}\left(L^{2}(0, \infty)\right)$ if and only if $v \in l^{p}\left(L_{k_{0}}^{2}(0, \infty)\right)$. Moreover, there exist positive constants b_{1} and b_{2} such that

$$
b_{1}\|v\|_{l^{p}\left(L_{k_{0}}^{2}(0, \infty)\right)} \leq\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, \infty)\right)} \leq b_{2}\|v\|_{l^{p}\left(L_{k_{0}}^{2}(0, \infty)\right)}
$$

Proof. Sufficiency. Note that the fact $k \in V \cap V_{2}$ implies

$$
\begin{equation*}
I(x) \equiv \int_{0}^{x} k^{2}(x, y) d y \leq c k_{0}(x) \tag{2}
\end{equation*}
$$

for some positive constant c independent of x. Indeed, by the condition $k \in V \cap V_{2}$ we have
$I(x)=\int_{0}^{x / 2} k^{2}(x, y) d y+\int_{x / 2}^{x} k^{2}(x, y) d y \leq c_{1} k_{0}(x)+c_{2} k_{0}(x)=c_{3} k_{0}(x)$.
Consequently, using the Hilbert-Schmidt formula (1) and taking into account (2), we find that

$$
\begin{gathered}
\left\|K_{v}\right\|_{\sigma_{2}\left(L^{2}(0, \infty)\right)}=\left(\int_{0}^{\infty} \int_{0}^{x} k^{2}(x, y) v^{2}(x) d x d y\right)^{1 / 2} \\
=\left(\int_{0}^{\infty} v^{2}(x)\left(\int_{0}^{x} k^{2}(x, y) d y\right) d x\right)^{1 / 2} \leq c_{4}\left(\int_{0}^{\infty} v^{2}(x) k_{0}(x) d x\right)^{1 / 2} \\
=c_{4}\left(\sum_{n \in \mathbb{Z}} \int_{2^{n}}^{2^{n+1}} v^{2}(x) k_{0}(x) d x\right)^{1 / 2}=c_{4}\|v\|_{l^{2}\left(L_{k_{0}}^{2}(0, \infty)\right)} .
\end{gathered}
$$

On the other hand, in view of Theorem A we see that there exist positive constants c_{5} and c_{6} such that

$$
c_{5}\|v\|_{l \infty\left(L_{k_{0}}^{2}(0, \infty)\right)} \leq\left\|K_{v}\right\|_{\sigma_{\infty}\left(L^{2}(0, \infty)\right)} \leq c_{6}\|v\|_{l \infty\left(L_{k_{0}}^{2}(0, \infty)\right)} .
$$

Further, Proposition A yields

$$
\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, \infty)\right)} \leq c_{7}\|v\|_{l p\left(\left(L_{k_{0}}^{2}(0, \infty)\right)\right.}
$$

where $2 \leq p<\infty$.
Necessity. Let $K_{v} \in \sigma_{p}\left(L^{2}(0, \infty)\right)$ and let

$$
\begin{gathered}
f_{n}(x)=\chi_{\left[2^{n}, 2^{n+1}\right)}(x) 2^{-n / 2} \\
g_{n}(x)=v(x) x^{1 / 2} \chi_{\left[3 \cdot 2^{n-1}, 2^{n+1}\right)}(x) k(x, x / 2) \alpha_{n}^{-1 / 2}
\end{gathered}
$$

where

$$
\alpha_{n}=\int_{3 \cdot 2^{n-1}}^{2^{n+1}} v^{2}(y) k_{0}(y) d y
$$

Then it is easy to verify that $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ are orthonormal systems. Further, by virtue of Proposition B (for $p \geq 1$) we have

$$
\begin{gathered}
\infty>\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, \infty)\right)} \geq\left(\sum_{n \in \mathbb{Z}}\left|\left\langle K_{v} f_{n}, g_{n}\right\rangle\right|^{p}\right)^{1 / p} \\
=\left(\sum_{n \in \mathbb{Z}}\left(\int_{3 \cdot 2^{n-1}}^{2^{n+1}}\left(\int_{2^{n}}^{x} 2^{-n / 2} k(x, y) d y\right) v^{2}(x) x^{1 / 2} k(x, x / 2) \alpha_{n}^{-1 / 2} d x\right)^{p}\right)^{1 / p} \\
\geq c_{8}\left(\sum_{n \in \mathbb{Z}}\left(\alpha_{n}^{-1 / 2} \int_{3 \cdot 2^{n-1}}^{2^{n+1}} 2^{-n / 2} k(x, x / 2) v^{2}(x)\left(x-2^{n}\right) x^{1 / 2} d x\right)^{p}\right)^{1 / p} \\
\geq c_{9}\left(\sum_{n \in \mathbb{Z}}\left(\alpha_{n}^{-1 / 2} \int_{3 \cdot 2^{n-1}}^{2^{n+1}} k_{0}(x) v^{2}(x) d x\right)^{p}\right)^{1 / p}=c_{9}\left(\sum_{n \in \mathbb{Z}} \alpha_{n}^{p / 2}\right)^{1 / p} .
\end{gathered}
$$

Now let

$$
f_{n}^{\prime}(x)=\chi_{\left[3 \cdot 2^{n-2}, 3 \cdot 2^{n-1}\right)}(x)\left(3 \cdot 2^{n-2}\right)^{-1 / 2}
$$

and

$$
g_{n}^{\prime}(x)=v(x) x^{1 / 2} \chi_{\left[2^{n}, 3 \cdot 2^{n-1}\right)}(x) k(x, x / 2) \beta_{n}^{-1 / 2},
$$

where

$$
\beta_{n}=\int_{2^{n}}^{3 \cdot 2^{n-1}} v^{2}(y) k_{0}(y) d y
$$

Then it is easy to verify that $\left\{f_{m}^{\prime}\right\}$ and $\left\{g_{m}^{\prime}\right\}$ are orthonormal systems. Further,

$$
\begin{gathered}
\infty>\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, \infty)\right)} \geq\left(\sum_{n \in \mathbb{Z}}\left|\left\langle K_{v} f_{n}^{\prime}, g_{n}^{\prime}\right\rangle\right|^{p}\right)^{1 / p} \\
=\left(\sum _ { n \in \mathbb { Z } } \left(\int_{2^{n}}^{3 \cdot 2^{n-1}}\left(\int_{3 \cdot 2^{n-2}}^{x}\left(3 \cdot 2^{n-2}\right)^{-1 / 2} k(x, y) d y\right)\right.\right. \\
\left.\left.\quad \times v^{2}(x) x^{1 / 2} k(x, x / 2) \beta_{n}^{-1 / 2} d x\right)^{p}\right)^{1 / p}
\end{gathered}
$$

$$
\begin{gathered}
\geq c_{10}\left(\sum _ { n \in \mathbb { Z } } \left(\beta_{n}^{-1 / 2} \int_{2^{n}}^{3 \cdot 2^{n-1}} 2^{-(n-2) / 2} k^{2}(x, x / 2) v^{2}(x)\right.\right. \\
\left.\left.\times\left(x-3 \cdot 2^{n-2}\right) x^{1 / 2} d x\right)^{p}\right)^{1 / p} \\
\geq c_{11}\left(\sum_{n \in \mathbb{Z}}\left(\beta_{n}^{-1 / 2} \int_{2^{n}}^{3 \cdot 2^{n-1}} k_{0}(x) v^{2}(x) d x\right)^{p}\right)^{1 / p}=c_{11}\left(\sum_{n \in \mathbb{Z}} \beta_{n}^{p / 2}\right)^{1 / p}
\end{gathered}
$$

where $p \geq 1$. Consequently

$$
\begin{gathered}
\left(\sum_{n \in \mathbb{Z}}\left(\int_{2^{n}}^{2^{n+1}} v^{2}(x) k_{0}(x) d x\right)^{p / 2}\right)^{1 / p} \leq\left(\sum_{n \in \mathbb{Z}}\left(\beta_{n}+\alpha_{n}\right)^{p / 2}\right)^{1 / p} \\
\leq c_{12}\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, \infty)\right)}+c_{12}\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, \infty)\right)} \\
\leq c_{13}\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, \infty)\right)}<\infty
\end{gathered}
$$

Let us now consider the case $a<\infty$. We have the following statement:

Theorem 2. Let $0<a<\infty, 2 \leq p<\infty$ and let $k \in V \cap V_{2}$. Then K_{v} belongs to $\sigma_{p}\left(L^{2}(0, a)\right)$ if and only if $v \in l^{p}\left(L_{k_{0}}^{2}(0, a)\right)$. Moreover, there exists positive constants b_{1} and b_{2} such that

$$
b_{1}\|v\|_{l^{p}\left(L_{k_{0}}^{2}(0, a)\right)} \leq\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, a)\right)} \leq b_{2}\|v\|_{l^{p}\left(L_{k_{0}}^{2}(0, a)\right)}
$$

Proof. Sufficiency. The Hilbert- Schmidt formula and the condition $k \in V \cap V_{2}$ yield

$$
\begin{gathered}
\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, a)\right)}=\left(\int_{0}^{a} v^{2}(x)\left(\int_{0}^{x} k^{2}(x, y) d y\right) d x\right)^{1 / 2} \\
\leq c_{1}\left(\int_{0}^{a} v^{2}(x) k_{0}(x) d x\right)^{1 / 2} \\
=c_{1}\left(\sum_{n=0}^{\infty} \int_{2^{-(n+1) a}}^{2^{-n} a} v^{2}(x) k_{0}(x) d x\right)^{1 / 2}=c_{1}\|v\|_{l^{2}\left(L_{k_{0}}^{2}(0, a)\right)} .
\end{gathered}
$$

In view of Theorem B (part (a)) we arrive at

$$
\left\|K_{v}\right\|_{\sigma_{\infty}\left(L^{2}(0, a)\right)} \approx\|v\|_{l^{\infty}\left(L_{k_{0}}^{2}(0, a)\right)}
$$

Using Proposition A we derive

$$
\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, a)\right)} \leq c_{2}\|v\|_{l^{p}\left(L_{k_{0}}^{2}(0, a)\right)}
$$

when $p \geq 2$.
To prove necessity we take the orthonormal systems of functions defined on $(0, a)$:

$$
f_{n}(x)=\chi_{\left[2^{-(n+1)} a, 2^{-n} a\right)}(x)\left(2^{-(n+1)} a\right)^{-1 / 2}
$$

and

$$
g_{n}(x)=v(x) x^{1 / 2} \chi_{\left[3 \cdot 2^{-(n+2)} a, 2^{-n} a\right)}(x) k(x, x / 2) \alpha_{n}^{-1 / 2},
$$

where

$$
\alpha_{n}=\int_{3 \cdot 2^{-(n+2)} a}^{2^{-n} a} v^{2}(y) k_{0}(y) d y
$$

and $n=0,1,2, \cdots$. Consequently Proposition B yields

$$
\begin{gathered}
\infty>\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, a)\right)} \geq\left(\sum_{n=0}^{+\infty}\left|\left\langle K_{v} f_{n}, g_{n}\right\rangle\right|^{p}\right)^{1 / p} \\
=\left(\sum _ { n = 0 } ^ { \infty } \left(\int_{3 \cdot 2^{-(n+2)} a}^{2^{-n} a} x^{1 / 2} v^{2}(x) k(x, x / 2)\right.\right. \\
\left.\left.\times\left(\int_{2^{-(n+1)} a}^{x}\left(2^{-(n+1)} a\right)^{-1 / 2} k(x, y) d y\right) \alpha_{n}^{-1 / 2} d x\right)^{p}\right)^{1 / p} \\
\geq c_{3}\left(\sum_{n=0}^{\infty} \alpha_{n}^{p / 2}\right)^{1 / p}
\end{gathered}
$$

If we take the following orthonormal systems:

$$
\begin{gathered}
f_{n}^{\prime}(x)=\chi_{\left[3 \cdot 2^{-(n+3)} a, 3 \cdot 2^{-(n+2)} a\right)}(x)\left(3 \cdot 2^{-(n+3)} a\right)^{-1 / 2}, \\
g_{n}^{\prime}(x)=v(x) x^{1 / 2} \chi_{\left[2^{-(n+1)} a, 3 \cdot 2^{-(n+2)} a\right)}(x) k(x, x / 2) \beta_{n}^{-1 / 2},
\end{gathered}
$$

where

$$
\beta_{n}=\int_{2^{-(n+1)} a}^{3 \cdot 2^{-(n+2)} a} v^{2}(y) k_{0}(y) d y
$$

then we arrive at the estimate

$$
\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, a)\right)} \geq c_{4}\left(\sum_{n=0}^{\infty} \beta_{n}^{p / 2}\right)^{1 / p}
$$

Finally we have the lower estimate for $\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, a)\right)}$.
Remark 1. It follows from the proof of Theorems 1 and 2 that the lower estimate of $\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, a)\right)}$ holds for $1 \leq p \leq \infty$.

Now we formulate and prove the next statement.
Proposition 1. Let $1 \leq p<\infty$. Then

$$
\|v\|_{l^{p}\left(L_{k_{0}}^{2}(0, \infty)\right)} \approx J(v, p)
$$

where

$$
J(v, p)=\left(\int_{0}^{\infty}\left(\int_{x / 2}^{2 x} v^{2}(y) k^{2}(y, y / 2) d y\right)^{p / 2} x^{p / 2-1} d x\right)^{1 / p}
$$

Proof. We have

$$
\begin{gathered}
\|v\|_{l^{p}\left(L_{k_{0}}^{2}(0, \infty)\right)}=\left(\sum_{n \in \mathbb{Z}}\left(\int_{2^{n}}^{2^{n+1}} v^{2}(x) k_{0}(x) d x\right)^{p / 2}\right)^{1 / p} \\
\leq\left(\sum_{n \in \mathbb{Z}}\left(\int_{2^{n}}^{2^{n+1}} v^{2}(x) k^{2}(x, x / 2) d x\right)^{p / 2} 2^{(n+1) p / 2}\right)^{1 / p} \\
=c_{1}\left(\sum_{n \in \mathbb{Z}}\left(\int_{2^{n}}^{2^{n+1}} v^{2}(x) k^{2}(x, x / 2) d x\right)^{p / 2} 2^{n p / 2}\right)^{1 / p} \\
\leq c_{2}\left(\sum_{n \in \mathbb{Z}} \int_{2^{n}}^{2^{n+1}} y^{p / 2-1}\left(\int_{2^{n}}^{2^{n+1}} v^{2}(x) k^{2}(x, x / 2) d x\right)^{p / 2} d y\right)^{1 / p} \\
\leq c_{2}\left(\sum_{n \in \mathbb{Z}} \int_{2^{n}}^{2^{n+1}} y^{p / 2-1}\left(\int_{y / 2}^{2 y} v^{2}(x) k^{2}(x, x / 2) d x\right)^{p / 2} d y\right)^{1 / p}=c_{2} J(v, p)
\end{gathered}
$$

To prove the reverse inequality we observe that

$$
\begin{gathered}
J(v, p)=\left(\sum_{n \in \mathbb{Z}} \int_{2^{n}}^{2^{n+1}} y^{p / 2-1}\left(\int_{y / 2}^{2 y} v^{2}(x) k^{2}(x, x / 2) d x\right)^{p / 2} d y\right)^{1 / p} \\
\leq\left(\sum_{n \in \mathbb{Z}}\left(\int_{2^{n}}^{2^{n+1}} y^{p / 2-1} d y\right)\left(\int_{2^{n-1}}^{2^{n+2}} v^{2}(x) k^{2}(x, x / 2) d x\right)^{p / 2}\right)^{1 / p} \\
\leq c_{3}\left(\sum_{n \in \mathbb{Z}} 2^{n p / 2}\left(\int_{2^{n-1}}^{2^{n}} v^{2}(x) k^{2}(x, x / 2) d x\right)^{p / 2}\right)^{1 / p} \\
+c_{3}\left(\sum_{n \in \mathbb{Z}} 2^{n p / 2}\left(\int_{2^{n}}^{2^{n+1}} v^{2}(x) k^{2}(x, x / 2) d x\right)^{p / 2}\right)^{1 / p} \\
+c_{3}\left(\sum_{n \in \mathbb{Z}} 2^{n p / 2}\left(\int_{2^{n+1}}^{2^{n+2}} v^{2}(x) k^{2}(x, x / 2) d x\right)^{p / 2}\right)^{1 / p} \leq c_{4}\|v\|_{l^{p}\left(L_{k_{0}}^{2}(0, \infty)\right)}
\end{gathered}
$$

From Theorem 1 and Proposition 1 we easily derive the following statement:

Theorem 3. Let $2 \leq p<\infty$ and let $k \in V \cap V_{\lambda}$. Then

$$
\left\|K_{v}\right\|_{\sigma_{p}\left(L^{2}(0, \infty)\right)} \approx J(v, p)
$$

A result analogous to Theorem 1 was obtained in [13] for the RiemannLiouville operator $R_{\alpha, v}$, assuming that $\alpha>1 / 2$ and $p>1 / \alpha$ (see [14] for $\alpha=1$ and $p>1$).

Let us now consider the multidimensional case. In particular, we shall deal with the operator

$$
B_{+, v}^{\alpha} f(x)=v(x) \int_{|y|<|x|} \frac{\left(|x|^{2}-|y|^{2}\right)^{\alpha}}{|x-y|^{n}} f(y) d y, \quad \alpha>0
$$

where v is a Lebesgue-measurable function on \mathbb{R}^{n} with $v \in L^{2}\left(\left\{2^{n}<\right.\right.$ $\left.|y|<2^{n+1}\right\}$) for all $n \in \mathbb{Z}$ (for the definition and some properties of $B_{+, v}$, where $v \equiv 1$, see, e.g., [16], Chapter 7, and [17], Section 29).

Let w be a measurable a.e. positive function on \mathbb{R}^{n}. We denote by $l^{p}\left(L_{w}^{2}\left(\mathbb{R}^{n}\right)\right)$ a set of all measurable functions $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ for which

$$
\|\varphi\|_{l^{p}\left(L_{w}^{2}(\mathbb{R})\right)}=\left(\sum_{k \in \mathbb{Z}}\left(\int_{2^{k}<|x|<2^{k+1}} \varphi^{2}(x) w(x) d x\right)^{p / 2}\right)^{1 / p}<\infty
$$

The next result is from [19] (pp. 127, 147).
Proposition C. Let $1 \leq p_{0}, p_{1} \leq \infty, 0 \leq \theta \leq 1, \frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$. If T is a bounded operator from $l^{p_{i}}\left(L_{w}^{2}\left(\mathbb{R}^{n}\right)\right)$ into $\sigma_{p_{i}}\left(L_{w}^{2}\left(\mathbb{R}^{n}\right)\right)$, where $i=0,1$, then it is also bounded from $l^{p}\left(L_{w}^{2}\left(\mathbb{R}^{n}\right)\right.$) into $\sigma_{p}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$.

In the sequel we shall use the notation $l^{p}\left(L_{|x|^{\beta}}^{2}\left(\mathbb{R}^{n}\right)\right) \equiv l^{p}\left(L_{\beta}^{2}\left(\mathbb{R}^{n}\right)\right)$.
First we formulate some statements concerning the mapping properties of $B_{+, v}^{\alpha}$.

Theorem C ([12]). Let $1<p \leq q<\infty, \alpha>\frac{n}{p}$. Then $B_{+, v}^{\alpha}$ acts boundedly from $L^{p}\left(\mathbb{R}^{n}\right)$ into $L^{q}\left(\mathbb{R}^{n}\right)$ if and only if

$$
F \equiv \sup _{j \in \mathbb{Z}} F(j) \equiv \sup _{j \in \mathbb{Z}}\left(\int_{2^{j}<|x|<2^{j+1}}|v(x)|^{q}|x|^{q(2 \alpha-n / p)} d x\right)^{1 / q}<\infty
$$

Moreover, $\left\|B_{+, v}^{\alpha}\right\| \approx F$.
The following result can be obtained in the same as Theorem 5 from [12], therefore we omit the proof (see also [11]).
Theorem D. Let $1<p \leq q<\infty$ and let $\alpha>\frac{n}{p}$. Then $B_{+, v}^{\alpha}$ acts compactly from $L^{p}\left(\mathbb{R}^{n}\right)$ into $L^{q}\left(\mathbb{R}^{n}\right)$ if and only if $F<\infty$ and $\lim _{j \rightarrow-\infty} F(j)=$ $\lim _{j \rightarrow+\infty} F(j)=0$.

Now we state and prove the following Theorem:
Theorem 4. Let $2 \leq p<\infty$ and let $\alpha>n / 2$. Then $B_{+, v}^{\alpha} \in \sigma_{p}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ if and only if $v \in l^{p}\left(L_{4 \alpha-n}^{2}\left(\mathbb{R}^{n}\right)\right)$. Moreover, there exist positive constants b_{1} and b_{2} such that

$$
b_{1}\|v\|_{l^{p}\left(L_{4 \alpha-n}^{2}\left(\mathbb{R}^{n}\right)\right)} \leq\left\|B_{+, v}^{\alpha}\right\|_{\sigma_{p}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)} \leq b_{2}\|v\|_{l^{p}\left(L_{4 \alpha-n}^{2}\left(\mathbb{R}^{n}\right)\right)}
$$

Proof. For sufficiency, we use the Hilbert-Schmidt formula (1) and the condition $\alpha>\frac{n}{2}$. Thus,

$$
\begin{aligned}
& \left\|B_{+, v}^{\alpha}\right\|_{\sigma_{2}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)}=\left(\int_{\mathbb{R}^{n}} v^{2}(x)\left(\int_{|y|<|x|} \frac{\left(|x|^{2}-|y|^{2}\right)^{2 \alpha}}{|x-y|^{2 n}} d y\right) d x\right)^{\frac{1}{2}} \\
& \quad \leq c_{1}\left(\int_{\mathbb{R}^{n}}|x|^{2 \alpha} v^{2}(x)\left(\int_{|y|<|x|}|x-y|^{(\alpha-n) 2} d y\right) d x\right)^{\frac{1}{2}} \\
& \quad \leq c_{2}\left(\int_{\mathbb{R}^{n}}|x|^{4 \alpha-n} v^{2}(x) d x\right)^{\frac{1}{2}}=c_{2}\left(\sum_{k=-\infty}^{+\infty} a_{k}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

where

$$
a_{k}=\left(\int_{2^{k}<|y|<2^{k+1}}|x|^{4 \alpha-n} v^{2}(x) d x\right)^{1 / 2}
$$

Moreover, using Theorem C we arrive at the following two-sided inequality:

$$
c_{3}\|v\|_{l \infty\left(L_{4 \alpha-n}^{2}\left(\mathbb{R}^{n}\right)\right)} \leq\left\|B_{+, v}^{\alpha}\right\|_{\sigma_{\infty}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)} \leq c_{4}\|v\|_{l^{\infty}\left(L_{4 \alpha-n}^{2}\left(\mathbb{R}^{n}\right)\right)}
$$

By Proposition C we conclude that

$$
\left\|B_{+, v}^{\alpha}\right\|_{\sigma_{p}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)} \leq c_{5}\|v\|_{l^{p}\left(L_{4 \alpha-n}^{2}\left(\mathbb{R}^{n}\right)\right)}, \quad 2 \leq p<\infty .
$$

Now we prove necessity. For this we take the orthonormal systems $\left\{f_{k}\right\}$ and $\left\{g_{k}\right\}$, where

$$
\begin{gathered}
f_{k}(x)=\chi_{\left\{2^{k-2}<|y|<2^{k-1}\right\}}(x) 2^{-(k-2) n / 2} \cdot \lambda_{n}^{-\frac{1}{2}}, \\
g_{k}(x)=\chi_{\left\{2^{k} \leq|y|<2^{k+1}\right\}}(x)|x|^{2 \alpha-\frac{n}{2}} v(x) \alpha_{k}^{-\frac{1}{2}} \\
\lambda_{n}=\left(2^{n}-1\right) \pi^{n / 2} / \Gamma(n / 2+1) \text { and } \\
\alpha_{k}=\int_{2^{k} \leq|x|<2^{k+1}} v^{2}(x)|x|^{4 \alpha-n} d x
\end{gathered}
$$

Then in view of Proposition B we have

$$
\begin{gathered}
\infty>\left\|B_{+, v}^{\alpha}\right\|_{\sigma_{p}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)} \geq c_{6}\left(\sum _ { k \in \mathbb { Z } } \left(\alpha_{k}^{-1 / 2} \int_{2^{k}<|x|<2^{k+1}} v^{2}(x)|x|^{2 \alpha-\frac{n}{2}}\right.\right. \\
\left.\left.\times\left(\int_{2^{k-2}<|y|<2^{k-1}} \frac{\left(|x|^{2}-|y|^{2}\right)^{\alpha}}{|x-y|^{n}} 2^{-(k-2) n / 2} d y\right) d x\right)^{p}\right)^{\frac{1}{p}} \\
\geq c_{7}\left(\sum_{k \in \mathbb{Z}} \alpha_{k}^{p / 2}\right)^{1 / p}=c_{7}\|v\|_{l^{p}\left(L_{4 \alpha-n}^{2}\left(\mathbb{R}^{n}\right)\right)}
\end{gathered}
$$

which completes the proof.
The following result is also true:
Theorem 5. Let $2 \leq p<\infty$ and let $\alpha>n / 2$. Then $B_{+, v}^{\alpha} \in \sigma_{p}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ if and only if

$$
I(v, p, \alpha) \equiv\left(\int_{\mathbb{R}^{n}}\left(\int_{\frac{|x|}{2}<|y|<2|x|} v^{2}(y)|y|^{4 \alpha-2 n} d y\right)^{p / 2}|x|^{n p / 2-n} d x\right)^{\frac{1}{p}}<\infty
$$

Moreover,

$$
c_{1} I(v, p, \alpha) \leq\left\|B_{+, v}^{\alpha}\right\|_{\sigma_{p}\left(L^{2}\left(\mathbb{R}^{n}\right)\right)} \leq c_{2} I(v, p, \alpha)
$$

for some positive constants c_{1} and c_{2}.
Proof. Taking into account Theorem 4, the statement will be proved if we show that

$$
\|v\|_{l^{p}\left(L_{4 \alpha-n}^{2}\left(\mathbb{R}^{n}\right)\right)} \approx I(v, p, \alpha)
$$

Indeed, we have

$$
\begin{aligned}
& \|v\|_{l^{p}\left(L_{4 \alpha-n}^{2}\left(\mathbb{R}^{n}\right)\right)} \leq\left(\sum_{k \in \mathbb{Z}}\left(\int_{2^{k}<|x|<2^{k+1}} v^{2}(x)|x|^{4 \alpha-2 n} d x\right)^{p / 2} 2^{(k+1) n p / 2}\right)^{\frac{1}{p}} \\
& =b_{1}\left(\sum_{k \in \mathbb{Z}_{2^{k}<|y|<2^{k+1}}} \int_{\frac{|y|}{2}<|x|<2|y|}|y|^{n p / 2-n}\left(v^{2}(x)|x|^{4 \alpha-2 n} d x\right)^{p / 2} d y\right)^{1 / p}
\end{aligned}
$$

$$
=b_{1} I(v, p, \alpha)
$$

The reverse inequality follows similarly.
Remark 2. Some results of this paper were announced in [11].
Acknowledgement. The work was supported by Grant No. 1.7 of the Georgian Academy of Sciences.

I express my gratitude to Prof. V. Kokilashvili for drawing my attention to the above-considered problems and to the referee for helpful remarks and comments.

References

[1] J. Bergh and J. Löfström, Interpolation spaces: An introduction, Grundlehren Math. Wiss., 223, Springer- Verlag, Berlin, 1976.
[2] M. Sh. Birman and M. Solomyak, Estimates for the singular numbers of integral operators. (Russian) Uspekhi Mat. Nauk. 32 (1997), No.1, 17-82. English transl. Russian Math. Surveys 32 (1977).
[3] D. E. Edmunds, W. D. Evans and D. J. Harris, Two-sided estimates of the approximation numbers of certain Volterra integral operators. Studia Math. 124 (1997), No. 1, 59-80.
[4] D. E. Edmunds and V. D. Stepanov, On the singular numbers of certain Volterra integral operators. J. Funct. Anal. 134 (1995), No. 1, 222-246.
[5] I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight theory for integral transforms on spaces of homogeneous type, Pitman Monographs and Surveys in Pure and Applied Mathematics, 92, Longman, Harlow, 1998.
[6] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators. Amer. Math. Soc. Transl. 128, Amer. Math. Society, Providence, RI, 1969.
[7] H. König, Eigenvalue distribution of comapct operators. Birkäuser, Boston, 1986.
[8] V. Kokilashvili and A. Meskhi, Boundedness and compactness criteria for some classical integral operators. In: Lecture Notes in Pure and Applied Mathematics, 213, " Function Spaces V", Proceedings of the Conference, Poznań, Poland (Ed. H. Hudzik and L. Skrzypczak), 279-296, New York, Bazel, Marcel Dekker, 2000.
[9] A. Meskhi, Solution of some weight problems for the Riemann-Liouville and Weyl operator, Georgian Math. J. 5 (1998), No. 6, 565-574.
[10] A. Meskhi, Criteria for the boundedness and compactness of integral transforms with positive kernels, Proc. Edinburgh Math. Soc. 44 (2001), 267284.
[11] A. Meskhi, On the measure of non-compactness and singular numbers for the Volterra integral operators. Proc. A. Razmadze Math. Inst. 123 (2000), 162-165.
[12] A. Meskhi, On the boundedness and compactness of ball fractional integral operators. Fractional Calculus and Applied Analysis. 3 (2000), No.1, 1330.
[13] J. Newman and M. Solomyak, Two-sided estimates on singular values for a class of integral operators on the semi-axis. Integral Equations Operator Theory 20 (1994), 335-349.
[14] K. Nowak, Schatten ideal behavior of a generalized Hardy operator, Proc. Amer. Math. Soc. 118 (1993), 479-483.
[15] A. Pietsch, Eigenlalues and s- numbers, Cambridge Univ. Press, Cambridge, 1987.
[16] B. S. Rubin, Fractional integrals and potentials. Addison Wesley Longman, Essex, UK, 1996.
[17] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives. Theory and applications. Gordon and Breach Science Publishers, London-New York, 1993.
[18] V. D. Stepanov, On the lower bounds for Schatten-von Neumann norms of certain Volterra integral operators. J. London Math. Soc. 61 (2000), No. 2, 905-922.
[19] H.Triebel, Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam, 1978 (Second ed. Barth, Heidelberg, 1995).
A. Razmadze Mathematical Institute

Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 380093
Georgia
E-mail: meskhi@rmi.acnet.ge
Recibido: 5 de Enero de 2001
Revisado: 6 de Marzo de 2001

