REVISTA MATEMÁTICA COMPLUTENSE (2002) vol. XV, num. 1, 75-84 http://dx.doi.org/10.5209/rev_REMA.2002.v15.n1.16945

ISSN 1139-1138

ON THE UNIQUENESS OF MAXIMAL OPERATORS FOR ERGODIC FLOWS

Lasha EPHREMIDZE

Abstract

The uniqueness theorem for the ergodic maximal operator is proved in the continuous case.

Let (X, \mathbb{S}, μ) be a finite measure space,

$$
\mu(X) < \infty,\tag{1}
$$

and let $(T_t)_{t>0}$ be an ergodic semigroup of measure-preserving transformations of (X, \mathbb{S}, μ) . As usual the map $(x, t) \to T_t x$ is assumed to be jointly measurable. For an integrable function $f, f \in L(X)$, the ergodic maximal function f^* is defined by equation

$$
f^*(x) = \sup_{t>0} \frac{1}{t} \int_0^t f(T_\tau x) d\tau, \quad x \in X.
$$

We claim that the following uniqueness theorem is valid for the maximal operator $f \to f^*$:

Theorem. Let $f, g \in L(X)$ and

$$
f^* = g^* \tag{2}
$$

almost everywhere. Then

$$
f(x) = g(x)
$$

for a.a. $x \in X$ (with respect to measure μ).

A slightly weaker version of the theorem is formulated without proof in [3]. The analogous theorem in the discrete case is proved in [4].

2000 Mathematics Subject Classification: 28D10. Servicio de Publicaciones. Universidad Complutense. Madrid, 2002

75

Remark. Condition (1) is necessary for the validity of the theorem. If $\mu(X) = \infty$, then $f^* = 0$ a.e. for every negative integrable f, since

$$
\lim_{t \to \infty} \frac{1}{t} \int_0^t f(T_\tau x) d\tau = 0
$$

for a.a. $x \in X$ because of the Ergodic Theorem (see [1]).

First we need several lemmas.

Lemma 1. Let $f \in L(X)$. Then

ess inf
$$
f^* = \frac{1}{\mu(X)} \int_X f d\mu \equiv \lambda_0
$$
.

Proof. That $f^* \geq \lambda_0$ a.e. follows from the Ergodic Theorem:

$$
\lim_{t \to \infty} \frac{1}{t} \int_0^t f(T_\tau x) d\tau = \lambda_0 \quad \text{for a.a.} \quad x \in X \tag{3}
$$

(see [1], [6]). The Maximal Ergodic Equality asserts that

$$
\mu(f^* > \lambda) = \frac{1}{\lambda} \int_{(f^* > \lambda)} f d\mu, \quad \lambda \ge \lambda_0
$$
\n(4)

(see [6], [2]), and if $\mu(f^* > \lambda) = \mu(X)$ for some $\lambda > \lambda_0$, we would get from (4) that $\mu(X) = \lambda^{-1} \int_X f d\mu$. This implies $\lambda = \lambda_0$, which is a contradiction.

Lemma 2. Let $(T_t)_{t\geq0}$ be an ergodic semigroup of measure-preserving transformations on a finite measure space (X, \mathbb{S}, μ) and let $f \in L(X)$. Then

$$
f(x) = \lambda_0 \quad \text{for a.a. } x \in (f^* = \lambda_0). \tag{5}
$$

Proof. The Local Ergodic Theorem,

$$
\lim_{t \to 0+} \frac{1}{t} \int_0^t f(T_\tau x) d\tau = f(x)
$$

(see [6]), implies that

$$
f \le \lambda_0 \text{ a.e. on } (f^* = \lambda_0). \tag{6}
$$

On the other hand we have

$$
\lambda_0 \mu(X) = \lambda_0 (\mu(f^* > \lambda_0) + \mu(f^* = \lambda_0)) = \int_{(f^* > \lambda_0)} f d\mu + \int_{(f^* = \lambda_0)} f d\mu.
$$

Thus

$$
\lambda_0 \mu(f^* = \lambda_0) = \int_{(f^* = \lambda_0)} f d\mu \tag{7}
$$

because of Maximal Ergodic Equality (see (4)). It follows from (6) and (7) that (5) holds.

For a locally integrable function ξ on $\mathbb{R}_0^+ = \{t \in \mathbb{R} : t \geq 0\}$, $\xi \in$ $L_{\text{loc}}(\mathbb{R}_{0}^{+})$, the maximal operator M is defined by

$$
M\xi(t) = \sup_{\tau > t} \frac{1}{\tau - t} \int_t^\tau \xi dm
$$

(*m* is the Lebesgue measure on R). Hence, if $\xi(t) = f(T_t x)$, then

$$
M\xi(t) = f^*(T_t x). \tag{8}
$$

Obviously, for each λ the set $(M\xi > \lambda) = \{t \in \mathbb{R}_0^+ : M\xi(t) > \lambda\}$ is open (in \mathbb{R}^+_0). We shall use the following well-known facts about the connected components of this set (see [5], p.58):

If (a, b) , $0 \le a < b < \infty$, (the sign \langle before a indicates that a belongs or does not belong to the interval, i.e. $\langle a, b \rangle = (a, b)$ or $\langle a, b \rangle = [a, b)$ is a finite connected component of $(M\xi > \lambda)$, then

$$
\frac{1}{b-t} \int_{t}^{b} \xi dm > \lambda
$$
 (9)

for each $t \in (a, b)$. If, in addition, $a \notin (M\xi > \lambda)$ i.e. $\langle a, b \rangle = (a, b)$, then

$$
\frac{1}{b-a} \int_{a}^{b} \xi dm = \lambda.
$$
 (10)

Lemma 3. If $\xi, \eta \in L_{loc}(\mathbb{R}_0^+)$ and $M\xi = M\eta$ almost everywhere, then $M\xi(t) = M\eta(t)$ for all $t \geq 0$.

Proof. Let us show that for each $\xi \in L_{loc}(\mathbb{R}^+_0)$ we have

$$
M\xi(t) = \lim_{\delta \to 0+} \underset{\tau \in (t, t+\delta)}{\text{ess inf}} M\xi(\tau), \quad t \ge 0,
$$

which obviously implies the validity of the lemma.

If $M\xi(t) > \lambda$, then there exists $\delta > 0$ such that $M\xi(\tau) > \lambda$ for each $\tau \in (t, t + \delta)$. Thus

$$
M\xi(t) \le \lim_{\delta \to 0+} \underset{\tau \in (t, t+\delta)}{\text{ess inf }} M\xi(\tau).
$$

Conversely, if $M\xi > \lambda$ a.e. on $(t, t + \delta)$, then let us show that

$$
M\xi(t) \ge \lambda,\tag{11}
$$

which finishes the proof.

Indeed, if $(t, t + \delta) \subset (M\xi > \lambda)$, then for each $\tau \in (t, t + \delta)$ we have $\sup\{\tau' > \tau : \frac{1}{\tau' - \tau}\int_{\tau}^{\tau'} \xi dm \geq \lambda\} \geq t + \delta$ (see [5], p.58). Consequently, there exists $\tau' \geq t + \delta$ such that

$$
\frac{1}{\tau'-\tau}\int_{\tau}^{\tau'}\xi dm \geq \lambda.
$$

Set $\tau_n \searrow t$ and let

$$
\tau_n' > t + \delta \tag{12}
$$

be such that

$$
\frac{1}{\tau'_n - \tau_n} \int_{\tau_n}^{\tau'_n} \xi dm \ge \lambda,
$$

 $n = 1, 2, \ldots$ Then

$$
M\xi(t) \ge \frac{1}{\tau'_n - t} \int_t^{\tau'_n} \xi dm \ge
$$

$$
\left(\frac{1}{\tau'_n - \tau_n} \int_{\tau_n}^{\tau'_n} \xi dm - \frac{1}{\tau'_n - t} \Big| \int_t^{\tau_n} \xi dm \Big| \right) \frac{\tau'_n - \tau_n}{\tau'_n - t}
$$

and taking into account that $\tau_n \to t$, $\tau'_n - \tau \to 0$ (because of (12)) and $(\tau'_n - \tau_n)/(\tau'_n - t) \to 1$ as $n \to \infty$, we shall get (11).

If $\tau \notin (M\xi > \lambda)$ for some $\tau \in (t, t + \delta)$, then (t, τ) is covered up to a set of measure 0 with the connected components of $(M\xi > \lambda)$. In other words, there exist connected components Δ_i , $i = 1, 2, \ldots$ such that $\Delta_i \subset (t, \tau)$ and $m((t, \tau) \setminus (\cup_{i=1} \Delta_i)) = 0$. Since

$$
\frac{1}{m(\Delta_i)} \int_{\Delta_i} \xi dm = \lambda
$$

for each i (see (10)), we have

$$
\int_t^\tau \xi dm = \lambda(\tau - t)
$$

and (11) holds.

The lemma below is actually proved in [3]. It is given here for the sake of completeness.

Lemma 4. Let $\xi \in L_{loc}(\mathbb{R}_0^+),$ and let $\langle a, b \rangle$ be a finite connected component of $(M\xi > \lambda)$ for some λ . Then the values $M\xi(t)$, $t \in \langle a, b \rangle$, uniquely define the values $\xi(t)$ for a.a. $t \in (a, b)$.

Hence, if another function $\eta \in L_{loc}(\mathbb{R}^+_0)$ is given such that $M\xi(t) =$ $M\eta(t), t \geq 0$, then $\xi(t) = \eta(t)$ for a.a. $t \in \langle a, b \rangle$.

Proof. We shall show that the values $M\xi(t)$, $t \in \langle a, b \rangle$, uniquely define the function

$$
h(t) = \int_{t}^{b} \xi dm, \quad t \in \langle a, b \rangle.
$$
 (13)

Assume t fixed and let $\lambda_t = M\xi(t)$. For each $\gamma \in [\lambda, \lambda_t)$ suppose $\langle a_{\gamma}, b_{\gamma} \rangle$ to be the connected component of $(M\xi > \lambda)$ which contains t and suppose $b_{\gamma} = t$ whenever $\gamma = \lambda_t$ (note that $b_{\lambda} = b$, by hypothesis). Obviously, $\langle a_{\gamma}, b_{\gamma} \rangle \subset \langle a_{\gamma'}, b_{\gamma'} \rangle$, $\lambda_t > \gamma > \gamma' \geq \lambda$, and

$$
\cup_{\gamma'>\gamma}\langle a_{\gamma'},b_{\gamma'}\rangle=\langle a_{\gamma},b_{\gamma}\rangle,\ \ \lambda_t>\gamma\geq\lambda.
$$

It is easy to show that $\Psi : \gamma \to b_{\gamma}$ is a non-increasing function on $[\lambda, \lambda_t]$ continuous from the right. Observe also that Ψ is uniquely defined by the values $M\xi(t)$, $t \geq 0$.

Let D be the set of points of discontinuity of this function, set

$$
b'_{\gamma} = \lim_{\gamma' \to \gamma^-} b_{\gamma'} \tag{14}
$$

for $\gamma \in D$, and let

$$
C = \{ \gamma \in [\lambda, \lambda_t] : b_{\gamma'} = b_{\gamma} \text{ for some } \gamma' > \gamma \}.
$$

Then the interval $[t, b]$, as a range of the non-increasing continuous from the right function Ψ , can be divided into pairwise disjoint parts:

$$
[t, b] = E_1 \cup E_2 \cup E_3,\tag{15}
$$

where

$$
E_1 = \{b_\gamma = \Psi(\gamma) : \gamma \in [\lambda, \lambda_t] \setminus (D \cup C)\},\tag{16}
$$

$$
E_2 = \cup_{\gamma \in D} [b_{\gamma}, b_{\gamma}'] \tag{17}
$$

and $E_3 = \{b_\gamma = \Psi(\gamma) : \gamma \in C\}$. Note that E_3 is a countable set and the intervals $(b_{\gamma}, b'_{\gamma})_{\gamma \in D}$ are disjoint.

Observe also that for each $e \in E_1$ there exists unique $\gamma \in [\lambda, \lambda_t]$ such that $e = b_{\gamma} = \Psi(\gamma)$. Hence, Ψ^{-1} exists on E_1 .

If $\gamma \in [\lambda, \lambda_t) \setminus (D \cup C)$ and $b_{\gamma} \in E_1$ is a Lebesgue point of ξ then

$$
\xi(b_{\gamma}) \le \gamma \tag{18}
$$

(since $M\xi(b_\gamma) \leq \gamma$). On the other hand, for each $\gamma' \in (\gamma, \lambda_t)$ we have

$$
\frac{1}{b_{\gamma}-b_{\gamma'}}\int_{b_{\gamma'}}^{b_{\gamma}}\xi dm>\gamma
$$

since $\langle a_{\gamma}, b_{\gamma} \rangle$ is a connected component of $(M\xi > \gamma)$ and $b_{\gamma'} \in \langle a_{\gamma}, b_{\gamma} \rangle$ (see (9)). Hence, taking into account that $b_{\gamma'} \to b_{\gamma}$ when $\gamma' \to \gamma$, we can conclude that $\xi(b_\gamma) \geq \gamma$, which together with (18) implies that

$$
\xi(b_{\gamma})=\gamma.
$$

Thus $\xi = \Psi^{-1}$ a.e. on E_1 (see (16)) and consequently

$$
\int_{E_1} \xi dm = \int_{E_1} \Psi^{-1} dm.
$$
\n(19)

If $\gamma \in D$, then

$$
\frac{1}{b'_{\gamma} - b_{\gamma}} \int_{b_{\gamma}}^{b'_{\gamma}} \xi dm \le \gamma \tag{20}
$$

(since $M\xi(b_\gamma) \leq \gamma$) and for each $\gamma' \in (\lambda, \gamma)$ we have

$$
\frac{1}{b_{\gamma'}-b_{\gamma}}\int_{b_{\gamma}}^{b_{\gamma'}} \xi dm > \gamma'
$$

since $\langle a_{\gamma'}, b_{\gamma'} \rangle$ is a connected component of $(M\xi > \gamma')$ and $b_{\gamma} \in \langle a_{\gamma'}, b_{\gamma'} \rangle$ (see (9)). Hence, letting γ' converge to γ from the left and taking into account (14), we get

$$
\frac{1}{b'_{\gamma}-b_{\gamma}}\int_{b_{\gamma}}^{b'_{\gamma}}\xi dm\geq\gamma.
$$

This together with (20) implies that

$$
\int_{b_{\gamma}}^{b'_{\gamma}} \xi dm = \gamma (b'_{\gamma} - b_{\gamma}).
$$

Hence

$$
\int_{E_2} \xi dm = \sum_{\gamma \in D} \gamma (b'_{\gamma} - b_{\gamma})
$$
\n(21)

(see (17)). It follows from (13) , (15) , (19) and (21) that

$$
h(t) = \int_{E_1} \Psi^{-1} dm + \sum_{\gamma \in D} \gamma (b'_{\gamma} - b_{\gamma}).
$$

Thus $h(t)$ is uniquely defined by the function Ψ .

Corollary. Let $\xi, \eta \in L_{loc}(\mathbb{R}_0^+)$ be such that

$$
M\xi(t) = M\eta(t), \ \ t \ge 0.
$$

If $0 \le t < t'$ and

$$
M\xi(t) = M\eta(t) > M\xi(t') = M\eta(t'),
$$

then

$$
\xi(\tau) = \eta(\tau) \tag{22}
$$

 \Box

for a.a. τ from some neighbourhood of t.

Proof. If we take $\lambda \in (M\xi(t'), M\xi(t))$, then $t' \notin (M\xi > \lambda)$ and some finite connected component of $(M\xi > \lambda)$ includes t. For a.a. τ from this interval (22) holds by virtue of the lemma. П

Proof of Theorem. Equality (2) implies that

$$
\mathrm{ess}\inf f^* = \mathrm{ess}\inf g^* \equiv \lambda_0.
$$

Consequently,

$$
\mu(f^* < \lambda) = \mu(g^* < \lambda) > 0 \quad \text{for all} \quad \lambda > \lambda_0 \tag{23}
$$

and

$$
\mu(f^* < \lambda_0) = \mu(g^* < \lambda_0) = 0.
$$
\n(24)

Define

$$
\xi_x(t) = f(T_t x)
$$
 and $\eta_x(t) = g(T_t x)$, $x \in X$, $t \ge 0$.

We shall prove that for a.a. $x \in X$

$$
m\{t \ge 0 : \xi_x(t) \ne \eta_x(t)\} = 0.
$$
 (25)

Obviously, this implies that

$$
\mu(f \neq g) = 0.
$$

(If $X_1 \subset X$ and $\mu(X_1) > 0$ then, by the Ergodic Theorem, see (3),

$$
m\{t \ge 0 : T_t x \in X_1\} = \lim_{t \to \infty} \int_0^t \mathbb{1}_{X_1}(T_\tau x) d\tau = \infty \tag{26}
$$

for a.a. $x \in X$, while

$$
{t \geq 0 : \xi_x(t) \neq \eta_x(t)} = {t \geq 0 : T_t x \in (f \neq g)}, \ \ x \in X.
$$

If $X_0 \subset X$ and $\mu(X_0) = 0$, then by standard application of Fubini's theorem we have

$$
m\{t \ge 0 : T_t x \in X_0\} = 0\tag{27}
$$

for a.a. $x \in X$. Hence

$$
m\{t \ge 0 : M\xi_x(t) \ne M\eta_x(t)\} = m\{t \ge 0 : T_tx \in (f^* \ne g^*)\} = 0
$$

for a.a. $x \in X$ (see (2), (8)) and Lemma 3 implies that

$$
M\xi_x(t) = M\eta_x(t), \quad t \ge 0,
$$
\n(28)

for a.a. $x \in X$. We also have

$$
m\{t \ge 0 : M\xi_x(t) = M\eta_x(t) < \lambda_0\} = 0\tag{29}
$$

(see (24)) and

$$
m\{t \ge 0 : M\xi_x(t) = M\eta_x(t) = \lambda_0, \ \xi_x(t) \ne \lambda_0 \text{ or } \eta_x(t) \ne \lambda_0\} = 0
$$
\n(30)

for a.a. $x \in X$ (see (5)).

We consider two cases:

LASHA EPHREMIDZE ON THE UNIQUENESS OF MAXIMAL OPERATORS \ldots

(i)
$$
\mu(f^* = \lambda_0) = \mu(g^* = \lambda_0) > 0
$$
. Then
\n
$$
m\{t \ge 0 : M\xi_x(t) = M\eta_x(t) = \lambda_0\} = \infty
$$
\n(31)

for a.a. $x \in X$ (see (26)). Take $x \in X$ for which (28), (29), (30) and (31) hold (note that almost all x have this property). Let $E = \{t \geq 0 :$ $M\xi_x(t) = M\eta_x(t) > \lambda_0$. Then for each $t \in E$ there exists $t' > t$ such that $M\xi_x(t') = M\eta_x(t') = \lambda_0$, because of (31). Thus the corollary of Lemma 4 implies that

$$
\xi_x(t) = \eta_x(t) \tag{32}
$$

for a.a. $t \in E$.

It follows from (29) and (30) that $\xi_x(t) = \eta_x(t) = \lambda_0$ for a.a. $t \in$ $\mathbb{R}_0^+ \setminus E$. Thus (32) holds for a.a. $t \ge 0$ and (25) is valid.

(ii) $\mu(f^* = \lambda_0) = \mu(g^* = \lambda_0) = 0$. Then

$$
m\{t \ge 0 : M\xi_x(t) = M\eta_x(t) \le \lambda_0\} = 0
$$
\n(33)

for a.a. $x \in X$ (see (8), (24) and (27))

If λ_i is any decreasing sequence convergent to λ_0 , $\lambda_i \searrow \lambda_0$, then

$$
\mu(f^* < \lambda_i) = \mu(g^* < \lambda_i) > 0, \ \ i = 1, 2, \dots
$$

(see (23)) and consequently for a.a. $x \in X$ we have

$$
m\{t \ge 0: M\xi_x(t) = M\eta_x(t) < \lambda_i\} =
$$
\n
$$
m\{t \ge 0: f^*(T_t x) = g^*(T_t x) < \lambda_i\} = \infty, \quad i = 1, 2, \dots,
$$
\n(34)

(see (26)). Take $x \in X$ for which (28), (33) and (34) hold (note that almost all x have this property). It follows from (33) and (34) that for a.a. $t \geq 0$ there exists $t' > t$ such that

$$
M\xi_x(t) = M\eta_x(t) > M\xi_x(t') = M\eta_x(t').
$$

Thus, by virtue of the corollary of Lemma 4, (32) holds for a.a. $t \geq 0$ and (25) is valid.

References

[1] I.P. Cornfeld, S.V. Fomin and Ya.G. Sinai, Ergodic Theory, Springer-Verlag, Berlin, 1983.

- [2] L. Ephremidze, On the majorant of ergodic means (continous case) (Russian), Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruz. SSR, 98 (1990), 112–124.
- [3] $\frac{1}{100}$, On the uniqueness of maximal functions, Georgian Math. J., 3 (1996), 49–52.
- [4] _____,On the uniqueness of the ergodic maximal function, (to appear).
- [5] M. Guzmán, *Differentiation of integrals in* $Rⁿ$, Springer-Verlag, Berlin, 1975.
- [6] K.E. Petersen, Ergodic Theory, Cambridge Univ. Press, Cambridge, 1983.

A. Razmadze Mathematical Institute Aleksidze 1 380093 Tbilisi Georgia E-mail: lasha@rmi.acnet.ge

Current address: Mathematical Institute Zitna 25, 11567 Praha 1 Czech Republic E-mail: lasha@math.cas.cz

> Recibido: 23 de Enero de 2001 Revisado: 7 de Junio de 2001