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UNRAMIFIED NONSPECIAL REAL SPACE

CURVES HAVING MANY REAL

BRANCHES AND FEW OVALS

J. HUISMAN

Abstract

Let C ⊆ P
n be an unramified nonspecial real space curve hav-

ing many real branches and few ovals. We show that C is a rational
normal curve if n is even, and that C is an M -curve having no ovals
if n is odd.

1 Introduction

Let n be a natural integer satisfying n ≥ 2. Let C be a smooth geo-
metrically integral real algebraic curve in real projective space P

n [2].
The curve C is nondegenerate if C is not contained in a real hyperplane
of P

n. Suppose that C is nondegenerate. We say that C is unramified [4]
if, for all real hyperplanes H of P

n, one has

deg(H · C) − deg(H · C)red ≤ n − 1,

where red means the associated reduced divisor. In particular, an un-
ramified real curve does not have real inflection points. The converse,
however, does not hold. Indeed, a suitable small deformation of the real
plane curve defined by the affine equation (x2 +y2−1)(x2 +y2−2) = 0,
is ramified but does not have real inflection points.

The corresponding notion of an unramified complex algebraic curve
in complex projective space is well understood. Indeed, any unramified
complex algebraic curve is a rational normal curve and conversely [1,
p. 270]. For real algebraic curves, the situation seems to be much more
interesting.
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In [4], it is shown that there are unramified real curves of any genus
in any odd dimensional projective space. More precisely, let g and n
be natural integers, with n ≥ 3 and n odd. Let C be an M -curve of
genus g, i.e., C is a smooth geometrically integral proper real curve such
that the number of connected components of C(R) is equal to g + 1.
Choose a divisor D on C of degree g +n such that D has odd degree on
any connected component of C(R). This is possible since C(R) has g+1
connected components and n − 1 is even. Then the linear system |D|
induces an unramified embedding of C in P

n. It is conjectured that any
unramified real space curve in P

n, for n odd, is obtained in this way [4].
For n even, it is conjectured that any unramified real space curve in P

n

is a rational normal curve, i.e., its genus is equal to 0 and its degree is
equal to n [4]. The latter conjecture has been proved for n = 2 [6].

The object of this paper is to prove both conjectures for nonspecial
space curves having many real branches and having few ovals.

2 Real space curves having many real branches
and few ovals

Let C be a smooth geometrically integral proper real curve. A real
branch of C is a connected component of the set C(R) of real points
of C. Let g be the genus of C. By Harnack’s Inequality [3], the number
of real branches of C is less than or equal to g + 1. The curve C is
called an M -curve (resp. (M − 1)-curve) if the number of real branches
of C is equal to g + 1 (resp. g). We say that C has many real branches
if C has at least g real branches, i.e., if C is either an M -curve or an
(M − 1)-curve.

We need to recall the following result [5, Theorem 2.1].

Theorem 1. Let C be a smooth geometrically integral proper real al-
gebraic curve having many real branches. Let g be the genus of C.
Let B1, . . . , Bg be mutually distinct real branches of C and put

B =
g∏

i=1

Bi.

Let e1, . . . , eg be nonzero natural integers and let

ϕ : B −→ Pic(C)
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be the map defined by ϕ(P ) = cl(
∑g

i=1 eiPi), where cl denotes the divisor
class. Then, ϕ is a topological covering of its image of degree

∏g
i=1 ei.

In particular, ϕ is surjective on a connected component of Pic(C).

Let C ⊆ P
n be a smooth geometrically integral real curve. A real

branch B of C is a compact connected smooth real analytic curve in the
real projective space P

n(R). The branch B is an oval if B is contractable
in P

n(R). Otherwise, B is a pseudo-line. To put it otherwise, B is an
oval if and only if each real hyperplane in P

n(R) intersects B in an even
number of points, when counted with multiplicities. The branch B is
a pseudo-line if and only if each real hyperplane in P

n(R) intersects B
in an odd number of points, when counted with multiplicities. Now,
suppose that C has many real branches. Let ε be the number of ovals
of C. We say that C has few ovals if

ε ≤
{

n if C is an (M − 1)-curve, and
n + 1 if C is an M -curve.

(1)

In order to put it otherwise, let δ be the number of pseudo-lines of C.
Since ε + δ is equal to the number of real branches of C, the curve C
has few ovals if and only if g − δ ≤ n.

Let C ⊆ P
n be a smooth geometrically integral real curve. Recall

that C is normal if the restriction map

H0(Pn,O(1)) −→ H0(C,O(1))

is an isomorphism. In particular, C is nondegenerate if it is normal.
Let g be the genus of C and let d be its degree. Recall that C is
nonspecial if C is normal and n = d − g.

The following statement is an affirmative answer to the conjecture
mentioned in the Introduction, for nonspecial space curves having many
real branches and few ovals.

Theorem 2. Let C ⊆ P
n be an unramified nonspecial real space curve

having many real branches and few ovals. If n is even then C is a
rational normal curve. If n is odd then C is an M -curve and each real
branch of C is a pseudo-line.

Proof. Let C ⊆ P
n be an unramified nonspecial real space curve having

many real branches and having few ovals. Let g be the genus of C and
let d be the degree of C. Let D be a hyperplane section of C.
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Suppose that n is even. We have to show that g = 0. Suppose,
therefore, that g �= 0. Since C is nonspecial, d = g + n. Since n
is even, d ≡ g (mod 2). Let δ be the number of pseudo-lines of C.
Since d ≡ δ (mod 2), one has δ ≡ g (mod 2). It follows that C has
at most g pseudo-lines. Choose distinct real branches B1, . . . , Bg of C
such that any pseudo-line of C is equal to one of the Bi’s. Since d ≥
g, g > 0, g − δ ≤ n and δ ≡ d (mod 2), there are nonzero natural
integers e1, . . . , eg such that

∑
ei = d, and ei is odd if and only if Bi

is a pseudo-line. Put B =
∏

Bi and let ϕ : B → Pic(C) be the map as
in Theorem 1. Then, by Theorem 1, the image of ϕ is surjective on the
connected component of Pic(C) containing cl(D). In particular, there
are points Pi ∈ Bi such that the divisor

∑
eiPi belongs to the linear

system |D|. This means that there is a real hyperplane H in P
n such

that H ·C =
∑

eiPi. Since
∑

(ei−1) = d−g = n, the real space curve C
is ramified. Hence, g = 0 and C is a rational normal curve.

Suppose that n is odd. Let, again, δ be the number of pseudo-lines
of C. We have to show that δ = g+1. Suppose, therefore, that δ �= g+1.
Then δ ≤ g, i.e., C has at most g pseudo-lines. Since δ ≡ d (mod 2)
and d = g + n, one has δ ≡ g + n (mod 2). Since n is odd, δ �≡ g
(mod 2). Therefore, δ < g. In particular, g �= 0. As before, one derives
a contradiction using Theorem 1. Therefore, δ = g + 1.

Let us mention, in conclusion, that there are many nonspecial real
space curves having many real branches and few ovals. Indeed, let C be
any smooth proper geometrically integral real curve having many real
branches. Let n be any natural integer satisfying n ≥ 3. Let ε be any
natural integer satisfying the inequality (1). Let g be the genus of C.
Choose a general effective divisor D on C of degree g + n such that
D is of even degree on exactly ε real branches of C. This is possible
if ε ≡ n (mod 2) in case C is an (M − 1)-curve, and if ε �≡ n (mod 2) in
case C is an M -curve. Then, the complete linear system |D| induces an
embedding of C in P

n, and the image curve is a nonspecial real space
curve having many real branches and few ovals. Theorem 2 states that,
among all these real space curves, the only ones that are unramified are
rational normal curves if n is even, and M -curves having no ovals, if n
is odd.
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