Tail and free poset algebras

View metadata, citation and similar papers at core.ac.uk

brought to you by CORE

Faculty of Sciences and Technology P.O.Box 2202 Fez 30000, Morocco bekka@menara.ma drisszhani@hotmail.com

Recibido: 4 de Septiembre de 2002 Aceptado: 22 de Octubre de 2003

This work is dedicated to the philosopher Ibn Tophail (1100–1185).

ABSTRACT

We characterize free poset algebras F(P) over partially ordered sets and show that they can be represented by upper semi-lattice algebras. Hence, the uniqueness, in decomposition into normal form, using symmetric difference, of non-zero elements of F(P) is established. Moreover, a characterization of upper semilattice algebras that are isomorphic to free poset algebras is given in terms of a selected set of generators of B(T).

Key words: Free poset algebra, tail algebra, semigroup algebra 2000 Mathematics Subject Classification: Primary: 03G, 06A; Secondary: 06A12, 03G10, 03G05

1. Characterization of F(P)

The main result of this section is Theorem 1.2 that gives an algebraic characterization of free poset algebras. Our approach in studying these algebras is different from [1] and [8]. Indeed, we show that the class of free poset algebras is actually a subclass of upper semi-lattice algebras. Therefore, non-zero elements has a unique decomposition into normal form. Two elements a and b of a poset $\langle P, \leq \rangle$ are *comparable* whenever $a \leq b$ or $b \leq a$. We say $a \parallel b$, whenever a and b are not comparable in $\langle P, \leq \rangle$. A subset A of $\langle P, \leq \rangle$ of non comparable elements is called an *anti-chain* of $\langle P, \leq \rangle$. $\mathcal{Id}(P)$ shall denote the set of ideals of P. $(J \subseteq P$ is an ideal if J is an non empty initial segment of P such that every $p, q \in J$ there is $r \in J$ such that $p, q \leq r$). For a non empty set X, we denote by $[X]^{\leq \omega}$ the set all finite subsets of X. Thus, we set $\operatorname{Aut}(P) = \{\sigma \in [P]^{<\omega} : \sigma \text{ is an antichain of } P\}$.

Rev. Mat. Complut. 2004, 17; Núm. 1, 169–179

169

ISSN: 1139-1138 http://dx.doi.org/10.5209/rev_REMA.2004.v17.n1.16795

Now, a subset F of P is a *final segment* of P, whenever it is closed upwards i.e., if $(a,b) \in F \times P$ and $a \leq b$, then $b \in F$. E.g., for each $p \in P$, $P^{\geq p} := \{q \in P : p \leq q\}$ is a final segment of P. For a finite subset σ of P, $P^{\geq \sigma} := \bigcup_{p \in \sigma} P^{\geq p}$ is a final segment of P generated by σ . Define \preceq be the binary relation on $[P]^{<\omega}$ defined by $\sigma \preceq \tau$ if $P^{\geq \sigma} \supseteq P^{\geq \tau}$. i. e., for every $q \in \tau$ there is $p \in \sigma$ such that $p \leq q$. So \preceq is a reflexive and transitive relation. For $\sigma \in [P]^{<\omega}$ let min (σ) be the set of minimal elements of σ . So $P^{\geq \sigma} = P^{\geq \min(\sigma)}$. It is trivial that \preceq restricted to Ant(P) is a partial order. Also for $\sigma, \tau \in \operatorname{Ant}(P)$, $P^{\geq \sigma} \cup P^{\geq \tau} = P^{\geq \sigma \cup \tau} = P^{\geq \min(\sigma \cup \tau)}$.

Throughout this paper $\langle P, \leq \rangle$ shall denote a partially ordered set (poset) with greatest element ∞ . Notice that this assumption on $\langle P, \leq \rangle$ is not restrictive but it's rather convenient for expository purposes; indeed, let $\langle Q, \leq \rangle$ be a poset and denote by $\operatorname{Fs}^+(Q)$ the set of all final segments of Q, and $\operatorname{Fs}(Q) := \operatorname{Fs}^+(Q) \setminus \{\emptyset\}$ then $\operatorname{Fs}(Q)$ and $\operatorname{Fs}(Q \cup \{\infty\})$ are homeomorphic spaces; for more see e. g. [3]. $\operatorname{Fs}(P)$ the set of all non-empty final segments of P is a closed subspace of $\{0,1\}^P$ by identifying $\wp(P)$ with $\{0,1\}^P$ via characteristic functions of sets and taking the the Cantor topology on $\{0,1\}^P$. For a topological space X, $\operatorname{clop}(X)$ shall denote the Boolean algebra of clopen (closed and open) subsets of X. Thus, $\operatorname{clop}(\operatorname{Fs}(P))$ is the free poset algebra over P, denoted by F(P). For $p \in P$, set $V_p := \{F \in \operatorname{Fs}(P) : p \in F\}$. So V_p is a clopen subset of $\operatorname{Fs}(P)$. Also, for any finite subset σ of P. $(\dagger) \bigcap_{p \in \sigma} V_p = \{F \in \operatorname{Fs}(P) : F \supseteq P^{\geq \sigma}\}$. Hence a basis of $\operatorname{Fs}(P)$ is $\langle \bigcap_{p \in \sigma} V_p \cap \bigcap_{q \in \tau} -V_q, \sigma, \tau \in [P]^{<\omega} \rangle$, where $-V_q$ denotes the complement of V_q in $\operatorname{Fs}(P)$; $(1.e., -V_q = \operatorname{Fs}(P) \setminus V_q)$. Notice that $V_p \in F(P)$ and that every member of F(P) is a finite union of $\bigcap_{p \in \sigma} V_p \cap \bigcap_{q \in \tau} -V_q$. Finally, recall that $\operatorname{cl}_B(S)$ denotes the subalgebra of B generated by S for any Boolean algebra B and any $S \subseteq B$. Next, $\mathcal{Ult}(B)$, the set of ultrafilters of B, shall denote the Stone space of B.

Lemma 1.1. Let (P, \leq) be a poset, with greatest element ∞ .

- (i) If p < q then $V_p \subseteq V_q$.
- (ii) $\bigcap_{p \in P} V_p = \{P\} \neq \emptyset.$
- (iii) $V_{\infty} = \operatorname{Fs}(P)$.
- (iv) For finite subsets σ, τ of P, the following properties are equivalent:
 - (a) $\bigcap_{p \in \sigma} V_p \cap \bigcap_{q \in \tau} -V_q = \emptyset.$
 - (b) There are $p \in \sigma$, $q \in \tau$ such that $p \leq q$.
- (v) If $\bigcap_{i=1}^{n} V_{p(i)} \subseteq \bigcup_{k=1}^{m} \left(\bigcap_{j=1}^{m(k)} V_{q(k,j)} \right)$ then
 - (a) there is $k \in \{1, ..., m\}$, such that $\bigcap_{i=1}^{n} V_{p(i)} \subseteq \bigcap_{j=1}^{m(k)} V_{q(k,j)}$, and (b) for any $j \in \{1, ..., m(k)\}$ there is $i \in \{1, ..., n\}$ so that $p(i) \leq q(k, j)$.

Tail and free poset algebras

Proof. (i)–(iii) are easy to check.

To prove (iv), set $W := \bigcap_{p \in \sigma} V_p \cap \bigcap_{q \in \tau} -V_q$. Then,

$$W = \{ F \in Fs(P) : \sigma \subseteq F \text{ and } \tau \cap F = \emptyset \}.$$

Suppose that there are $p \in \sigma$, $q \in \tau$ and $p \leq q$. So every final segment containing σ contains q. Thus, $W = \emptyset$. Conversely, suppose that for every $p \in \sigma$, $q \in \tau$, and $p \not\leq q$ we have $P^{\geq \sigma} \cap \tau = \emptyset$. It follows then, $P^{\geq \sigma} \in W$; thus $W \neq \emptyset$.

To prove (v), set $\sigma := \{p(1), \ldots, p(n)\}, F := P^{\geq \sigma}$. So, $F \in \bigcap_{i=1}^{n} V_{p(i)}$. Choose k so that $F \in \bigcap_{j=1}^{m(k)} V_{q(k,j)}$. Note that $q(k,j) \in F$ for every $j \in \{1, \ldots, m(k)\}$. Now, if $G \in \bigcap_{i=1}^{n} V_{p(i)}$ then $F \subseteq G$; thus $q(k,j) \in G$ for every $j \in \{1, \ldots, m(k)\}$. Hence, $\bigcap_{i=1}^{n} V_{p(i)} \subseteq \bigcap_{j=1}^{m(k)} V_{q(k,j)}$. Next, since $F \in \bigcap_{j=1}^{m(k)} V_{q(k,j)}$ it follows that for every q(k,j) there is p(i) such that $p(i) \leq q(k,j)$.

The following theorem characterizes free poset algebras and will be of use later on in the paper.

Theorem 1.2. The following statements are equivalent for any Boolean algebra B.

- (i) B is isomorphic to a free poset algebra.
- (ii) B has a set H of generators with $1 \in H$ such that for every finite subsets $\{h_i : i < m\}$ and $\{k_j : j < n\}$ of H:
 - (a) $\prod_{i < m} h_i \neq 0$ and
 - (b) if $\prod_{i < m} h_i \cdot \prod_{i < n} -k_i = 0$ then there are *i* and *j* such that $h_i \leq k_j$.

Proof. (i) implies (ii). We may assume that B = F(P). Let $H = \{V_q : q \in P\}$. By Lemma 1.1, (ii) holds.

(ii) implies (i). Let H be as in (ii). So H is a poset with a greatest element. To show that B is isomorphic to F(H), let $f : H \to F(H)$ be defined by $f(h) = V_h$. By Lemma 1.1 (iv) and the hypothesis (ii)-(b), the following are equivalent:

- 1. $\prod_{i < m} h_i \cdot \prod_{j < n} -k_j = 0$
- 2. there is i and j such that $h_i \leq k_j$, and
- 3. $\bigcap_{i < m} V_{h_i} \cap \bigcap_{j < n} -V_{k_j} = \emptyset$

By Sikorski's Criterion, f extends to an isomorphism \hat{f} from $cl_B(H)$ onto $Im(f) \subseteq F(H)$. Since H generates B, and Im(f) = F(H), \hat{f} is an isomorphism from B onto F(H).

2. Representation of F(P)

Let $\langle Q, \leq \rangle$. For $q \in Q$, put $b_q := \{u \in Q : u \geq q\}$. Next define the Tail algebra, B(Q), as the subalgebra of the power set of Q generated by $\{b_q : q \in Q\}$. When $\langle T, \leq \rangle$ is an upper semi-lattice i. e., l. u. b. $\{x, y\} := x \lor y$ exists in $\langle T, \leq \rangle$ for $x, y \in T$; B(T) is called the *upper semi-lattice* algebra over T. Notice that every member of B(T) is a finite union of $\bigcap_{t \in \sigma} b_t \cap \bigcap_{s \in \tau} -b_s$ (where σ, τ are finite subsets of T).

In this section Theorem 2.3 shows that any F(P) is isomorphic to an upper semilattice algebra. As for Theorem 2.4, a characterization of upper semi-lattice algebras that are isomorphic to an F(P) is given using the idea of prime elements in the upper semi-lattice.

Before we state the following lemmas, notice that if Q is the poset $\{p, q, r, s\}$ with relations p < r < q, p < s < q and r, s incomparable; then in the tail algebra $B(Q), b_r \cap b_s = b_q$; nevertheless, in the free poset algebra $F(Q), V_p \subset V_r \cap V_s$ and $V_r \cup V_s \subset V_q$.

Lemma 2.1. Let B(Q) be the tail algebra over Q. Let $p \in Q$ and τ be a finite subset of Q. The following properties are equivalent.

- (i) $b_p \subseteq \bigcup_{q \in \tau} b_q$.
- (ii) $q \in \tau$ such that $q \leq p$.

(i) \leq is an ordering on Ant(P). Lemma 2.2.

- (ii) The greatest lower bound of σ and τ is $\min(\sigma \cup \tau)$ in $(\operatorname{Ant}(P), \preceq)$, for $\sigma, \tau \in$ $\operatorname{Ant}(P),$
- (iii) $(\operatorname{Ant}(P), \succeq)$ is an upper semi-lattice, with a least element.

Next theorem shows that the class of upper semi-lattice algebras contains the class of free poset algebras.

Theorem 2.3. For every poset (P, \leq) , with a greatest element, F(P) is isomorphic to the upper semi-lattice algebra $B(\langle \operatorname{Ant}(P), \succeq \rangle)$.

Proof. Set $H = \{V_q : q \in P\}$. Recall that H generates F(P). Now, for each $p \in P$, $\{p\} \in \operatorname{Ant}(P)$; and thus $b_{\{p\}} = \{\sigma \in \operatorname{Ant}(P) : \sigma \preceq \{p\}\}$. Next, define $\varphi : H \to B(\langle \operatorname{Ant}(P), \succeq \rangle)$ by $\varphi(V_p) = b_{\{p\}}$. We claim that for every

 $\sigma, \tau \in \operatorname{Ant}(P)$:

$$\bigcap_{p\in\sigma} V_p \cap \bigcap_{q\in\tau} -V_q = \emptyset \quad \text{iff} \quad \bigcap_{p\in\sigma} b_{\{p\}} \cap \bigcap_{q\in\tau} -b_{\{q\}} = \emptyset.$$
(1)

By Lemma 1.1 (iv), we have:

Revista Matemática Complutense 2004, 17; Núm. 1, 169-179

172

 $\bigcap_{p \in \sigma} V_p \cap \bigcap_{q \in \tau} -V_q = \emptyset \quad \text{iff} \quad \text{"there are } p \in \sigma \text{ and } q \in \tau \text{ so that } p \le q" \tag{2}$

On the other hand, we have $\{\{p\} : p \in \sigma\} \subseteq \operatorname{Ant}(P)$ and $\min(\sigma)$ is its l.u.b. in $\langle \operatorname{Ant}(P), \succeq \rangle$. So $\bigcap_{p \in \sigma} b_{\{p\}} = b_{\min(\sigma)}$. So $\bigcap_{p \in \sigma} b_{\{p\}} \cap \bigcap_{q \in \tau} -b_{\{q\}} = \emptyset$; which means that $b_{\min(\sigma)} \subseteq \bigcup_{q \in \tau} b_{\{q\}}$. By Lemma 2.1, this is equivalent to the existence of $q \in \tau$ so that $\{q\} \succeq \min(\sigma)$.

Next $\{q\} \succeq \sigma$ iff there is $p \in \sigma$ so that $p \leq q$, that is (2). The proof of (1) is finished.

Next, by (1) and Sikorski's Criterion, φ extends to a monomorphism $\hat{\varphi}$ from $F(\langle P, \leq \rangle)$ into $B(\langle \operatorname{Ant}(P), \geq \rangle)$. Now, since $\{V_p : p \in P\}$ generates F(P), $\{b_{\{p\}} : p \in P\}$ generates $B(\operatorname{Ant}(P))$ and $\hat{\varphi}(V_p) = b_{\{p\}}$; the isomorphism is established and the proof of the theorem is finished.

Recall that an element $p \in T$ is called a *prime* element of T whenever for every $u, v \in T$ so that $u \lor v$ exists in T and $p \le u \lor v$, then $p \le u$ or $p \le v$. Prim(T) shall denote the set of all prime elements of T.

Next is a characterization of free poset algebras.

Theorem 2.4. Let T be an upper semi-lattice. The following statement are equivalent.

- (i) B(T) is isomorphic to a free poset algebra.
- (ii) There is a poset P, with a greatest element so that $B(T) \cong B(\langle \operatorname{Ant}(P), \succeq \rangle)$.
- (iii) There is an upper semi-lattice T', with a least element, so that:
 - (a) Every element of T' is a join of finitely many prime elements,
 - (b) B(T) and B(T') are isomorphic Boolean algebras , and
 - (c) $B(T') = cl_{B(T')}(\{b_t : t \in Prim(T')\}).$

Proof. (i) implies (ii) follows from Theorem 2.3.

(ii) implies (iii). Let $\langle T', \leq \rangle := \langle \operatorname{Ant}(P), \succeq \rangle$. By Lemma 2.2 (ii), T' is an upper semi-lattice. Next, it is straightforward to notice that $\sigma \in \operatorname{Ant}(P)$: σ is prime in $\langle \operatorname{Ant}(P), \succeq \rangle$ whenever σ is a singleton. Note that by the proof of Theorem 2.3, $\{b_{\{p\}}: p \in P\}$ generates $B(\operatorname{Ant}(P), \succeq)$.

(iii) implies (i). Let T' be as in (iii). Let t_0 be the least element of T'. Let $P = \operatorname{Prim}(T')$. (So $P \subseteq T'$.) Let $H' := \{b_t : t \in P\}$. By (iii)-(c)

$$B(T') = \operatorname{cl}_{B(T')}(H'). \tag{3}$$

Since $t_0 \in P$:

$$1^{B(T')} = b_{t_0} \in H'. \tag{4}$$

For $\{t(1),\ldots,t(n)\} \subseteq P$, $\bigcap_{i=1}^{n} b_{t(i)} = b_{t(1)\vee\cdots\vee t(n)} \neq 0$, and thus:

H has the finite intersection property. (5)

For $\{t(1), \ldots, t(m)\} \subseteq P$ and $\{s(1), \ldots, s(n)\} \subseteq P$. we have:

$$\bigcap_{i=1}^{m} b_{t(i)} \cap \bigcap_{j=1}^{n} -b_{s(j)} = \emptyset \quad \text{whenever there are } i \text{ and } j \text{ so that } s(j) \le t(i).$$
(6)

To see that (6) holds set $t = \bigvee_i t(i)$. So the left hand side of (6) is equivalent to $b_t \subseteq \bigcup_{j=1}^n b_{s(j)}$. In other words, $t \in \bigcup_{j=1}^n b_{s(j)}$. i. e., $t \ge s(j)$ for some j. Since $s(j) \in P = \operatorname{Prim}(T')$, this is equivalent to say that there is i so that $t(i) \ge s(j)$.

Next, let $H := \{V_p : p \in P\} \subseteq F(P)$ and $f : H' \to H$ defined by $f(b_p) = V_p$. By (6), Lemma 1.1 (iv) and using Sikorski's Criterion, f extends to a monomorphism \hat{f} from $cl_{B(T')}(H')$ into F(P). By (3), Dom(f) = B(T'), and since H generates F(P), \hat{f} is actually onto and thus, an isomorphism.

The following proposition summarizes the relationship between T and P whenever $B(T) \cong F(P)$.

- **Proposition 2.5.** (i) If a poset $\langle P, \leq \rangle$ with a greatest element is so that $F(P) \cong B(T)$, then T may be chosen canonically to be $\langle T, \leq \rangle = \langle \operatorname{Ant}(P), \succeq \rangle$.
 - (ii) If an upper semi-lattice T is so that $B(T) \cong F(P)$, then an upper semi-lattice T' may be chosen so that $B(T) \cong B(T') = \operatorname{cl}_{B(T')}(\{b_t : t \in \operatorname{Prim}(T')\})$ and $P \cong \{b_t : t \in \operatorname{Prim}(T')\}.$

3. Normal form of non-zero elements in the free poset algebra F(P)

In this section we show, by Lemma 3.4, that any non-zero element of F(P) has a decomposition into normal form as it is the case in the class of pseudo-tree algebras see, for instance, [2] and [6, p. 51]. Unfortunately, this representation of elements, here in the free poset algebra F(P), is not unique. Using symmetric difference Δ , instead, we shall see that Theorem 3.5 gives uniqueness in normal form of non-zero elements.

Before we give next lemma, recall that if P is a poset then $\langle \operatorname{Fs}(P), \subseteq \rangle$ is a poset too. Thus, we consider the tail algebra over $\langle \operatorname{Fs}(P), \subseteq \rangle$. For notational purposes, we use small letters for elements of $\operatorname{Fs}(P)$, and \leq denotes the inclusion relation. Thus, for $p \in P$, we set $h_p = P^{\geq p}$. Hence, in the tail algebra $B(\langle \operatorname{Fs}(P), \subseteq \rangle)$:

$$b_{h_p} = \{ x \in \operatorname{Fs}(P) : x \ge h_p \}$$

The following Lemmas follow easily.

Revista Matemática Complutense 2004, 17; Núm. 1, 169–179

174

Lemma 3.1. Let P be a poset and $q \in P$. We have $V_q = b_{h_q}$.

Lemma 3.2. Let P be a poset and $p, q \in P$.

- (i) $p \leq q$ iff $h_q \leq h_p$.
- (ii) $p \parallel q$ iff $h_q \parallel h_p$.
- (iii) For each $q \in P$, $h_q \in Prim(Fs(P))$.
- (iv) $\bigcap_{i\in\sigma} V_{q(i)} = \bigcap_{i\in\sigma} b_{h_{q(i)}} = b_{\bigvee_{i\in\sigma} h_{q(i)}}$ for each finite set σ .

Let P be a poset. Let

$$T^P := \left\{ \bigvee_{i=1}^{N} h_{q(i)} : \{q(i) : i \in \sigma\} \in \operatorname{Ant}(P) \right\}.$$

Before we state next Lemma, we denote T^P by T.

Lemma 3.3. Assume that $\langle P, \leq \rangle$ is a poset with a greatest element ∞ . Then:

- (i) $V_{\infty} = \operatorname{Fs}(P);$
- (ii) $\langle T, \leq \rangle$ is an upper semi-lattice with a least element h_{∞} ;
- (iii) For each $f \in T$, $-b_f = b_{h_{\infty}} \cdot -b_f$ and $h_{\infty} \leq f$;
- (iv) For all $f, g \in T$ we have:
 - (a) $f \leq g$ iff $b_g \cdot -b_f = \emptyset$.
 - (b) If $f \leq g$, then $b_g \cdot -b_f = b_g \cdot -b_{f \vee g}$.

Next, we prove the first lemma concerning the decomposition of non zero elements in the free Boolean algebra F(P).

Lemma 3.4 (First normal form). Every $b \in F(P) \setminus \{0\}$ can be written as $b = e_1 + \cdots + e_n$ where $e_i \cdot e_j = 0$ for $i \neq j$, and for every $i \in \{1, \cdots, n\}$, either $e_i = b_{h_i}$, or there is a finite anti-chain $\{f_1, \cdots, f_m\}$ in $\langle T, \leq \rangle$ such that $e_i = b_{h_i} \cdot -(b_{f_1} + \cdots + b_{f_m})$.

Proof. Working out the proof, as in Proposition 4.4 in [6, p. 51], it suffices to show that each elementary product $\prod_{i=1}^{n} \varepsilon_i V_{q_i}$ can be written, in F(P), under the form $b_h \cdot -(b_{f_1} + \cdots + b_{f_m})$ with $h, f_i \in T$, $h < f_i$, and $\{f_1, \cdots, f_m\}$ is an anti-chain.

Note that

$$\prod_{i=1}^{n} V_{q_i} = \bigcap_{i=1}^{n} V_{q_i} = \bigcap_{i=1}^{n} b_{h_{q_i}} = b_{\bigvee_{1 \le i \le n} h_{q_i}}$$

and that, by Lemma 3.3 (iii),

$$\prod_{i=1}^{n} -V_{q_i} = \bigcap_{i=1}^{n} (-b_{h_{q_i}}) = \bigcap_{i=1}^{n} (b_{h_{\infty}} \cdot -b_{h_{q_i}}) = b_{h_{\infty}} \cdot -(b_{h_{q_1}} + \dots + b_{h_{q_n}})$$

So we may assume that there are i, j so that $\varepsilon_i = 1$ and $\varepsilon_j = -1$. Thus $\prod_{i=1}^{n} \varepsilon_i V_{q_i}$ can be written as,

$$\prod_{i=1}^{n} \varepsilon_{i} V_{q_{i}} = V_{\alpha(1)} \cdots V_{\alpha(k)} \cdot -V_{\beta(1)} \cdots -V_{\beta(l)}$$
$$= b_{h_{\alpha(1)}} \cdots b_{h_{\alpha(k)}} \cdot -b_{h_{\beta(1)}} \cdots -b_{h_{\beta(l)}}$$
$$= b_{\vee_{1 < i < k} h_{\alpha(i)}} \cdot -b_{h_{\beta(1)}} \cdots -b_{h_{\beta(l)}}$$

Now, set $h = \bigvee_{1 \le i \le k} h_i$. So,

$$\prod_{i=1}^{n} \varepsilon_i V_{q_i} = b_h \cdot -b_{h_{\beta(1)}} \cdot \dots - b_{h_{\beta(l)}}$$
$$= (b_h \cdot -b_{h_{\beta(1)}}) \cdot (b_h \cdot -b_{h_{\beta(2)}}) \cdot \dots (b_h \cdot -b_{h_{\beta(l)}})$$

Since $\prod_{i=1}^{n} \varepsilon_i V_{q_i} \neq 0$, by Lemma 3.3 (iv)-(b), for each $j \in \{1, \dots, l\}$ either $h < h_{\beta(j)}$ or $h \parallel h_{\beta(j)}$; moreover $b_h \cdot -b_{h_{\beta(j)}} = b_h \cdot -b_{f(j)}$ with h < f(j) and $f(j) \in T$. So,

$$\prod_{i=1}^{n} \varepsilon_{i} V_{q_{i}} = (b_{h} \cdot -b_{f(1)}) \cdot \dots \cdot (b_{h} \cdot -b_{f(l)}) = b_{h} \cdot -(b_{f(1)} + \dots + b_{f(l)})$$

Now, by canceling some of $b_{f(i)}$'s, if necessary, we may write

$$\prod_{i=1}^{n} \varepsilon_i V_{q_i} = b_h \cdot - (b_{f(i(1))} + \dots + b_{f(i(m))})$$

where $\{f(i(1)), \ldots, f(i(m))\}$ is an anti-chain and h < f(i(k)) for each k. This finishes up the proof of Lemma 3.4.

Remark. Notice that normal form of non zero elements of F(P), given by Lemma 3.4, may not be unique as shown by the following counterexample. Let $p, q \in P$ with $p \parallel q$ and set $b = b_{h_p} + b_{h_q}$. we have

$$b = \underbrace{b_{h_p} \cdot -b_{h_p \vee h_q}}_{e_1} + \underbrace{b_{h_q}}_{e_2} = \underbrace{b_{h_p}}_{e'_1} + \underbrace{b_{h_q} \cdot -b_{h_p \vee h_q}}_{e'_2}$$

Indeed, by Lemma 3.3 (iv)-(b), $b_{h_p} \cdot -b_{h_p \vee h_q} = b_{h_p} \cdot -b_{h_q}$. Thus,

$$b_{h_p} \cdot -b_{h_p \vee h_q} + b_{h_q} = b_{h_p} \cdot -b_{h_q} + b_{h_q} = b_{h_p} + b_{h_q} = b.$$

Next, before we state the main theorem in this section, recall that whenever P is a poset, $T := \{\bigvee_{i \in \sigma} h_{q(i)} : \{q(i) : i \in \sigma\} \in \operatorname{Ant}(P)\}$ will be the upper semi-lattice that is going to be referred to in the next theorem.

Theorem 3.5 (Normal form of non-zero elements in F(P)). Every $b \in F(P) \setminus \{0\}$ has a unique decomposition as $b = b_{g_1} \triangle \cdots \triangle b_{g_n}$, where $g_i \in T$, and $g_i \neq g_j$ for $i \neq j$.

The proof of this theorem uses the following lemma.

Lemma 3.6. (i) For all $f, h \in T$, $b_h \cdot -b_f = b_h \triangle b_{f \lor h}$,

- (ii) If $b = b_{f_1} \triangle \cdots \triangle b_{f_n}$ then $b \cdot -b_f = \triangle_{i=1}^m b_{g_i}$ where $g_i \in T$.
- (iii) If $h < f_i$ (for every i), then $b_h \cdot -(b_{f_1} + \dots + b_{f_m}) = \triangle_{i=1}^m b_{g_i}$ —where $g_i \in T$.
- (iv) Set $\min \{f_1, \dots, f_n\} = \{f_{i(1)}, \dots, f_{i(p)}\}$. Then,

$$b_{f_1} \triangle \cdots \triangle b_{f_n} \subseteq b_{f_{i(1)}} \cup \cdots \cup b_{f_{i(p)}}$$
 and $f_{i(k)} \in b_{f_1} \triangle \cdots \triangle b_{f_n}$.

(v) If $b_{f_1} \triangle \cdots \triangle b_{f_n} = b_{g_1} \triangle \cdots \triangle b_{g_m} \neq 0$, then there are i, j so that $b_{f_i} = b_{g_j}$.

Proof. (i) If $f \leq h$ then $b_h \cdot -b_f = \emptyset = b_h \triangle b_h$. If $f \leq h$, by Lemma 3.3 (iv)-(b) we have, $b_h \cdot -b_f = b_h \cdot -b_{f \vee h}$ and,

$$b_h \triangle b_{f \lor h} = b_h \cdot -b_{f \lor h} + \underbrace{b_{f \lor h} \cdot -b_h}_{=\emptyset} = b_h \cdot -b_{f \lor h}$$
$$-b_f = b_h \land b_{f \lor \downarrow h}$$

Thus, $b_h \cdot -b_f = b_h \triangle b_{f \vee h}$ (ii) Let

$$b = b_{f_1} \triangle \cdots \triangle b_{f_n}$$

$$b \cdot -b_f = (b_{f_1} \triangle \cdots \triangle b_{f_n}) \cdot -b_f$$

$$= (b_{f_1} \cdot -b_f) \triangle \cdots \triangle (b_{f_n} \cdot -b_f)$$

$$= (b_{f_1} \triangle b_{f \lor f_1}) \triangle \cdots \triangle (b_{f_n} \triangle b_{f \lor f_n})$$

(iii) Let $h < f_i$ and show by induction on n that:

$$b_h \cdot -\sum_{i=1}^n b_{f_i} = \triangle_{i=1}^m b_{g_i}$$

Suppose that we have shown what we wanted up to n-1. Let $b = b_h \cdot -(b_{f_1} + \dots + b_{f_{n-1}} + b_{f_n})$ and set $b' = b_h \cdot -(b_{f_1} + \dots + b_{f_{n-1}})$. So, $b = b_h \cdot -b_{f_1} \cdot \dots - b_{f_{n-1}} \cdot -b_{f_n} = b' \cdot -b_{f_n}$. Now, by induction hypothesis $b' = \triangle_{i=1}^k b_{g_i}$. So, by (ii), $b = b' \cdot -b_{f_n} = (\triangle_{i=1}^k b_{g_i}) \cdot -b_{f_n} = \triangle_{j=1}^m b_{h_j}$. (iv) If f < g then $b_g \subseteq b_f$. So,

$$b_{f_1} \triangle \cdots \triangle b_{f_n} \subseteq b_{f_1} \cup \cdots \cup b_{f_n} \subseteq b_{f_{i(1)}} \cup \cdots \cup b_{f_{i(p)}}$$

For each $k \in \{1, \dots, p\}$, $f_{i(k)} \in b_{f_1} \triangle \dots \triangle b_{f_n}$. Indeed, $f_{i(k)} \in b_{f_{i(k)}}$ and for $j \neq i(k)$, $f_{i(k)} \notin b_{f_j}$ (if not $f_j < f_{i(k)}$). So,

$$f_{i(k)} \in b_{f_{i(k)}} \triangle (\triangle_{j \neq i(k)} b_{f_j}) = b_{f_1} \triangle \cdots \triangle b_{f_n}.$$

Tail and free poset algebras

(v) Suppose $b := b_{f_1} \triangle \cdots \triangle b_{f_n} = b_{g_1} \triangle \cdots \triangle b_{g_m}$, where $f_i \neq f_j$ and $g_k \neq g_l$ for $i \neq j$ and $k \neq l$. Let

 $\min\{f_1, \cdots, f_n\} = \{f_{i(1)}, \dots, f_{i(p)}\}, \qquad \min\{g_1, \dots, g_m\} = \{g_{j(1)}, \cdots, g_{j(q)}\}$

By (iv) we have:

$$b \subseteq b_{f_{i(1)}} \cup \dots \cup b_{f_{i(p)}} \tag{7}$$

$$b \subseteq b_{g_{j(1)}} \cup \dots \cup b_{g_{j(q)}} \tag{8}$$

for all
$$k$$
 and ℓ , $f_{i(k)} \in b$ and $g_{i(\ell)} \in b$. (9)

Let k be given. So, by (9) $f_{i(k)} \in b$. By (8), let $\ell(k)$ be such that $f_{i(k)} \geq g_{j(\ell(k))}$. Similarly (using (7) instead of (8)), let k' be such that $g_{j(\ell(k))} \geq f_{i(k')}$. Hence $f_{i(k)} \geq f_{i(k')}$, and thus $f_{i(k)} = f_{i(k')} = g_{j(\ell(k))}$.

Now we prove Theorem 3.5.

Proof of Theorem 3.5. We prove first the existence. Let $b \in F(P)$. By Lemma 3.4, $b = \sum_{i=1}^{n} e_i$ where $e_i \cdot e_j = \emptyset$ for $i \neq j$ and thus $b = \triangle_{i=1}^{n} e_i$. In addition, by Lemma 3.4 again, either $e_i = b_{h_i}$, or $e_i = b_{h_i} \cdot -(\sum_{j=1}^{n} b_{f_j})$, and by Lemma 3.6 (iii) $e_i = \triangle_{i=1}^{m} b_{g_i}$ $(g_i \in T)$.

We prove the uniqueness. Let $b = \triangle_{i=1}^{n} b_{f_i} = \triangle_{j=1}^{m} b_{g_j} \neq 0$. By Lemma 3.6(v) there are i, j so that $b_{f_i} = b_{g_j}$. Without loss of generality, i = 1 = j. So $f_1 = g_1 := h$. We have $b_h \triangle b = \triangle_{i=2}^{n} b_{f_i} = \triangle_{j=2}^{m} b_{g_j}$. The uniqueness follows. \Box

4. Examples of free poset algebras F(P)

The following proposition characterizes atoms in F(P). To this end, let Atom(F(P)) denotes the set of atoms of F(P), and recall that, in $F(P) = \langle V_q : q \in P \rangle$, each element of F(P) is a finite union of $\bigcap_{p \in \sigma} V_p \cap \bigcap_{q \in \tau} -V_q$. The proof of the next result is obvious.

Proposition 4.1. Let P be a poset. The following properties are equivalent.

- (i) $b \in Atom(F(P))$.
- (ii) There are finite subsets σ and τ of P such that $b = \bigcap_{p \in \sigma} V_p \cap \bigcap_{q \in \tau} -V_q$ and for every $s \in P$, either there is $p \in \sigma$ such that $s \ge p$ or there is $q \in \tau$ such that $s \le q$.

Let us give some examples.

1. Let C_1, C_2 be two chains with least elements α, β respectively. Then $B(C_1 \times C_2) \cong F(P)$, for some poset P. Indeed,

$$Prim(C_1 \times C_2) = \{ (\alpha, q) : q \in C_2 \} \cup \{ (p, \beta) : p \in C_1 \}.$$

Revista Matemática Complutense 2004, 17; Núm. 1, 169–179

178

Moreover $b_{(s,t)} = b_{(\alpha,t)} \lor b_{(s,\beta)}$. Thus $B(C_1 \times C_2) = \operatorname{cl}(\{b_{(s,t)} : (s,t) \in \operatorname{Prim}(C_1 \times C_2)\})$. Now by Theorem 2.4 (iii), $B(C_1 \times C_2) \cong F(P)$, for some poset P.

2. For every set I, there is a poset $\langle P, \leq \rangle$ with a greatest element so that the free Boolean algebra over I is isomorphic to F(P). (Consider I as an anti-chain and $P = I \cup \{\infty\}$ with $p < \infty$ for every $p \in I$.)

The following proposition shows that free poset algebras is a proper subclass of upper semi-lattice algebras.

Proposition 4.2. Let T be an anti-chain of size \aleph_1 so that $x \vee y =_{def} \infty$ for all $x, y \in T$. Then $B(T \cup \{\infty\})$ is an upper semi-lattice algebra that is not a free poset algebra.

Proof. Suppose the contrary and pick P so that $\mathcal{I}d(T \cup \{\infty\}) = \mathcal{U}lt(B(T \cup \{\infty\}))$ and Fs(P) are homeomorphic spaces. It follows that Fs(P) is a scattered topological space and thus $|Fs(P)| = |P| = \aleph_1$, see [5] and P has no infinite anti-chains see [5]. Next, by Ben Dushnik-Miller theorem, see [4], either there is an infinite set of incomparable elements in (P, \leq) or there is a chain of size \aleph_1 in (P, \leq) . Now since all antichains in (P, \leq) are finite, it follows that there is a chain C in (P, \leq) of size \aleph_1 . Thus, since C is scattered, ω_1 or ω_1^* embeds in (C, \leq) see [7]. Therefore there are at least two limit points in Fs(P) which is a contradiction since the set of limit points of $\mathcal{I}d(T \cup \{\infty\})$ is reduced to $\{\infty\}$.

Acknowledgements. The authors thank the referee for his suggestions to use final segments instead of increasing functions as well as his fruitful remarks.

References

- [1] U. Abraham, R. Bonnet, W. Kubis, and H. SiKaddour, *On poset Boolean algebras* (to appear in Order).
- [2] M. Bekkali, On superatomic Boolean algebras, Boulder, Colorado, U.S.A., 1991, Ph.D. dissertation.
- [3] M. Bekkali and D. Zhani, Stone spaces and Ideals of posets, International Conference (JIM' 2003), Discovery and Discrete Mathematics, Metz University, France, pp. 131–136, ISBN 2-7261-1256-0.
- [4] B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600–610.
- [5] R. Fraïssé, *Theory of relations*, Studies in Logic and the Foundations of Mathematics, vol. 145, North-Holland Publishing Co., Amsterdam, 2000, ISBN 0-444-50542-3.
- [6] Sabine Koppelberg, Handbook of Boolean algebras. Vol. 1, North-Holland Publishing Co., Amsterdam, 1989, ISBN 0-444-70261-X.
- [7] J. G. Rosenstein, *Linear orderings*, Pure and Applied Mathematics, vol. 98, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1982, ISBN 0-12-597680-1.
- [8] H. SiKaddour, Ensembles de générateurs d'une algèbre de Boole, Université Claude-Bernard (Lyon 1), 1988, Diplôme de Doctorat.