A capacity approach to the Poincaré

al de Revistas Científicas Complutense

CORE

Metadata, citation and similar papers at core.ac.uk

Petteri HARJULEHTO and Peter HÄSTÖ

Department of Mathematics P.O. Box 4 (Yliopistonkatu 5) FIN-00014 University of Helsinki, Finland petteri.harjulehto@helsinki.fi, peter.hasto@helsinki.fi

Recibido: 7 de Mayo de 2003 Aceptado: 10 de Septiembre de 2003

ABSTRACT

We study the Poincaré inequality in Sobolev spaces with variable exponent. Under a rather mild and sharp condition on the exponent p we show that the inequality holds. This condition is satisfied e. g. if the exponent p is continuous in the closure of a convex domain. We also give an essentially sharp condition for the exponent p as to when there exists an imbedding from the Sobolev space to the space of bounded functions.

 $K\!ey$ words: Sobolev spaces, variable exponent, Poincaré inequality, Sobolev imbedding, continuity

2000 Mathematics Subject Classification: 46E35

1. Introduction

There has recently been a surge of interest in Sobolev spaces with variable exponent, cf. [4–7, 9–11, 17, 22]. These spaces, introduced in [17], are the natural generalization of Sobolev spaces to the non-homogeneous situation; they have been used e. g. in modeling electrorheological fluids, see the book of M. Růžička, [22]. Lebesgue and Sobolev spaces with variable exponent share many properties with their classical equivalents, but there is also some crucial differences. For instance the Hardy-Littlewood maximal

The second author was supported financially by the Academy of Finland.

Rev. Mat. Complut. 2004, 17; Núm. 1, 129–146

129

ISSN: 1139-1138 http://dx.doi.org/10.5209/rev_REMA.2004.v17.n1.16790 operator is bounded on $L^{p(\cdot)}$ if the exponent is 0-Hölder continuous (i. e. satisfies (10)) and $1 < \operatorname{ess\,inf} p \leq \operatorname{ess\,sup} p < \infty$, [5]. If the exponent is not 0-Hölder continuous, then the maximal operator need not be bounded on $L^{p(\cdot)}$, [21].

The Poincaré inequality, although of great importance in classical non-linear potential theory (especially in metric spaces) has not been previously studied in the case of variable exponent Sobolev spaces. Our first result, Theorem 2.2, is the following: If $D \subset \mathbb{R}^n$ is smooth domain, say a John domain, and the essential supremum of p is less than the Sobolev conjugate of the essential infimum of p then the Poincaré inequality

$$||u - u_B||_{L^{p(\cdot)}(D)} \le C||\nabla u||_{L^{p(\cdot)}(D)}$$

holds for every $u \in W^{1,p(\cdot)}(D)$, where $u_B = \int u(x)dx$. Here the constant C depends on n, p, diam(D) and the John constant of D. We give an example which shows that the condition for p is sharp even in a ball. It follows from this that if p is continuous in the closure of a convex domain then the Poincaré inequality holds (Corollary 2.7).

In classical theory the constant of the Poincaré inequality is $C \operatorname{diam}(D)$. It is possible to achieve this also for variable exponent Sobolev spaces, as we prove in Corollary 2.10. The price we have to pay is that the exponent p has to be 0-Hölder continuous.

Sobolev imbeddings in variable exponent Sobolev spaces have been studied by many authors in the case when p is less than the dimension, see [6,9-11]. We give two results in the case when p is greater than the dimension. We prove a result for continuity of the Sobolev functions, namely that every Sobolev function is continuous if the exponent is locally bounded away from the dimension. We show that if a domain satisfies a uniform interior cone condition and $p(x) \ge n + f(d(x, \partial G))$ for every x and a certain increasing function f then there exists an imbedding from the variable exponent Sobolev space to L^{∞} . Our condition is essentially sharp.

Notation

We denote by \mathbb{R}^n the Euclidean space of dimension $n \ge 2$. For $x \in \mathbb{R}^n$ and r > 0 we denote an open ball with center x and radius r by B(x,r).

Let $A \subset \mathbb{R}^n$ and $p \colon A \to [1, \infty)$ be a measurable function (called a *variable exponent* on A). We define $p_A^+ = \operatorname{ess\,sup}_{x \in A} p(x)$ and $p_A^- = \operatorname{ess\,inf}_{x \in A} p(x)$. If $A = \mathbb{R}^n$ we write $p^+ = p_{\mathbb{R}^n}^+$ and $p^- = p_{\mathbb{R}^n}^-$.

Let $\Omega \subset \mathbb{R}^n$ be an open set. We define the generalized Lebesgue space $L^{p(\cdot)}(\Omega)$ to consist of all measurable functions $u \colon \Omega \to \mathbb{R}$ such that

$$\varrho_{p(\cdot)}(\lambda u) = \int_{\Omega} |\lambda u(x)|^{p(x)} dx < \infty$$

for some $\lambda > 0$. The function $\varrho_{p(\cdot)} : L^{p(\cdot)}(\Omega) \to [0, \infty)$ is called the *modular* of the space $L^{p(\cdot)}(\Omega)$. One can define a norm, the so-called *Luxemburg norm*, on this space by the formula $||u||_{p(\cdot)} = \inf\{\lambda > 0 : \varrho_{p(\cdot)}(u/\lambda) \leq 1\}$. Notice that if $p \equiv p_0$ then

 $L^{p(\cdot)}(\Omega)$ is the classical Lebesgue space, so there is no danger of confusion with the new notation.

The generalized Sobolev space $W^{1,p(\cdot)}(\Omega)$ is the space of measurable functions $u\colon \Omega\to\mathbb{R}$ such that u and the absolute value of the distributional gradient $\nabla u=(\partial_1 u,\dots,\partial_n u)$ are in $L^{p(\cdot)}(\Omega)$. The function $\varrho_{1,p(\cdot)}\colon W^{1,p(\cdot)}(\Omega)\to [0,\infty)$ is defined as $\varrho_{1,p(\cdot)}(u)=\varrho_{p(\cdot)}(u)+\varrho_{p(\cdot)}(|\nabla u|)$. The norm $\|u\|_{1,p(\cdot)}=\|u\|_{p(\cdot)}+\|\nabla u\|_{p(\cdot)}$ makes $W^{1,p(\cdot)}(\mathbb{R}^n)$ a Banach space.

See [17] for basic properties of variable exponent Lebesgue and Sobolev spaces.

2. The Poincaré inequality

In this section we give a relatively mild condition on the exponent for the Poincaré inequality to hold. We also show that this condition is, in a certain sense, the best possible. For Sobolev functions with zero boundary values the Poincaré inequality was given in [10, Lemma 3.1] and considerably generalized in [14].

Recall the following well known Sobolev-Poincaré inequality. By q^* we denote the Sobolev conjugate of q < n, $q^* = nq/(n-q)$.

Lemma 2.1. Let $D \subset \mathbb{R}^n$ be a bounded John domain. Let $1 \leq p < n$ and $p \leq q \leq p^*$ be fixed exponents. Then

$$||u - u_D||_q \le C(n, p, \lambda) |D|^{1/n + 1/q - 1/p} ||\nabla u||_p$$

for all functions $u \in W^{1,p}(D)$, where λ is the John constant. If $p \geqslant n$ and $q < \infty$ then

$$||u - u_D||_q \le C(n, q, \lambda)|D|^{1/n + 1/q - 1/p}||\nabla u||_p$$

for all functions $u \in W^{1,p}(D)$.

Proof. The case p < n and $q = p^*$ is by B. Bojarski [3, (6.6)]. The case $q < p^*$ follows from this by standard arguments: we choose $s \in [1, n)$ such that $s^* = q$ (or s = 1 if $q < 1^*$). By Hölder's inequality and Bojarski's result we obtain

$$\left(\oint_{D} |u - u_{D}|^{q} dx \right)^{\frac{1}{q}} \leq |D|^{-\frac{1}{s^{*}}} \left(\int_{D} |u - u_{D}|^{s^{*}} dx \right)^{\frac{1}{s^{*}}} \leq C|D|^{-\frac{1}{s^{*}}} \left(\int_{D} |\nabla u|^{s} dx \right)^{\frac{1}{s}}$$

$$= C|D|^{\frac{1}{s} - \frac{1}{s^{*}}} \left(\oint_{D} |\nabla u|^{s} dx \right)^{\frac{1}{s}} \leq C|D| \left(\oint_{D} |\nabla u|^{p} dx \right)^{\frac{1}{p}},$$

which is clearly equivalent to the inequalities in the theorem.

Theorem 2.2. Let $D \subset \mathbb{R}^n$ be a bounded John domain, with constant λ . If $p_D^+ \leqslant (p_D^-)^*$ or $p_D^- \geqslant n$ and $p_D^+ < \infty$ then there exists a constant $C = C(n, p_D^-, p_D^+, \lambda)$ such that

$$||u - u_D||_{p(\cdot)} \le C(1 + |D|)^2 |D|^{\frac{1}{n} + \frac{1}{p_D^+} - \frac{1}{p_D^-}} ||\nabla u||_{p(\cdot)}$$
(1)

for every $u \in W^{1,p(\cdot)}(D)$.

Proof. Assume first that $p_D^+ \leqslant (p_D^-)^*$. Since $p(x) \leqslant p_D^+ \leqslant (p_D^-)^*$ we obtain by [17, Theorem 2.8] and Lemma 2.1 that

$$\begin{split} \|u - u_D\|_{p(\cdot)} & \leqslant (1 + |D|) \|u - u_D\|_{p_D^+} \\ & \leqslant C(n, p_D^-, \lambda) \left(1 + |D|\right) |D|^{\frac{1}{n} + \frac{1}{p_D^+} - \frac{1}{p_D^-}} \|\nabla u\|_{p_D^-} \\ & \leqslant C(n, p_D^-, \lambda) \left(1 + |D|\right)^2 |D|^{\frac{1}{n} + \frac{1}{p_D^+} - \frac{1}{p_D^-}} \|\nabla u\|_{p(\cdot)}. \end{split}$$

The case $p_D^- \geqslant n$ is similar, the only difference is that the constant in the second inequality in the above chain of inequalities is $C(n, p_D^+, \lambda)$.

Remark 2.3. John domains are almost the right class of irregular domains for the classical Sobolev-Poincaré inequality, see [3], [1] and [2, Theorem 4.1].

Previous results on Sobolev imbeddings in the variable exponent setting have been derived in domains whose boundary is locally a graph of a Lipschitz continuous function, see [9–11]. It is therefore of interest to note that every domain, whose boundary is locally the graph of a Lipschitz continuous function, is a John domain, see [19]. In particular every ball is a John domain.

If D is a ball in Theorem 2.2, then the constant in inequality (1) is the classical Sobolev-Poincaré inequality in a ball, see for example [18, Corollary 1.64, p. 38].

The next example shows that if $p_D^- < n$ and $p_D^+ > (p_D^-)^*$ then there need not exist a constant C > 0 such that inequality (1) holds for every $u \in W^{1,p(\cdot)}(D)$.

Recall that the *variational capacity* for fixed p, $cap_p(E, F; D)$, is defined for sets E, F and open D by

$$\operatorname{cap}_p(E, F; D) = \inf_{u \in L(E, F; D)} \int_D |\nabla u|^p dx,$$

where L(E, F; D) is the set of continuous functions u that satisfy $u|_{E\cap D} = 1$, $u|_{F\cap D} = 0$ and $|\nabla u| \in L^{p(\cdot)}(D)$. We use the short-hand notation $\operatorname{cap}(E, F)$ for $\operatorname{cap}(E, F; \mathbb{R}^n)$, similarly for L(E, F). For more information on capacities see [15, Chapter 2] or [20]. The following lemma will be used several times to estimate the gradient of variable exponent functions.

Lemma 2.4 ([15, Example 2.12, p. 35]). For fixed $p \neq 1, n$, arbitrary $x \in \mathbb{R}^n$ and R > r > 0 we have

$$\operatorname{cap}_p(\mathbb{R}^n \setminus B(x,R), B(x,r)) = \omega_{n-1} \left| \frac{p-n}{p-1} \right|^{p-1} \left| R^{(p-n)/(p-1)} - r^{(p-n)/(p-1)} \right|^{1-p}.$$

Example 2.5. Our aim is construct a sequence of functions in $B = B(0,1) \subset \mathbb{R}^2$ for which the constant in the Poincaré inequality (1) goes to infinity. Let $B_i = B(2^{-i}e_1, \frac{1}{4}2^{-i}) \subset \mathbb{R}^2$ and $B_i' = B(2^{-i}e_1, \frac{1}{8}2^{-i^2}) \subset \mathbb{R}^2$ for every $i = 1, 2, \ldots$ and let $1 < p_1 < 2$. Choose a function $u_i \in C_0^{\infty}(B_i)$ with $u_i|_{B_i'} = 1$ be such that

$$\left(2\operatorname{cap}_{p_1}(B_i', \mathbb{R}^2 \setminus B_i)\right)^{\frac{1}{p_1}} \geqslant \|\nabla u_i\|_{L^{p_1}(B_i)}.$$
 (2)

Let $p_2 > 2$ and define $p(x) = p_1 \chi_{B_i \setminus B'_i}(x) + p_2 \chi_{B'_i}(x)$ for $x \in B$ with positive first coordinate. Since $\nabla u_i = 0$ in B'_i we obtain

$$\|\nabla u_i\|_{L^{p(\cdot)}(B_i)} = \|\nabla u_i\|_{L^{p_1}(B_i)}.$$
(3)

Let $\tilde{B}_i = B(-2^{-i}e_1, \frac{1}{4}2^{-i})$. We extend u_i to B as an odd function of the first coordinate in \tilde{B}_i and by zero elsewhere. We also extend p to B as an even function of the first coordinate. We denote the extensions by \tilde{u}_i and \tilde{p} . By (2) and (3) we obtain

$$2^{1+\frac{1}{p_1}} \left(\operatorname{cap}_{p_1}(B_i', \mathbb{R}^2 \setminus B_i) \right)^{\frac{1}{p_1}} \geqslant \|\nabla \tilde{u}_i\|_{L^{\tilde{p}(\cdot)}(B)}.$$

By Lemma 2.4 this yields

$$\|\nabla \tilde{u}_i\|_{L^{\tilde{p}(\cdot)}(B)} \leqslant C(p_1) \left| \frac{1}{4} 2^{-i\frac{p_1-2}{p_1-1}} - \frac{1}{8} 2^{-i^2\frac{p_1-2}{p_1-1}} \right|^{\frac{1-p_1}{p_1}}. \tag{4}$$

For large i the right hand side is approximately equal to $C(p_1)2^{-i^2\frac{2-p_1}{p_1}}$. Since $(\tilde{u}_i)_B=0$, we obtain

$$\|\tilde{u} - (\tilde{u}_i)_B\|_{L^{\tilde{p}(\cdot)}(B)} = \|\tilde{u}\|_{L^{\tilde{p}(\cdot)}(B)} \geqslant |B_i'|^{\frac{1}{p_2}} \approx 2^{-i^2 \frac{2}{p_2}}.$$
 (5)

By inequalities (4) and (5) we find that

$$\frac{\|\tilde{u} - (\tilde{u}_i)_B\|_{L^{\tilde{p}(\cdot)}(B)}}{\|\nabla \tilde{u}_i\|_{L^{\tilde{p}(\cdot)}(B)}} \geqslant C(p_1) 2^{i^2(\frac{2}{p_1} - 1 - \frac{2}{p_2})} \to \infty$$

as
$$i \to \infty$$
 if $\frac{2}{p_1} - 1 - \frac{2}{p_2} > 0$, that is, if $p_2 > \frac{2p_1}{2-p_1} = p_1^*$.

We next show that the condition $p_D^+ \leq (p_D^-)^*$ in Theorem 2.2 can be replaced by a set of local conditions.

Theorem 2.6. Let $D \subset \mathbb{R}^n$ be a bounded John domain. Assume that there exist John domains G_i , i = 1, ..., j, so that $G_i \subset D$ for every i, $D = \bigcup_{i=1}^j G_i$ and either $p_{G_i}^+ \leq (p_{G_i}^-)^*$ or $p_{G_i}^- \geq n$ for every i. Then there exists a constant C > 0 such that

$$||u - u_D||_{p(\cdot)} \leqslant C||\nabla u||_{p(\cdot)} \tag{6}$$

for every $u \in W^{1,p(\cdot)}(D)$. The constant C depends on n, diam(D), $|G_i|$, p and the John constants of D and G_i , i = 1, ..., j.

Proof. Using the triangle inequality of the norm we obtain

$$||u - u_D||_{L^{p(\cdot)}(D)} \leqslant \sum_{i=1}^{j} ||u - u_D||_{L^{p(\cdot)}(G_i)}$$

$$\leqslant \sum_{i=1}^{j} ||u - u_{G_i}||_{L^{p(\cdot)}(G_i)} + \sum_{i=1}^{j} ||u_D - u_{G_i}||_{L^{p(\cdot)}(G_i)}.$$
(7)

We estimate the first part of the sum using Theorem 2.2. This yields

$$||u - u_{G_i}||_{L^{p(\cdot)}(G_i)} \leq C(n, p_{G_i}, |G_i|, \lambda_i) ||\nabla u||_{L^{p(\cdot)}(G_i)}$$

$$\leq C(n, p_{G_i}, |G_i|, \lambda_i) ||\nabla u||_{L^{p(\cdot)}(D)}$$
(8)

for every $i=1,\ldots,j$. Here λ_i is the John constant of G_i . We next estimate the second part of the sum in (7) using the classical Poincaré inequality for the third inequality. We obtain

$$||u_{D} - u_{G_{i}}||_{L^{p(\cdot)}(G_{i})} \leq ||1||_{L^{p(\cdot)}(G_{i})} \oint_{G_{i}} |u(x) - u_{D}| dx$$

$$\leq ||1||_{L^{p(\cdot)}(G_{i})} |G_{i}|^{-1} \int_{D} |u(x) - u_{D}| dx$$

$$\leq C(n, \operatorname{diam}(D), \lambda) |G_{i}|^{-1} ||1||_{L^{p(\cdot)}(G_{i})} ||\nabla u||_{L^{1}(D)}$$

$$\leq C(n, \operatorname{diam}(D), \lambda) (1 + |D|) |G_{i}|^{-1} ||1||_{L^{p(\cdot)}(G_{i})} ||\nabla u||_{L^{p(\cdot)}(D)}$$

$$(9)$$

for every i = 1, ..., j. Here λ is the John constant of D. Now inequality (6) follows by inequalities (7), (8) and (9).

Corollary 2.7. Let $D \subset \mathbb{R}^n$ be a bounded convex domain and let $p \colon \overline{D} \to [1, \infty)$ be a continuous exponent. Then there exists a constant C > 0 such that

$$||u - u_D||_{p(\cdot)} \leqslant C||\nabla u||_{p(\cdot)}$$

for every $u \in W^{1,p(\cdot)}(\mathbb{R}^n)$.

Proof. Since p is continuous we find for every $x \in \overline{D}$ a constant r(x) > 0 such that either

$$p_{B(x,r(x))\cap D}^+ \le (p_{B(x,r(x))\cap D}^-)^* \text{ or } p_{B(x,r(x))\cap D}^- \ge n.$$

Since \overline{D} is compact it is possible to find finite covering of D with balls B(x, r(x)). It is easy to see that each $B(x, r(x)) \cap D$ is a John domain and hence the corollary follows by Theorem 2.6.

Sometimes it is useful to have better control over the constant in the Poincaré inequality as the domain D changes than we have in (1). In the fixed exponent case the constant of the Poincaré inequality is $C \operatorname{diam}(D)$. We show that this kind of constant is also possible for variable exponent Sobolev spaces. The price we have to pay for this is that the exponent p has to satisfy a much stronger condition in Theorem 2.8 than in Theorem 2.2; in Theorem 2.2 the exponent p could be discontinuous even in every point, but in Theorem 2.8 the exponent is 0-Hölder continuous.

Theorem 2.8. Let $D \subset \mathbb{R}^n$ be a bounded uniform domain. Let $p: D \to \mathbb{R}$ be such that $1 < p_D^- \leq p_D^+ < \infty$. Assume that there exists a constant C > 0 such that

$$|p(x) - p(y)| \leqslant \frac{C}{-\log|x - y|} \tag{10}$$

for every $x, y \in D$ with $|x - y| \leq \frac{1}{2}$. Then the inequality

$$||u - u_D||_{p(\cdot)} \le C \operatorname{diam}(D) \left(1 + \max \left\{ |D|^{1/p_D^+ - 1/p_D^-}, |D|^{1/p_D^- - 1/p_D^+} \right\} \right) ||\nabla u||_{p(\cdot)}, (11)$$

holds for every $u \in W^{1,p(\cdot)}(D)$. Here the constant C depends on the dimension n, the uniform constant of D and p.

Proof. Since $W_0^{1,p(\cdot)}(D) \hookrightarrow W^{1,1}(D)$ we obtain as in the proof of [12, Theorem 11] for every $u \in W^{1,p(\cdot)}(D)$ that

$$|u(x) - u(y)| \le C|x - y|(\mathbb{M}\nabla u(x) + \mathbb{M}\nabla u(y)) \tag{12}$$

for almost every $x, y \in D$. Here M is the Hardy-Littlewood maximal operator:

$$\mathbb{M}\nabla u(x) = \sup_{r>0} \int_{B(x,r)} |\nabla u(y)| dy,$$

with the understanding that $\nabla u = 0$ outside D. The constant C depends on the dimension n and the uniform constants of D.

Integrating inequality (12) over y we obtain

$$\left| u(x) - \int_{D} u(y) dy \right| \leqslant \int_{D} |u(x) - u(y)| dy$$
$$\leqslant C \operatorname{diam}(D) \Big(\mathbb{M} \nabla u(x) + \int_{D} \mathbb{M} \nabla u(y) dy \Big).$$

By Hölder's inequality [17, Theorem 2.1] this yields

$$|u(x) - u_D| \leqslant C \operatorname{diam}(D) \Big(\mathbb{M} \nabla u(x) + \frac{C(p) \|1\|_{L^{p'(\cdot)}(D)}}{|D|} \|\mathbb{M} \nabla u\|_{p(\cdot)} \Big).$$

Since the previous inequality holds point-wise, it is clear that we have an inequality also for the Lebesgue norms of both sides:

$$\begin{split} \|u-u_D\|_{p(\cdot)} & \leq C \operatorname{diam}(D) \left(\|\mathbb{M}\nabla u\|_{p(\cdot)} + \frac{C}{|D|} \|1\|_{p'(\cdot)} \|1\|_{p(\cdot)} \|\mathbb{M}\nabla u\|_{p(\cdot)} \right) \\ & \leq C \operatorname{diam}(D) \left(1 + |D|^{-1} \max\{|D|^{1+1/p_D^+ - 1/p_D^-}, |D|^{1+1/p_D^- - 1/p_D^+}\} \right) \|\mathbb{M}\nabla u\|_{p(\cdot)} \end{split}$$

By [5, Theorem 3.5] (see also [7, Remark 2.2]) the Hardy-Littlewood maximal operator is bounded, and so we obtain

$$||u - u_D||_{p(\cdot)} \le C \operatorname{diam}(D) \left(1 + \max \left\{ |D|^{1/p_D^+ - 1/p_D^-}, |D|^{1/p_D^- - 1/p_D^+} \right\} \right) ||\nabla u||_{p(\cdot)},$$

where the constant C depends on the dimension n, the uniform constant of D and p.

Remark 2.9. We refer to [19] for basic properties of uniform domains: Every uniform domain is a John domain. Every domain, whose boundary is locally a graph of a Lipschitz continuous function, is a uniform domain. In particular if D is a ball then the constant in (11) depends on the dimension n and p.

Corollary 2.10. Let p be as in the previous theorem. If B is a ball with $|B| \leq 1$ then

$$||u - u_B||_{p(\cdot)} \leq C \operatorname{diam}(B) ||\nabla u||_{p(\cdot)},$$

where the constant C does not depend on B.

Proof. Since $|B| \leq 1$ we have

$$\max\left\{|B|^{1/p_B^+-1/p_B^-},|B|^{1/p_B^--1/p_B^+}\right\}=|B|^{1/p_B^+-1/p_B^-}.$$

Since p is 0-Hölder continuous, (10), we obtain by [5, Lemma 3.2] that there exists a constant C > 0, depending only on the dimension n and the constant in (10), such that $|B|^{1/p_B^+ - 1/p_B^-} \leq C$ for every ball B. Hence $|B| \leq 1$ implies that the constant in (11) is less than $C \operatorname{diam}(B)$.

3. Continuity

The functions in the classical Sobolev space $W^{1,p}$ are continuous if p > n. In this section we consider when functions in variable exponent Sobolev space are continuous.

Theorem 3.1. Suppose that p > n is locally bounded away from n in D. Then $W^{1,p(\cdot)}(D) \subset C(D)$.

Proof. Let $x \in D$ and consider the ball $B = B(x, \delta(x)/2)$. Define $q = \operatorname{ess\,inf}_{y \in B} p(y)$. Then, by [17, Theorem 2.8],

$$W^{1,p(\cdot)}(B) \hookrightarrow W^{1,q}(B) \subset C(B).$$

Therefore every function in $W^{1,p(\cdot)}(D)$ is continuous at x, and since x was arbitrary, the claim follows.

The following corollary is immediate.

Corollary 3.2. Suppose that p is continuous in D. Then $W^{1,p(\cdot)}(D) \subset C(D)$ if p(x) > n for every $x \in D$.

We next use a classical example to show that the assumption that p is locally bounded away from n in D is not superfluous when p is not continuous.

Example 3.3. Let B = B(0, 1/16), $\varepsilon > 0$ and suppose that

$$p(x) \leqslant \overline{p}(|x|) = n + (n-1-\varepsilon) \frac{\log_2 \log_2(1/|x|)}{\log_2(1/|x|)}$$

for $x \in B \setminus \{0\}$ and p(0) > n. We show that then $W^{1,p(\cdot)}(B) \not\subset C(B)$.

Define $u(x) = \cos(\log_2 |\log_2 |x||)$ for $x \in B \setminus \{0\}$ and u(0) = 0. Clearly u is not continuous at the origin. So we have to show that $u \in W^{1,p(\cdot)}(B)$. It is clear that u has partial derivatives, except at the origin.

Since u is bounded it follows that $u \in L^{p(\cdot)}(B)$. We next estimate the gradient:

$$|\nabla u(x)| = \Big|\sin(\log_2|\log_2|x||) \cdot \frac{1}{|x|\log_2|x|}\Big| \leqslant \Big|\frac{1}{|x|\log_2|x|}\Big|.$$

We therefore find that

$$\begin{split} \int_{B} |\nabla u(x)|^{p(x)} dx & \leqslant & \int_{B} \frac{dx}{(|x||\log_{2}|x||)^{p(x)}} \\ & = & \omega_{n-1} \int_{0}^{1/16} \frac{r^{n-1} dr}{(r|\log_{2}r|)^{\overline{p}(r)}} \\ & = & \omega_{n-1} \sum_{i=5}^{\infty} \int_{2^{-i-1}}^{2^{i}} \frac{r^{n-1} dr}{(r|\log_{2}r|)^{\overline{p}(r)}}. \end{split}$$

Since $1/(r|\log_2 r|) > 1$ we may increase the exponent \overline{p} for an upper bound. In the annulus $B(0,2^{-i}) \setminus B(0,2^{-i-1})$ we have $i \leq \log_2(1/|x|) \leq i+1$. Since $y \to \log_2(y)/y$ is decreasing we find that

$$\overline{p}(x) \leqslant n + (n - 1 - \varepsilon) \frac{\log_2 i}{i}$$

in the same annulus. We can therefore continue our previous estimate by

$$\begin{split} \int_{B} |\nabla u(x)|^{p(x)} dx &\leqslant \sum_{i=5}^{\infty} \int_{2^{-i-1}}^{2^{-i}} \frac{r^{n-1} dr}{(r|\log_{2}r|)^{n+(n-1-\varepsilon)\log_{2}(i)/i}} \\ &\leqslant C \sum_{i=5}^{\infty} \int_{2^{-i-1}}^{2^{-i}} \frac{2^{-i(n-1)} dr}{(i2^{-i})^{n+(n-1-\varepsilon)\log_{2}(i)/i}} \\ &= C \sum_{i=5}^{\infty} 2^{(n-1-\varepsilon)\log_{2}(i)} i^{-n-(n-1-\varepsilon)\log_{2}(i)/i} \\ &= C \sum_{i=5}^{\infty} i^{-1-\varepsilon} i^{-(n-1-\varepsilon)\log_{2}(i)/i} \leqslant C \sum_{i=5}^{\infty} i^{-1-\varepsilon} < \infty. \end{split}$$

4. Sobolev imbedding theorems

We start by introducing a relative variational $p(\cdot)$ -pseudocapacity, and proving some basic properties for it. This capacity is quite similar to the Sobolev $p(\cdot)$ -capacity studied by P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen in [13].

Let $F, E \subset \mathbb{R}^n$ be closed disjoint sets and D be a domain in \mathbb{R}^n . The *variational* $p(\cdot)$ -pseudocapacity is defined as

$$\psi_{p(\cdot)}(F, E; D) = \inf_{u \in L(F, E; D)} \|\nabla u\|_{L^{p(\cdot)}(D)},$$

where L(F, E; D) is as before (see Section 2). For $L(F, E; D) = \emptyset$ we define $\psi_{p(\cdot)}(F, E; D) = \infty$. We write L(E, x; D) for $L(F, \{x\}; D)$ etc.

Remark 4.1. Including C(D) in the definition of the capacity is somewhat strange in this context, since we do not, in general, know whether continuous functions are dense in $W^{1,p(\cdot)}(D)$, but see [8]. However, since we are interested in the case when p > n, the assumption makes sense, by Theorem 3.1.

The reason for calling the function $\psi_{p(\cdot)}(F,E;D)$ a pseudocapacity is that it is defined as a capacity but using the norm instead of the modular. This corresponds to introducing an exponent 1/p to the capacity in the fixed exponent case. Because of this we cannot expect the pseudocapacity to have all the usual properties of a capacity. It nevertheless has many of them:

Theorem 4.2. Let $F, E \subset \mathbb{R}^n$ be closed sets and D be a domain in \mathbb{R}^n . Then the set function $(F, E) \mapsto \psi_{p(\cdot)}(F, E; D)$ has the following properties:

- (i) $\psi_{p(\cdot)}(\emptyset, E; D) = 0.$
- (ii) $\psi_{p(\cdot)}(F, E; D) = \psi_{p(\cdot)}(E, F; D)$.
- (iii) Outer regularity, i. e. $\psi_{p(\cdot)}(F, E_1; D) \leqslant \psi_{p(\cdot)}(F, E_2; D)$.
- (iv) If E is a subset of \mathbb{R}^n , then

$$\psi_{p(\cdot)}(F, E; D) = \inf_{\substack{E \subset U \\ U \text{ open}}} \psi_{p(\cdot)}(F, U; D).$$

(v) If $K_1 \supset K_2 \supset \dots$ are compact, then

$$\lim_{i \to \infty} \psi_{p(\cdot)}(F, K_i; D) = \psi_{p(\cdot)} \bigg(F, \bigcap_{i=1}^{\infty} K_i; D \bigg).$$

(vi) Suppose that p > n is locally bounded away from n. If $E_i \subset \mathbb{R}^n$ for every $i = 1, 2, \ldots$, then

$$\psi_{p(\cdot)}\left(F,\bigcup_{i=1}^{\infty}E_{i};D\right)\leq\sum_{i=1}^{\infty}\psi_{p(\cdot)}\left(F,E_{i};D\right).$$

Proof. Assertion (i) is clear since we may use a constant function. Assertion (ii) is clear since if $u \in L(F, E; D)$ then $1 - u \in L(E, F; D)$. Assertion (iii) follows since $L(F, E_2; D) \subset L(F, E_1; D)$.

Next we prove (iv). It is clear that

$$\psi_{p(\cdot)}(F, E; D) \leqslant \inf_{\substack{E \subset U \ U \text{ open}}} \psi_{p(\cdot)}(F, U; D).$$

Let $\varepsilon > 0$. Assume that $u \in L(F, E; D)$ is such that

$$\|\nabla u\|_{p(\cdot)} \leq \psi_{p(\cdot)}(F, E; D) + \varepsilon.$$

Since u is continuous, $\{u > 1 - \varepsilon\}$ is an open set containing E. Hence we obtain

$$\begin{split} \inf_{\substack{E \subset U \\ U \text{ open}}} \psi_{p(\cdot)}(F, U; D) &\leqslant \psi_{p(\cdot)}(F, \{u > 1 - \varepsilon\}; D) \\ &\leqslant \left\| \nabla \min\{\frac{u}{1 - \varepsilon}, 1\} \right\|_{p(\cdot)} \leq (1 - \varepsilon)^{-1} \| \nabla u \|_{p(\cdot)} \\ &\leqslant (1 - \varepsilon)^{-1} \psi_{p(\cdot)}(F, E; D) + \frac{\varepsilon}{1 - \varepsilon}. \end{split}$$

Letting $\varepsilon \to 0$ yields assertion (iv).

We then prove (v). It is clear that

$$\psi_{p(\cdot)}(F, \bigcap_{i=1}^{\infty} K_i; D) \leqslant \lim_{i \to \infty} \psi_{p(\cdot)}(F, K_i; D)$$

Let $\varepsilon > 0$. Assume that $u \in L(F, \bigcap_{i=1}^{\infty} K_i; D)$ is such that

$$\|\nabla u\|_{p(\cdot)} \leq \psi_{p(\cdot)}(F, \cap_{i=1}^{\infty} K_i; D) + \varepsilon.$$

When i is large the set K_i lies in the closed set $\{u \ge 1 - \varepsilon\}$; therefore

$$\lim_{i \to \infty} \psi_{p(\cdot)}(F, K_i; D) \leqslant \psi_{p(\cdot)}(F, \{u \geqslant 1 - \varepsilon\}; D)$$

$$\leqslant \left\| \nabla \min\left\{\frac{u}{1 - \varepsilon}, 1\right\} \right\|_{p(\cdot)} \leq (1 - \varepsilon)^{-1} \|\nabla u\|_{p(\cdot)}$$

$$\leqslant (1 - \varepsilon)^{-1} \psi_{p(\cdot)}(F, \bigcap_{i=1}^{\infty} K_i; D) + \frac{\varepsilon}{1 - \varepsilon}.$$

Letting $\varepsilon \to 0$ yields assertion (v).

To prove (vi) let $\varepsilon > 0$ and choose functions $u_i \in L(F, E_i; D)$ such that

$$\|\nabla u_i\|_{p(\cdot)} \leqslant \psi_{p(\cdot)}(F, E_i; D) + \varepsilon/2^i,$$

for $i=1,\ldots$ Let $v_i=u_1+\ldots+u_i$. Then (v_i) is a Cauchy sequence, and so it converges to a function $v\in W^{1,p(\cdot)}(D)$. Define $\tilde{v}(x)=\min\{v(x),1\}$, so that $|\tilde{v}|\in L^{p(\cdot)}(D)$ by [13, Theorem 2.2]. It is clear that $\tilde{v}|_{F\cap D}=0$ and $\tilde{v}|_{E\cap D}=1$, where $E=\cup E_i$. Since p>n is locally bounded away from n, it follows from Theorem 3.1 that every function in $W^{1,p(\cdot)}(D)$ is continuous, and so we have $\tilde{v}\in L(F,\bigcup E_i;D)$, from which the claim easily follows, since

$$\|\nabla \tilde{v}\|_{p(\cdot)} \leqslant \sum_{i=1}^{\infty} \|\nabla u_i\|_{p(\cdot)} \leqslant \sum_{i=1}^{\infty} \psi_{p(\cdot)}(F, E_i; D) + \varepsilon.$$

Using the pseudocapacity we can start our study of Sobolev-type imbeddings. The following result is the direct generalization of [20, 5.1.1, Theorem 1].

Theorem 4.3. If $p^+ < \infty$, then the following two conditions are equivalent:

- (i) $W^{1,p(\cdot)}(D) \cap C(D) \hookrightarrow L^{\infty}(D)$.
- (ii) There exist r, k > 0 such that $\psi_{p(\cdot)}(\overline{D} \setminus B(x, r), x; D) \geqslant k$ for every $x \in D$.

Proof. Suppose that (2) holds, with constants r, k > 0. Let $u \in W^{1,p(\cdot)}(D) \cap C(D)$ and let $y \in D$ be a point with $u(y) \neq 0$. Fix a function $\eta \in C_0^{\infty}(B(0,1))$ with $0 \leqslant \eta \leqslant 1$ and $\eta(0) = 1$. Define $v(x) = \eta((x-y)/r)u(x)/u(y)$. It is clear that $v \in W^{1,p(\cdot)}(D)$

and since v(y) = 1 and v(x) = 0 for $x \notin B(y, r)$ we see that $v \in L(\overline{D} \setminus B(y, r), y; D)$. It follows that

$$k \leqslant \psi_{p(\cdot)}(\overline{D} \setminus B(y,r), y; D) \leqslant \|\nabla v\|_{p(\cdot)}.$$

Then we calculate that

$$\begin{split} k|u(y)| & \leqslant & \|\nabla \left(u(x)\eta((x-y)/r)\right)\|_{p(x)} \\ & \leqslant & \sup_{x \in D} \eta(x)\|\nabla u\|_{p(\cdot)} + \frac{1}{r}\sup_{x \in D} \nabla \eta(x)\|u\|_{p(\cdot)} \\ & \leqslant & \max \Big\{\sup_{x \in D} \eta(x), \frac{1}{r}\sup_{x \in D} \nabla \eta(x)\Big\}\|u\|_{1,p(\cdot)}, \end{split}$$

so that |u(y)| is bounded by a constant independent of y.

Suppose conversely that (1) holds and let C be a constant such that $||u||_{\infty} \leq C||u||_{1,p(\cdot)}$ for all $u \in W^{1,p(\cdot)}(D)$. For functions in $v \in L(\overline{D} \setminus B(x,r),x;D)$ this gives

$$1 = ||v||_{\infty} \leqslant C||v||_{1,p(\cdot)} \leqslant C(||\chi_{B(x,r)}||_{p(\cdot)} + ||\nabla u||_{p(\cdot)}).$$

Since $p^+ < \infty$ we can choose r small enough that $\|\chi_{B(x,r)}\|_{p(\cdot)} \le 1/(2C)$. For such r we have $\|\nabla u\|_{p(\cdot)} \ge 1/(2C)$. It follows that

$$\psi_{p(\cdot)}(\overline{D} \setminus B(x,r), x; D) = \inf_{u \in L(\overline{D} \setminus B(x,r), x; D)} \|\nabla u\|_{p(\cdot)} \geqslant 1/(2C)$$

for the same r.

Remark 4.4. Since we do not know whether $C^{\infty}(D)$ is dense in $W^{1,p(\cdot)}(D)$ we have only proved the theorem for continuous functions in $W^{1,p(\cdot)}(D)$. If p is such that C(D) is dense in $W^{1,p(\cdot)}(D)$, for instance if p is locally bounded above n, then we may replace condition (1) by $W^{1,p(\cdot)}(D) \hookrightarrow L^{\infty}(D)$.

Define $D = B(1/16) \setminus \{0\}$ and let p be as in Example 3.3. Then the standard example $u(x) = \log|\log(x)|$ shows that $W^{1,p(\cdot)}(D) \not\hookrightarrow L^{\infty}$, the calculations being as in the theorem. We next show that the exponent p from the theorem is almost as good as possible. We need the following lemma.

Lemma 4.5. Let $\{a_i\}$ be a partition of unity and k > m-1. Then

$$\sum_{i=0}^{\infty} a_i^m i^k \geqslant \left(\sum_{i=0}^{\infty} i^{-k/(m-1)}\right)^{1-m}.$$

Proof. Fix an integer i and consider the function

$$a \mapsto (a_i + a)^m i^k + (a_{i+1} - a)^m (i+1)^k$$

for $-a_i < a < a_{i+1}$. We find that this function has a minimum at a = 0 if and only if

$$\left(\frac{a_i}{a_{i+1}}\right)^{m-1} = \left(\frac{i+1}{i}\right)^k.$$
(13)

Let $\{a_i\}$ be a minimal sequence, so that (13) holds for every $i \ge 0$. This partition is given by $a_i = i^{-k/(m-1)}a_0$ for i > 0 and $a_0 = (\sum i^{-k/(m-1)})^{-1}$ and so we easily calculate the lower bound as given in the lemma.

We next give a simple sufficient condition for the imbedding $W^{1,p(\cdot)}(D) \hookrightarrow L^{\infty}(D)$ to hold in a regular domain:

Theorem 4.6. Suppose that D satisfies a uniform interior cone condition. If $p^+ < \infty$ and

$$p(x) \ge n + (n - 1 + \varepsilon) \frac{\log_2 \log_2(c/\delta(x))}{\log_2(c/\delta(x))}$$

for some fixed $0 < \varepsilon < n-1$ and constant c > 0 then $W^{1,p(\cdot)}(D) \hookrightarrow L^{\infty}(D)$. Here $\delta(x)$ denotes the distance of x from the boundary of D

Proof. Note first that the claim trivially holds in compact subsets of D which satisfy the cone condition, since p is bounded away from n in such sets. Therefore it suffices to prove the claim for $\delta(x)$ less than some constant.

By the uniform interior cone condition there exist real values $0 < \alpha < \pi/2$ and r > 0 and a unit vector field v_x such that for every $x \in D$ the cone

$$C_x = \{ y \in B(x, r) \colon \langle x - y, v_x \rangle > |x - y| \cos \alpha \}$$

lies completely in D, where $\langle \cdot, \cdot \rangle$ denotes the usual inner product.

Fix $z \in D$. Consider the cone

$$C = \{ y \in B(z, r/2) \colon \langle z - y, v_z \rangle > |z - y| \cos(\alpha/3) \}$$

and, for $i = 2, 3, \ldots$, the annuli

$$A_i = (B(z, 2^{-i+1}r) \setminus B(z, 2^{-i}r)) \cap C.$$

To simplify notation let us assume that z=0, r=1 and $v_z=e_1$; the proof in the general case is essentially identical. Since $A_i \subset C \subset D$ we have $d(A_i, \partial D) \ge d(A_i, \partial C)$. We can estimate the latter distance as shown in Figure 1. This gives $d(A_i, \partial D) \ge 2^{-i} \sin(\alpha/3)$ so that

$$p(x) \geqslant n + (n - 1 + \varepsilon) \frac{\log_2(i + c)}{i + c}$$

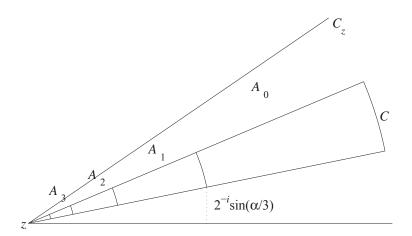


Figure 1: The cone C and the distance to the boundary

for $x \in A_i$ and some c depending on α . Let us define $q_i = n + (n-1+\varepsilon)\frac{\log_2(i+c)}{i+c}$ and a new variable exponent by

$$q(x) = \begin{cases} q_i & \text{if } x \in A_i \text{ for some } i \\ p(x) & \text{otherwise} \end{cases}$$

By Theorem 4.3 we know that it suffices to find a lower bound for $\|\nabla u\|_{1,p(\cdot)}$ with $u \in L(\overline{D} \setminus B(0,r),0;D)$ since, by Theorem 3.1, $W^{1,p(\cdot)}(D) \subset C(D)$. Since $\|u\|_{1,p(\cdot)} \ge c\|u\|_{1,q(\cdot)}$, we see that it suffices to estimate $\psi_{q(\cdot)}(\overline{D} \setminus B(0,R),0;B(0,R)\cap D)$ for small R in order to prove the theorem. Moreover, by monotony, we need only consider $\psi_{q(\cdot)}(\overline{D} \setminus B(0,R),0;B(0,R)\cap C)$. For every function $u \in W^{1,q(\cdot)}(C)$ we have

$$||u||_{1,q(\cdot)} \ge \min\{1, \varrho_{1,q(\cdot)}(u)\},\$$

by [17, Theorem 2.8]. Therefore we see that it suffices to show that $\varrho_{1,q(\cdot)}(u) > c$ for every $u \in L(\overline{D} \setminus B(0,R), 0; B(0,R) \cap C)$ in order to get $\psi_{q(\cdot)}(\overline{D} \setminus B(0,R), 0; B(0,R) \cap C) \ge \min\{1,c\} > 0$, which will complete the proof.

It is clear that $|\nabla u| \ge |\partial u/\partial r|$, the radial component of the gradient, so that

$$\int_{A_i} |\nabla u|^{q_i} dx \ge \int_{A_i} \left| \frac{\partial u}{\partial r} \right|^{q_i} dx.$$

It is then easy to see that the function minimizing the sum over the integrals should depend only on the distance from the origin, not on the direction. For such a function let us denote the value at any point of distance 2^{-i} from the origin by v_i .

Consider then a function v which equals v_{i-1} on $S(0, 2^{-i+1})$ and v_i on $S(0, 2^{-i})$. Using Lemma 2.4 we find that

$$\begin{split} \int_{A_i} |\nabla v|^{q_i} dx & \geqslant & (v_{i-1} - v_i)^{q_i} \operatorname{cap}_{q_i}(\mathbb{R}^n \setminus B(0, 2^{-i+1}), B(0, 2^{-i})) \\ & = & (v_{i-1} - v_i)^{q_i} \omega_{n-1} \left(\frac{q_i - n}{q_i - 1}\right)^{q_i - 1} \left(2^{(q_i - n)/(q_i - 1)} - 1\right)^{1 - q_i} 2^{i(q_i - n)} \\ & \geqslant & c(v_{i-1} - v_i)^{q_i} 2^{i(q_i - n)}, \end{split}$$

where the constant c does not depend on q_i . It follows that

$$\varrho_{1,q(\cdot)}(v) \geqslant \sum_{i=2}^{\infty} \int_{A_i} |\nabla u|^{q_i} dx \geqslant c \sum_{i=2}^{\infty} (v_{i-1} - v_i)^{q_i} 2^{i(q_i - n)}.$$

Since the lower bound depends only on the v_i , we see that

$$\inf_{u \in L} \varrho_{1,q(\cdot)}(u) \geqslant c \inf_{\{v_i\}} \sum_{i=2}^{\infty} (v_{i-1} - v_i)^{q_i} 2^{i(q_i - n)},$$

where the second infimum is over sequences $\{v_i\}$ with $v_i \leqslant v_{i-1}, v_0 = 1$ and $\lim_{i \to \infty} v_i = 0$. Let us set $a_i = v_{i-1} - v_i$ so that $a_i \geqslant 0$ and $\sum a_i = 1$. Then we need to estimate

$$\inf_{\{a_i\}} \sum_{i=2}^{\infty} a_i^{q_i} 2^{i(q_i - n)},$$

with the infimum over partitions of unity $\{a_i\}$. Let N be such that

$$\frac{\varepsilon}{3} \geqslant q_i - n = (n - 1 + \varepsilon) \frac{\log_2(i + c)}{i + c} \geqslant (n - 1 + \varepsilon/2) \frac{\log_2(i)}{i}$$

for $i \geq N$. Note that such an N can be chosen independent of z. Since $a_i \leq 1$ we have $a_i^{q_i} \geq a_i^{n+\varepsilon/3}$ for such terms. Then we find that

$$\inf_{\{a_i\}} \sum_{i=2}^{\infty} a_i^{q_i} 2^{i(q_i-n)} \geqslant \inf_{\{a_i\}} \sum_{i=2}^{N-1} a_i^{q_i} 2^{i(q_i-n)} + \sum_{i=N}^{\infty} a_i^{n+\varepsilon/3} i^{n-1+\varepsilon/2}.$$

The first sum on the left-hand-side is finite, hence

$$\sum_{i=2}^{N-1} a_i^{q_i} 2^{i(q_i-n)} \geqslant \sum_{i=2}^{N-1} a_i^q \geqslant N^{1-q} \bigg(\sum_{i=2}^{N-1} a_i \bigg)^q,$$

where $q = \max_{2 \le i \le N-1} q_i$. It follows from Lemma 4.5 that

$$\sum_{i=N}^{\infty} a_i^{n+\varepsilon/3} i^{n-1+\varepsilon/2} \geqslant c \left(\sum_{i=N}^{\infty} a_i\right)^{n+\varepsilon/3}.$$

Combining these estimates we see that

$$\inf_{\{a_i\}} \sum_{i=2}^{\infty} a_i^{q_i} 2^{i(q_i - n)} \geqslant N^{1 - q} \left(\sum_{i=2}^{N-1} a_i\right)^q + c \left(\sum_{i=N}^{\infty} a_i\right)^{n + \varepsilon/3}$$

is uniformly bounded from below by a positive constant, since the sum of the a_i 's is 1. We have thus shown that the condition of Theorem 4.3 holds, which concludes the proof.

References

- S. M. Buckley and P. Koskela, Sobolev-Poincaré implies John, Math. Res. Lett. 2 (1995), 577– 593.
- [2] ______, Criteria for imbeddings of Sobolev-Poincaré type, Internat. Math. Res. Notices (1996), 881–901.
- [3] B. Bojarski, Remarks on Sobolev imbedding inequalities, Complex Analysis, Joensuu 1987, Lecture Notes in Math., vol. 1351, Springer, Berlin, 1988, pp. 52–68.
- [4] D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable L^p spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), 223–238.
- [5] L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$, Math. Inequal. Appl. (to appear).
- [6] ______, Riesz Potential and Sobolev Embeddings of generalized Lebesgue and Sobolev Spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}$, Math. Nachr. (to appear).
- [7] L. Diening and M. Růžička, Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics, J. Reine Angew. Math. **563** (2003), 197–220.
- [8] D. E. Edmunds and J. Rákosník, Density of smooth functions in $W^{k,p(x)}(\Omega)$, Proc. Roy. Soc. London Ser. A **437** (1992), 229–236.
- [9] _____, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), 267–293.
- [10] ______, Sobolev embeddings with variable exponent. II, Math. Nachr. 246/247 (2002), 53–67.
- [11] X. Fan, J. Shen, and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl. **262** (2001), 749–760.
- [12] P. Hajlasz and O. Martio, Traces of Sobolev functions on fractal type sets and characterization of extension domains, J. Funct. Anal. 143 (1997), 221–246.
- [13] P. Harjulehto, P. Hästö, M. Koskenoja, and S. Varonen, Sobolev capacity on the space $W^{1,p(\cdot)}(\mathbb{R}^n)$, J. Funct. Spaces Appl. 1 (2003), 17–33.
- [14] ______, Dirichlet energy integral and Sobolev spaces with zero boundary values (preprint. Available in http://www.math.helsinki.fi/analysis/varsobgroup).
- [15] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1993, ISBN 0-19-853669-0.
- [16] V. Kokilasvili and S. Samko, Maximal and fractional operators in weighted $L^{p(x)}$ spaces, Rev. Mat. Iberoamericana (to appear).
- [17] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. **41(116)** (1991), 592–618.

- [18] J. Malý and W. P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs, vol. 51, American Mathematical Society, Providence, RI, 1997, ISBN 0-8218-0335-2.
- [19] O. Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), 383–401.
- [20] V. G. Maz'ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985, ISBN 3-540-13589-8.
- [21] L. Pick and M. Růžička, An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded, Expo. Math. 19 (2001), 369–371.
- [22] Michael Růžička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000, ISBN 3-540-41385-5.