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ABSTRACT

In this paper, it has been shown that the complex matrix variate Dirichlet type
I density factors into the complex matrix variate beta type I densities. Similar
result has also been derived for the complex matrix variate Dirichlet type II
density. Also, by using certain matrix transformations, the complex matrix
variate Dirichlet distributions have been generated from the complex matrix
beta distributions. Further, several results on the product of complex Wishart
and complex beta matrices with a set of complex Dirichlet type I matrices have
been derived.
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Introduction
The random variables 1, ..., z, are said to have the univariate Dirichlet type I dis-
tribution with parameters aq,...,a,;a,4+1 if their joint probability density function

(p.d.f.) is given by

F(anll G/Z) ﬁ .1(
= x} 1-

) n Ant1—1
_ L=l T T

+1 Z> I
H:’l:l F(ai) i=1 i—1

K3

n
O<z <1, i=1...n, Y x;<1, (1)
=1

where a; > 0,7 =1,...,n+ 1. The random variables ¥, ..., ¥y, are said to have the
univariate Dirichlet type II distribution with parameters by, ..., b,;b,41 if their joint
p-d.f. is given by

b,

T i) b< - )EH 1 .
——==— |y 1+ Yi , O<y,<oo, i=1,....n, (2)
Hi:11 F(bi) 11;[1 ;

where b; > 0,4 = 1,...,n+ 1. The Dirichlet type II density (2) can be obtained
from (1) by using the transformation y; = (1 — > z;) '@, i = 1,...,n. For this
reason (2) is also known as the inverted Dirichlet density.

Wilks [24] showed that the variates w; = z1, us = 2ol — z1),..., u, =
Zn(l =21 — -+ — x,_1) are independently distributed. Tan [22], using certain re-
sults on marginal and conditional distributions, derived similar results for the matrix
variate Dirichlet type I matrices. He showed that the matrix variate Dirichlet type
I density factors in into the matrix variate beta type I densities. Recently, Gupta
and Nagar [9], using matrix transformation, derived Wilks’ factorization for matrix
Dirichlet type I and matrix Dirichlet type II distributions.

The matrix variate Dirichlet distributions have been studied by several authors
(see, for example, Olkin and Rubin [18], Tan [22], Javier and Gupta [12], and Gupta
and Nagar [8]). An extensive review on the matrix variate Dirichlet distribution is
available in Gupta and Nagar [9].

In this article we derive Wilks’ factorization of the complex matrix variate Dirichlet
distributions. We will also show that using certain matrix transformations one can
generate the complex matrix variate Dirichlet distributions from the complex matrix
variate beta distributions.

The complex matrix variate Dirichlet distributions were defined and studied by
Tan [21].

The complex matrix variate distributions play an important role in various fields of
research. Applications of complex random matrices can be found in multiple time se-
ries analysis, nuclear physics and radio communications (Carmeli [3], Krishnaiah [15],
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Mehta [16], and Smith and Gao [19]). Bronk [1] has shown that under certain con-
ditions the distribution of the energy levels of atomic nuclei is the distribution of
the roots of a complex random matrix. Brillinger [2] has shown that the asymptotic
distribution of the matrix of spectral densities of a strictly stationary time series is
complex Wishart. A number of results on the distribution of the complex random
matrices have also been derived. The complex matrix variate Gaussian distribu-
tion was introduced by Wooding [25], Turin [23], and Goodman [6]. The complex
Wishart distribution was studied by Goodman [6, 7], Srivastava [20], Hayakawa [10],
and Chikuse [4]. James [11] and Khatri [13] derived the complex central as well as
the noncentral matrix variate beta distributions. Distributional results on quadratic
forms involving complex normal variables were given by Khatri [14] and Conradie and
Gupta [5]. Nagar and Arias [17] defined the complex matrix Cauchy distribution and
studied its properties. They also showed that quadratic forms in partitioned Cauchy
matrix follow complex matrix variate Dirichlet type I distribution. Systematic treat-
ment of the distributions of the complex random matrices was given by Tan [21] which
included the Gaussian, Wishart, beta, and Dirichlet distributions.

1. Complex matrix variate Dirichlet distributions

In this section we will define complex matrix variate Dirichlet type I and IT distri-
butions and derive them using complex Wishart matrices. We first state the follow-
ing notations and results that will be utilized in this and subsequent sections. Let
A = (a;;) be an m x m matrix of complex numbers. Then, A" denotes the trans-
pose of A, A denotes the conjugate of A, A” denotes the conjugate transpose of A,
tr(A) = a1 + -+ + Gmm, etr(A) = exp(tr(A)), det(A) denotes the determinant of A,
A = A" > 0 means that A is Hermitian positive definite, and A% denotes the unique
Hermitian positive definite square root of A = A7 > 0.

Definition 1.1. The complex multivariate gamma function, denoted by T',,(«), is
defined by

I(a) = /X—XH>0 etr(—X) det(X)* ™dX, Re(a)>m—1. (3)

By evaluating the integral in (3), the complex multivariate gamma function can
be expressed as product of ordinary gamma functions

L (a) = gmim=1/2 HF(a —i+1), Re(a)>m—1.

i=1
Definition 1.2. The complex multivariate beta function, denoted by Bm(a,b)7 is
defined by

B (a,b) = / det(X)2 ™ det(I,, — X)""™dX, (4)
0<X=XH<I,,

317 Revista Matemdtica Complutense
2005, 18; Num. 2, 315-328



X. Cui/A. K. Gupta/D. K. Nagar Complex matrix variate Dirichlet distributions

where Re(a) > m — 1 and Re(b) > m — 1.

The complex multivariate beta function B,,(a,b) can be expressed in terms of

complex multivariate gamma functions

- Ton(a)Dp(b) -

Bm(a,b) = ,V(L() = Bm(b, a).

(a4 0b)

Substituting X = (I,,+Y) 'Y in (4) with the Jacobian J(X — Y) = J((dX) — (dY))
= det(I,, +Y) ™2™, we get an equivalent integral representation for the complex mul-
tivariate beta function as

By (a,b) = / det(Y)* ™ det(I,, + Y)~ (@t qy.
Y=YH>0

Next, we give definitions of complex Wishart, complex beta and complex Dirichlet
distributions (Goodman [6], Tan [21]).

Definition 1.3. An m x m random Hermitian positive definite matrix X is said to
follow the complex Wishart distribution, denoted as X ~ CW,,(n,X), if its p.d.f. is
given by

{Ta(n)det(D)"} Letr(—271X) det(X)"™, ©=%H>0, n>m-1
Definition 1.4. An m x m random Hermitian positive definite matrix X is said

to have the complex matrix variate Beta type I distribution with parameters (a,b),
denoted as X ~ CB] (a,b), if its p.d.f. is given by

{Bp(a,b)} tdet(X)* ™ det(I,, — X)P™, 0< X =XH" <1,,
where a >m — 1 and b > m — 1.

Definition 1.5. An m x m random Hermitian positive definite matrix Y is said to
have the complex matrix variate Beta type II distribution with parameters (a,b),
denoted as Y ~ Bll(a,b), if its p.d.f. is given by

{By(a,b)} "t det(Y)* ™ det(L, + V)~ @)y =y >,
where a >m — 1 and b > m — 1.

Note that if X ~ CBL!(a,b), then (I + X)~! ~ CB. (b,a) and (I,, + X)"1X ~
CB! (a,b).
Definition 1.6. The m x m random Hermitian positive definite matrices X1,..., X,
are said to have the complex matrix variate Dirichlet type I distribution with param-
eters (ay,...,an; apy1), denoted by (Xi,...,X,) ~ CD! (a1,...,an;an41), if their
joint p.d.f. is given by

L") & - e
M [T det(X3)* ™ det (Im -3 Xi) (5)
Hi:l Lp(as) i=1 i=1

where I, — Z?:l X, is Hermitian positive definite and a; > m—1,fori =1,... ,n+1.
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Definition 1.7. The m x m Hermitian positive definite random matrices Y7,...,Y,
are said to have the complex matrix variate Dirichlet type II distribution with pa-
rameters (by, ..., bn;bny1), denoted by (Y1,...,Y,) ~ CDI(by,. .. by;byy1), if their
joint p.d.f. is given by

ntly

Lo (54 80 1T gor vy ( ) s
™det| I, + Y; 6
T L > ©

where b; >m —1,1=1,2,...,n+ 1.
The type II density (6) can be obtained from the type I density (5) by trans-
forming Y; = (I,,, — > 1, X; )2 X (I, —>r X)) 2, i=1,...,n with the Jacobian
J( X1, X = Y1, Y,) =det(l, + >, Vi)™ (”“)m It may also be noted here

that ZZ 1 Xi ~CBE (X aiyansr) and Y Y ~ CBH(Z?:l bi,bni1)-
In the next two theorems we derive the complex matrix variate Dirichlet distribu-
tions using independent complex Wishart matrices.

Theorem 1.8. Let A; ~ CW,,(v;,X),i=1,...,n, and B ~ CW,,(u, %) be indepen-
dently distributed. Define

Xi=A 24,4 i=1,...n,
where A =Y | A; + B and A (A%)H is any reasonable factorization of A. Then
(X1,..., X)) ~CDL (vy,... vns ).
Proof. The joint density of Ay,..., A, and B is given by

n

H[{f‘m(l/i) det(z)w}—l etr(—E_lA )det(A )ul—m]

i=1
X {Tp (11) det(2)"} L etr(=2 71 B) det(B)*~™. (7)
Making the transformation ., A; + B = A, A; = = Az X; (A%) yi=1,...,n with

the Jacobian J(A,..., A,, B — Xl, oo Xo, A) det(A)™™ in (7), the joint density
of Xy,...,X,, and A is obtained as

—(ut+v) n p=m
_ det(®) H det(X;)" ™ det (Im -y Xl)
| P (M) Hz 1 F i=1

’zl

x det(A)FT "M etr(—X71A), (8)

where v = >""" | v;. From (8), it is easily seen that (Xi,...,X,,) and A are indepen-
dent and the denaty of (X17 ..., X,) is given by

IN-\ n H—m
. - Hdet )i mdet(,n—ZXi)
Lo (1) I_L 1 Do) 23 P
which is the desired result. O
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For n = 1, the above theorem gives the complex matrix variate beta type I distri-
bution.

Theorem 1.9. Let A; ~ CW,,(vi, I1), i = 1,...,n, and B ~ CW,, (1, I,,) be inde-
pendently distributed. Define

V=B :A;B"z, i=1,...,n,
where B2 B2 = B. Then, (Y1,...,Y,) ~CDH(vy, ... ,vp;p).
Proof. The joint density of Ay,..., A, and B is given by

n

TTHTm (i)} " etr(—A;) det(A;)" ] {T (1)} " etr(—B) det(B)*~™.  (9)

i=1

Substituting A4; = B2Y;B%, i = 1,...,n, with the Jacobian J(Ai,...,A,,B —
Yi,...,Y,, B) =det(B)™" in (9), the joint density of Y7,...,Y, and B is derived as

-1 n

[fm(u) ﬁ fm(yi)} 1;[1 det(Y;)" ™™ etr {— (Im - zj; 1@) B} det(B)* =,

where v = >""" | v;. Integrating out B using

/ etr [— <Im +) Yi> B] det(B)*t*~" dB
B=BH>0 i—1

~ n —(p+v)
=Ty (p + v) det (Im + Zm)
i=1

we get the desired result. O

For n = 1, the above theorem gives the complex matrix variate beta type II
distribution.

2. Factorizations

In this section we derive factorizations of the complex matrix variate Dirichlet type I
and type II densities.

Theorem 2.1. Let (X1,...,X,) ~CD! (a1,...,a,;a,.1) and define
Ul - X17
Uz = (Im — X1) ™2 Xo(Ipy, — X1) 7%,

N

Un=Im—X1— = Xoo1) 2 X (L — X1 — -+ — Xpo1) 2.
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Then, the complex random matrices Uy,...,U, are independently distributed,
1 .
Ui ~ (CB,In(ai, Z:‘Lizﬁrl CLT), 1= 1, ey n.

Proof. The density of (X1,...,X,,) is given by (5). From the above transformation
it is easy to see that

det(lm — Xl) = det(Im — Ul),
det(Ly, — X1 — Xa) = det(Ly, — X1 — (I — X1)2Us(I;, — X1)%),
= det(I,, — Uy) det(I,, — Us),

det(Lp — X1 — -+ — Xp) = det(Ly, — Uy) -+ - det(L, — Uy),

det(Xl) = det(Ul),
det(X3) = det(Us) det(I,,, — Uy),

det(X,,) = det(Uy,) det (I, — Uy) - - - det(I, — Up—1),

and

n—1 i m
J(X1yeo o Xn = Ups U = ] det(fm _ZXT)
=1 r=1
=[] det(Z,, — U5y

Substituting appropriately in the density of (X7, ..., X,,), one obtains the joint density
of Uy,...,U, as

=

n+1 )
M det(Uy) ™ det (I, — Uy )2t Fansi—m
[LZ7 Dralai)
x det(Ug)® ™ det(I,,, — Ug)®3 T Tont1=m 5o x
x det(Uy,)* ™ det (I, — Up)®+1~™,  (11)

where 0 < U; = U¥ < I,,,,i=1,...,n. Now, observing that

fm(E?If a;) _Z-l:[le< ; Z T) (12)

we obtain the desired result.
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Theorem 2.2. Let (X1,...,X,) ~CD! (a1,...,a,;a,.1) and define
Un = Xna
Unfl = (Im - Xn)_%anl(Im - Xn)_%a

Us = (L~ X =+ = Xa) 3 X0 (I = Xy = Xa) b,

Then Uy,...,U, are independently distributed, U; ~ (CBfn(ai,Zz;ll ar + apt1),

1=1,...,n.
Proof. Similar to the proof of Theorem 2.1.
Theorem 2.3. Let (Y1,...,Y,) ~CD!(by,... ,by;b,11) and define

m
Vn = an
Vn—l == (Im + Yn)iéyn—l(]’m + Yn)7%7

Nl

Vi=(Im+ Yo+ +Y2) 2Ly + Yo+ -+ Ya) 2.

Then Vi, ..., V, are independently distributed, V; ~ CBLI(b;, Z"H b.),i=1,...

r=i+1 "7
Proof. Observe that

det(L,, +Y,) = det(I,, + V,,),
det(I, + Y, + Yu1) = det(L, + Vi) det (L, + Vio1),

det(I,, + Y, + -+ Y1) =det({,, + V,,)...det(L,, + V1),
and

det(Y;,) = det(V,,),
det(Yy,—1) = det(V,—1) det(L, + Vi),

det(Y1) = det(Vy) det(L,, + V,,) - - - det (L, + Va).

Substituting these together with the Jacobian of transformation

JY1,...,Y, = Vi,... V) = Hdet(]m_kvr)m(rfl)
r=2
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in the density of (Y1,...,Y,,) and simplifying, one obtains

fm ’fl+1 bz n+1
oM | [detw;)‘”‘m det (L + Vi)~ 75
[Ii=y T () 55

where V, = V. > 0,i=1,...,n. Now, using (12) the desired result follows. O

n

Theorem 2.4. Let (Yy,...,Y,) ~CDM(by,... by;byi1) and define
i =",
Vo = (I + Y1) Yo (I, + Y1) 7%,

Vo= (In V14 4+ Vo) 2V (I + Vi 4 4 V)77

Then Vi,...,V, are independently distributed, V; ~ CBZII(b;, Z:;ll by + bni1),
t=1,...,n.

Proof. Similar to the proof of Theorem 2.3. O

The above results have been derived using matrix transformations. Tan [21] de-
rived Theorem 2.2 and Theorem 2.4 using certain results on marginal and conditional
distributions. Likewise, using suitable inverse transformations, one can derive the
complex matrix variate Dirichlet distributions from the independent complex beta
matrices as given in the following theorems.

Theorem 2.5. Let Uy,...,U, be independent m x m complex random matrices,
U; ~CB! (v, 3;), i =1,...,n. Define
X; ="Un,

Xy = Iy — Uy)2 Uy (I, — U7)?,

Xp = —U0)7 (I, — Up1)2Up (I — Up—_1)? + -+ (I, — U1) 2.
Then, (Xl,...,Xn) N(CDgn(Ozl,...,Ckn;ﬂn) ’L_[fﬂz = 041 +ﬂi+1; 1= 1,...,TL— 1.

Theorem 2.6. Let Uy,...,U, be independent m x m random matrices, and U; ~
CBI (s, 1), i = 1,...,n. Define
Xﬂ = Un7

anl - (Im - Un)%Unfl(Im - Un)%a

Xy = (I —Un)2 - (I — U)2Uy (I — Us)% - (I — Uy,) 2.
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Then, (Xl,...,Xn)N(CD7In<a1,...704n;ﬁ1) iﬁﬁi+1 :ai—&—ﬁi, izl,...,’l’L—l.

Theorem 2.7. Let Vi,...,V, be independent m X m complex random matrices,
V; ~CBH{(a;,8), i =1,...,n. Define

Yn = Vna
}/n—l = (Im + Vn)%vn—l(lm + Vn)%a

Vi = Ly 4 V)2 (Ion + Va) 5 VAL + Vo) d oo (I + Vi)

Then; (}/hayn) ~ CD"yInI(O[h"'aan;ﬁn) Zﬁﬁt = Q41 +ﬂi+1; 1= 1,...,71- 1.

Theorem 2.8. Let Vi,...,V, be independent m x m complex random matrices, and
V; ~CBY{(a;,8:), i =1,...,n. Define

Y, =W,
Yy = Iy + V1) 2 Va(In + V1) 7,

Yn = (Im +V1)% "'(Im +Vn—1)%vn(1m +Vn—1)% (Im +Vl)%~

Then (Yl,...,Yn) NCD{,,LI(CVM...,CVH;ﬁl) iﬁ,@i+1 :al—i—ﬂz,z:L,n—l

From the transformation given in Theorem 2.5, one can see that
Iy =Y Xi= Iy = U1)? -+ (I, = Up 1) (Ipy = Up) Iy = Up—1)? -+« (Iy — U1)
i=1

where I,, — Uy, ..., I, — U, are independent, I, —U; ~ CBL (8;,;), i =1,...,n and
Im — Z?:l Xz ~ (CB,{n(ﬂn, Z?:l Ozi) iff ﬂz = 41 + ﬂi+1, = 1, BN 1. Similarly,
from Theorem 2.6, one obtains

L =Y " Xi= Ly = Un)% - (Ly = Ua)* (I = Up) (L — Uz)® -+ (I — Uy,)
i=1

where I,,, — Uy,..., I, — U, are independent, I, — U; ~ CBL (B;,a;),i=1,...,n
and Im — Z?:l Xz ~ CBTIn(ﬁl, Z?:l Oli) iff 57;4_1 = Oy +51, 1= 1, ey — 1. Thus, we
obtain the following result generalizing a result given in Gupta and Nagar [9].

Theorem 2.9. Let Wy,... . W, be independent m x m complex random matrices,
W; ~ CBL (¢;,d;), i =1,...,n. Then

Nl
o=

Wi W2 W, W2, W ~CBL (cmZdi)
i=1
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iﬁci:diJrl—i-CiJrl,izl...,n—l and
Wi W W, Wi - W2 N(CBfn<c1,Zdi>

iff cixr=di+c,i=1...,n—1.

Corollary 2.10. Let Wy and Wy be independent, Wy ~ (CBfn(cl,dl) and Wy ~
(CBrln(Cl + dl, dg) Then Wf WIWf [ad (CBrln(Cl, dl + dg)

The above result, in the real case, was obtained by Javier and Gupta [12]. This
result can also be derived as a corollary of the following theorem.

Theorem 2.11. Let Wy and W be independent, Wi ~ CBL (ci,dy) and Wy ~
CB! (ca,d2). Then, the p.d.f. of U =W;:W, W3 is given by

Lo (cr + dy) T (co + da)
Lo (1) (c2)h (dy + da)
X oFy(c1 +dy — ¢a,doydy +do; I, —U), 0<U=U"<1,,

det(U)* =™ det (I, — U)DFd2=m

where o F) is the Gauss hypergeometric function of the Hermitian matriz argument.

Proof. The joint density of W7 and W5 is

{Bpm(c1,dy) B (ca,dy)}~H det(W1) ™™ det (I, — W1)D ™ det(Wy)2 ™™
x det(I, —Wo)2=™ 0<W, =W <1I,, 0<W,=WH <1, (13)

Making the transformation U = WQ%Wl(WQ%)H with the Jacobian J(Wp, Wy —
U, W) = det(W3)~™ in (13) we get the joint density of U and Ws as

(Bun(e1,dy) By (ca, da)} =L det(U) = det (L — Wy 2U(W, 2)H)di—m
x det(Wa) 2=t =™ det(I,, — Wo)®™™, 0<U=U" <W,=WJ <1,. (14)

Now to obtain the marginal density of U, we need to evaluate

_1 _1 Hnd
/ det(L,, — Wy 2U(W; 2)Hydi-m
U<W,=W}H<I,,

x det(Wy)2= "™ det(I,,, — W)™ dW,. (15)
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Substituting in (15), W = (I, — U)"2(Wa — U)((I, — U)~2)# with the Jacobian
J(Wy — W) = det(I,, — U)™, we get

det(I,, — U)htdz=m / det(W)D =" det(I,, — W)%=" dW
<W=WHc<],,
% det(Im o (Im o U)(I W)) (c1+di—c2) dW
Lo (d)Dn(da) =
= det(I,, — U)d1+d2me2F1(C1 +di —co,dosdi +do; I, —U)  (16)

where the integration has been carried out using the integral representation of the
Gauss hypergeometric function of the Hermitian matrix argument (James [11],
Chikuse [4]). Integration of Wy in (14), using (15) and (16), completes the proof
of the theorem. O

Now, by substituting ¢; + d; = ¢o in Theorem 2.11 we get Corollary 2.10. In the
following theorem, further generalization of Corollary 2.10 is obtained by replacing
complex beta type I matrix by a set of complex Dirichlet type I matrices.

Theorem 2.12. Let A and (X1,...,X,) be independent, A ~ CB#(Z?T a;,c) and
(X1,...,X,) ~CD! (ay,...,an;an41). Then,

(A2X,A%,... A X,A%) ~ CD. (ay,. .., an;ani1 + c).
Proof. The joint density of A and (X7,...,X,) is given by

f‘m(27+1 Q; + C a —m E o
it L Hdt det( In — > X;
m =1

i=1 (a;)T"

« det(A)SIE as=m de(I,, — Ay,

Substituting U; = AzX;A2, i = 1,...,n with the Jacobian J(X1,..., Xn, A —
Ui,...,U,, A) = det(A)~™" in the above expression, we obtain the joint density
of (Uy,...,U,) and A as

f (ZnJrll a; + C ( n )an+1 m B

det(U;)*~™ det — U; det(I,, — A)™™
H:L+11 F (al H ; ( )

where 0 < Y7, U; < A= A" < I,,,. Now, transforming Z = (I, — S0, U;) "% (A —

S UL — S0, Ui)™ % with the Jacobian J(A — Z) = det(L,, — >1_, U;)™ the

joint density of (Uy,...,U,) and Z is derived as

T n+1 n Apt1t+c—m
m(Xiz1 ¢ + ) Hdet “mdet(ImZUi>
H F ( )F (a’n+1 + i=1

x {B(ans1,¢)} " det(Z)4+1—™ det(L, — Z)°~™
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where the matrices Uy, ...,U,, I, — Z?:l U;, Z, and I,,, — Z are Hermitian positive
definite. O]

Corollary 2.13. Let B and (Xi,...,X,) be independent, B ~ CBLI(c, Z?;l a;)
and (X1,...,X,) ~CD! (ay,...,an;an41). Then,

(I+B) 2X,(I+B)"2,....,(I+B) 2X,(I+B)"2) ~CD! (a1,...,an; ns1 +C).

The following result is obtained by replacing complex beta type I matrix by a
complex Wishart matrix in Theorem 2.12.

Theorem 2.14. Let A and (X, ...,X,,) be independent, A ~ CWm(Z;jllai, ¥) and
(X1,...,X,) ~CDL (ay,...,an;an41). Define W; = Az X; A2, i=1,...,n—1, and
W, = Az (I, — S X;)A2. Then, Wy, ..., W, are independent, W; ~ CW,,(a;, %),
i1=1,...,n—1, and W,, ~ CW,,(an+1,%).

Proof. The joint density of A and (X7,...,X,,) is given by

n—+1 ~ . —1 n n Apy1—m
{H P () det(£)= 12 } [T det(xi)* = det (fm - Xz-)
=1 i=1 i=1
x det(A)Z it @=m etp(—x -1 A).

Substituting W; = A2X;A2, i = 1,....n— 1, and W,, = Az(l,, — S X;)Az2
with the Jacobian J(Xi,...,X,, A — Wq,...,W,, A) = det(A)~™" in the above
expression, we obtain the joint density of (Wy,...,W,,) and A as

n+1 —1n—1
[H T (a;) det (D)2 20 } [T det(Wi) =™ det(W,,)am+1 =" etr(~x 1 A)
i=1 i=1

where Wy,...,W,, and A are Hermitian positive definite with Z?:l W; < A. The
desired result now follows by substituting Z = A —>""" | W;. O

Corollary 2.15. Let X ~ CBL (a1,a2) and A ~ CW,,(ay + az, ) be independent.
Define Wy = A3 X A% and Wy = A2 (L —X)A%. Then, W1 and Wy are independent,
W1 ~ CWm(al, E) and WQ ~ CWm(az, E)
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