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ABSTRACT

In this paper we consider the inverse problem of recovering the total extinction
coefficient and the collision kernel for the time-dependent Boltzmann equation
via boundary measurements. We obtain stability estimates for the extinction
coefficient in terms of the albedo operator and also an identification result for
the collision kernel.
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1. Introduction

In this paper we consider an inverse problem for the linear Boltzmann equation

∂tu + ω · ∇xu + qu = Kf [u] in (0, T ) × S × Ω, (1)
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where T > 0, Ω is a bounded and convex domain of R
N , N ≥ 2, S = S

N−1 denotes the
unit sphere of R

N , q ∈ L∞(Ω) and Kf is the integral operator with kernel f(x, ω′, ω)
defined by

Kf [u](t, ω, x) =
∫

S

f(x, ω′, ω)u(t, ω′, x) dω′.

In applications (N = 2 or 3), (1) describes the dynamics of a monokinetic flow
of particles in a body Ω under the assumption that the interaction between them is
negligible (which leads us to discard nonlinear terms). For instance, in the case of a
low-density flux of neutrons (see [7, 13]), q ≥ 0 is the total extinction coefficient and
the collision kernel f is given by

f(x, ω′, ω) = q(x)c(x)h(x, ω′ · ω),

where the coefficient c corresponds to the within-group scattering probability and the
kernel h describes the anisotropy of the scattering process. In this case, q(x)u(t, ω, x)
describes the loss of particles at x in the direction ω at time t due to absorption or
scattering, while the integral on the right hand side of (1) represents the production
of particles at x in the direction ω from those coming from directions ω′.

The inverse problem associated with (1) that we are interested here is recovering q
and f by boundary measurements. That will lead us to consider the albedo operator A,
that maps the incoming flux on the boundary ∂Ω into the outgoing one.

There is a lot of papers devoted to this problem and we specially mention the
general results for the identification one, obtained by Choulli and Stefanov [5] (see
also [11]), that state that q and f are uniquely determined by A. There is also a
wide bibliography concerning the stationary case (See for instance those by V. G. Ro-
manov [14,15], P. Stefanov and G. Uhlmann [16], Tamasan [17], J. N. Wang [18], and
also the references therein.)

In this paper, we are mainly concerned with stability estimates for the time-
dependent equation (1). We consider qj , fj , j = 1, 2, and

Aj : L1(0, T ;L1(Σ−; dξ)) → L1(0, T ;L1(Σ+; dξ))

the corresponding albedo operator (that will be precisely described in section 2 below,
as well as the spaces concerned). Since Aj is linear and bounded, we consider the
usual norm ‖Aj‖1.

Our main result is the following:

Theorem 1.1. We assume that ‖qj‖∞ ≤ M for some M > 0 and fj ∈ L∞(Ω;
L2(S × S)), j = 1, 2. If T > diam(Ω), there exists C = C(M) > 0 such that

‖q1 − q2‖
H− 1

2 (Ω)
≤ C‖A1 −A2‖1. (2)

Moreover, if q1, q2 ∈ H
N
2 +s(Ω) for some s > 0 and ‖qj‖

H
N
2 +s(Ω)

≤ M , j = 1, 2, then,
for each 0 < r < s, there exists Cr > 0 such that

‖q1 − q2‖
H

N
2 +r(Ω)

≤ Cr‖A1 −A2‖θ(r)
1 ,
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where θ(r) = 2(s − r)/(N + 2s + 1). In particular, for each 0 < r < s there exists C̃r

such that
‖q1 − q2‖∞ ≤ C̃r‖A1 −A2‖θ(r)

1 .

Using the same ideas considered in the proof of Theorem 1.1, we obtain the fol-
lowing partial result on the identification of both q and f in (1):

Theorem 1.2. Let q1, q2 ∈ L∞(Ω) and f1, f2 ∈ L∞(
Ω;L2(S × S)

)
. If T > diam(Ω)

and A1 = A2, then q1 = q2. Moreover, if fj(x, ω′, ω) = gj(x)h(ω′, ω), with h ∈
L∞(S × S) such that h(ω, ω) �= 0, a.e. on S, then g1 = g2.

We organize the paper as follows: in section 2 we introduce the functional frame-
work in which the initial-boundary value problem for (1) is well posed in the sense
of the semigroup theory and where the albedo operator is defined over suitable Lp

spaces; in section 3, following an argument used in [18] and an analogous strategy
used for identifying coefficients in the wave equation (see [6,12]), we construct special
oscillatory solutions of (1) that allow us to prove Theorem 1.1. Although the result
established in the Theorem 1.2 is not new, we also present here its proof to highlight
the method.

2. Functional framework and well-posedness results

For the reader’s convenience we gather below a few more or less well known results
concerning the functional framework for the operator ω · ∇x and the semigroup it
generates.

Let Ω ⊂ R
N (N ≥ 2) be a convex and bounded domain of class C1 and S = S

N−1

the unit sphere of R
N . We denote by Q = S×Ω and Σ its boundary, i.e., Σ = S×∂Ω.

For p ∈ [1,+∞) we consider the space Lp(Q) with the usual norm

‖u‖Lp(Q) =
(∫

Q

|u(ω, x)|p dx dω

)1/p

,

where dω denotes the surface measure on S associated to the Lebesgue measure
in R

N−1.
For each u ∈ Lp(Q) we define A0u by

(A0u)(ω, x) = ω · ∇xu(ω, x) =
N∑

k=1

ωk
∂u

∂xk
(ω, x), ω = (ω1, . . . , ωN )

where the derivatives are taken in the sense of distributions in Ω.
One checks easily that setting Wp = {u ∈ Lp(Q) ; A0u ∈ Lp(Q) }, the operator

(A0,Wp) is a closed densely defined operator and Wp with the graph norm is a Banach
space.
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For every σ ∈ ∂Ω, we denote ν(σ) the unit outward normal at σ ∈ ∂Ω and we
consider the sets

Σ± = { (ω, σ) ∈ S × ∂Ω ; ± ω · ν(σ) > 0 }.

We also denote Σ±
ω = {σ ∈ ∂Ω ; (ω, σ) ∈ Σ± } (respectively, the incoming and

outcoming boundaries in the direction ω).

Remark. It is well known that functions u ∈ Wp may present singularities on Σ at
points (ω, σ) such that ω · ν(σ) = 0, in such a way that u|Σ /∈ Lp(Σ). For instance,
consider α > 0, Ω = { (x1, x2) ∈ R

2 ; x2
1 + x2

2 < 1 } and u : S × Ω → R defined by

u(ω, x) =
1

(ω2x1 − ω1x2 + 1)α
.

It is easy to check that if α < 3/4 one has u ∈ W2 but u|Σ+ /∈ L2(Σ+). Yet worse, if
α ∈ [1/2, 3/4) one has ∫

Σ+
(ω · ν(σ))|u(ω, σ)|2 dωdσ = +∞.

In order to well define the albedo operator as a trace operator on the outcoming
boundary, we consider Lp(Σ±; dξ), where dξ = |ω · ν(σ)|dσdω, and we introduce the
spaces

W̃±
p = {u ∈ Wp ; u|Σ± ∈ Lp(Σ±; dξ)},

which are Banach spaces if equipped with the norms

‖u‖W̃±
p

=
(
‖u‖p

Wp
+

∫
Σ±

|ω · ν(σ)||u(ω, σ)|p dσdω

)1/p

.

The next two lemmas concern the continuity and surjectivity of the trace operators
(see [3, 4]):

γ± : W̃±
p → Lp(Σ∓; dξ), γ±(u) = u|Σ∓ .

Lemma 2.1. Let 1 ≤ p < +∞. Then there exists C > 0 (depending only on p) such
that ∫

Σ∓
|ω · ν(σ)||u(ω, σ)|p dσdω ≤ C‖u‖p

W̃±
p

, ∀u ∈ W̃±
p . (3)

Moreover, if p > 1 and 1/p + 1/p′ = 1, we have the Gauss identity∫
Q

divx(uvω) dxdω =
∫

Σ

ω · ν(σ)u(ω, σ)v(ω, σ) dσdω, (4)

for all u ∈ W̃±
p and v ∈ W̃±

p′ .
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Proof. Let ϕ ∈ C1(R) and u ∈ C(S;C1(Ω)). Then, for each ω ∈ S, we have from
Gauss Theorem,∫

Σ+
ω

(ω · ν)uϕ(u) dσ =
∫

Ω

(ω · ∇u)[ϕ(u) + uϕ′(u)] dx +
∫

Σ−
ω

|ω · ν|uϕ(u) dσ. (5)

If p ≥ 2, we consider ϕ(s) = s|s|p−2. Then ϕ ∈ C1(R) and (5) takes the form∫
Σ+

ω

(ω · ν)|u|p dσ = p

∫
Ω

(ω · ∇u)u|u|p−2 dx +
∫

Σ−
ω

|ω · ν||u|p dσ. (6)

From the Young inequality, we get∫
Ω

|ω · ∇u||u|p−1 dx ≤ 1
p

∫
Ω

|ω · ∇u|p dx +
1
p′

∫
Ω

|u|p. (7)

By substituting (7) in (6) and integrating over S, we obtain (3). The general case
follows by density.

For 1 ≤ p < 2, we consider ϕε(s) = s(ε + s2)(p−2)/2. Then ϕ ∈ C1(R) and since

ϕε(s) −→
ε→0

s|s|p−2, ϕ′
ε(s) −→

ε→0
(p − 1)|s|p−2,

|ϕε(s)| ≤ |s|p−1, |ϕ′
ε(s)| ≤ (p − 1)|s|p−2 + εp/2−1

we obtain (6) from (5) by application of Lebesgue Theorem. The conclusion follows,
as before, by density.

As an immediate consequence of Lemma 2.1, we can introduce the space

W̃p =
{

f ∈ Wp ;
∫

Σ

|ω · ν(σ)||f(ω, σ)|p dωdσ < +∞
}

and we have that

Corollary 2.2. W̃+
p = W̃−

p = W̃p with equivalent norms.

Lemma 2.3. The trace operators γ± : W̃±
p → Lp(Σ∓; dξ) are surjective. More

precisely, for each f ∈ Lp(Σ∓; dξ), there exists h ∈ W̃±
p such that γ±(h) = f and

‖h‖W̃±
p
≤ C‖f‖Lp(Σ∓,dξ),

where C > 0 is independent of f .

Proof. See [3, 4].

We consider the operator A : D(A) → Lp(Q), defined by (Au)(ω, x) = ω·∇u(ω, x),
with D(A) = {u ∈ W̃p ; γ+(u) = 0 }.
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Theorem 2.4. The operator A is m-accretive in Lp(Q), for p ∈ [1,+∞).

Proof. It follows from the following two lemmas.

Lemma 2.5. The operator A is accretive in Lp(Q), i.e.,

‖u + λAu‖Lp(Q) ≥ ‖u‖Lp(Q), ∀u ∈ D(A), ∀λ > 0.

Proof. It is sufficient to prove that

‖u + Au‖Lp(Q) ≥ 1, ∀u ∈ D(A), such that ‖u‖Lp(Q) = 1.

We prove first the case 1 < p < ∞. Let u ∈ C(S;C1(Ω)) with u = 0 on Σ− and such
that ‖u‖Lp(Q) = 1. Then

‖u + Au‖Lp(Q) = sup
{ ∫

Q

(u + ω · ∇u)v dxdω ; v ∈ Lp′
(Q), ‖v‖Lp′ (Q) = 1

}
,

where 1/p′ + 1/p = 1. If v = |u|p−2u, then v ∈ Lp′
(Q) and ‖v‖Lp′ (Q) = 1. Hence

‖u + Au‖Lp(Q) ≥
∫

Q

(|u(ω, x)|p + |u(ω, x)|p−2u(ω, x)ω · ∇u(ω, x)) dxdω.

Since
|u(ω, x)|p−2u(ω, x)ω · ∇u(ω, x) =

1
p

divx(ω|u(ω, x)|p),

we have, from Gauss Theorem,∫
Ω

|u(ω, x)|p−2u(ω, x)ω · ∇u(ω, x) dx =
1
p

∫
Σ+

ω

ω · ν(σ)|u(ω, σ)|p dσ ≥ 0.

Therefore,

‖u + Au‖Lp(Q) ≥
∫

Q

|u(ω, x)|p dxdω = 1.

The conclusion follows by density.
The case p = 1 follows easily by a density argument and the fact that ‖u‖p → ‖u‖1

as p → 1, for all u ∈ L2(Q) ∩ L1(Q). (See also the Corollary 2.7 below.)

In order to prove the maximality of A, we consider, for u ∈ Lp(Q), the extension
of u, that is the function ũ : S × R

N → R,

ũ(ω, x) =

{
u(ω, x) if (ω, x) ∈ S × Ω,
0 otherwise.

It defines the extension operator u 
→ ũ which is a continuous operator from Lp(Q)
into Lp(S × R

N ).
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Let Lλ : Lp(Q) → Lp(Q) be the operator defined by

(Lλu)(ω, x) =
∫ ∞

0

e−sũ(ω, x − λsω) ds, (ω, x) ∈ S × Ω.

Lemma 2.6. Lλ satisfies the following properties, for each p ∈ [1 + ∞):

(i) Lλ ∈ L(Lp(Q), Lp(Q)), ‖Lλ‖L(Lp(Q),Lp(Q)) ≤ 1;

(ii) ∀u ∈ Lp(Q), Lλu −→
λ→0

u in Lp(Q);

(iii) (I + λA)(Lλu) = u, ∀u ∈ Lp(Q);

(iv) Lλ ∈ L(Lp(Q),Wp), ‖Lλ‖L(Lp(Q),Wp) ≤ 2/λ;

(v) Lλ(u) ∈ D(A), ∀u ∈ Lp(Q).

Proof. Let u ∈ Lp(Q). Then,

|(Lλu)(ω, x)| ≤
∫ ∞

0

e−s|ũ(ω, x − λsω)| ds

≤
(∫ ∞

0

e−s ds

)1/p′(∫ ∞

0

e−s|ũ(ω, x − λsω)|pds

)1/p

=
(∫ ∞

0

e−s|ũ(ω, x − λsω)|pds

)1/p

which yields ∫
Ω

|(Lλu)(ω, x)|p dx ≤
∫ ∞

0

e−s

(∫
Ω

|ũ(ω, x − λsω)|pdx

)
ds

≤
∫ ∞

0

e−s

(∫
RN

|ũ(ω, y)|p dy

)
ds

= ‖u(ω, ·)‖p
Lp(Ω).

By integrating the expression above over S we obtain ‖Lλu‖Lp(Q) ≤ ‖u‖Lp(Q) and
the item (i) is proved. In order to prove (ii), we first note that

Lλu(ω, x) − u(ω, x) =
∫ ∞

0

e−s[ũ(ω, x − λsω) − ũ(ω, x)] ds.

So, thanks to Hölder inequality, we have

|Lλu(ω, x) − u(ω, x)|p ≤
∫ ∞

0

e−s|ũ(ω, x − λsω) − ũ(ω, x)|p ds.
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By integrating this last inequality over Ω and applying Fubini’s theorem, we obtain∫
Ω

|Lλu(ω, x) − u(ω, x)|p dx ≤
∫ ∞

0

e−s

(∫
RN

|ũ(ω, x − λsω) − ũ(ω, x)|p dx

)
ds

and the conclusion follows from the Lebesgue Theorem, since the translation operator
(τλg)(x) = g(x − λsω) defines a continuous group of isometries in Lp(RN ), that is,
for 1 ≤ p < ∞,

lim
λ→0

‖τλg − g‖p = 0.

By a direct application of Fubini’s Theorem, one checks easily that the adjoint of
Lλ is given by

(L∗
λu)(ω, x) =

∫ ∞

0

e−sũ(ω, x + λsω) ds,

since ∫
Q

(Lλu)(ω, x)v(ω, x) dxdω =
∫

Q

(L∗
λv)(ω, x)u(ω, x) dxdω,

for each u ∈ Lp(Q) and v ∈ Lp′
(Q). Moreover, for u ∈ Lp(Q),

〈Lλu(ω, ·), ϕ〉 =
∫

Ω

u(ω, x)L∗
λ(ϕ)(x) dx, ∀ϕ ∈ C∞

0 (Ω).

On the other hand,

L∗
λ(λAϕ)(x) = λ

∫ ∞

0

e−sω · ∇ϕ̃(x + λsω) ds

=
∫ ∞

0

e−s d

ds
ϕ̃(x + λsω) ds

= −ϕ(x) + (L∗
λϕ)(x), ∀ϕ ∈ C∞

0 (Ω)

and we have

〈Lλu;ϕ〉 =
∫

Ω

uL∗
λϕ =

∫
RN

ũL∗
λϕ =

∫
RN

ũ[ϕ + L∗
λ(λω · ∇ϕ)]

= 〈u;ϕ〉 +
∫

RN

ũL∗
λ(λω · ∇ϕ)

= 〈u;ϕ〉 − 〈Lλu;λω · ∇ϕ〉
= 〈u − λω · ∇(Lλu);ϕ〉

which means that (I + λA)(Lλu) = u in the sense of distributions in Ω.
Since λA(Lλu) = u − Lλu ∈ Lp(Q), we obtain Lλu ∈ Wp. Moreover,

‖Au‖Lp(Q) ≤
1
λ

(‖u‖Lp(Q) + ‖Lλu‖Lp(Q)) ≤
2
λ
‖u‖Lp(Q).

In order to prove that Lλu ∈ D(A), we note that if u ∈ C(S×Ω), then it is obvious
that u ∈ Lp(Q) and Lλu = 0 on Σ−. Again, the general case follows by density.
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Corollary 2.7. Let f ∈ Lp(Q), p ∈ [1,+∞) and assume that u ∈ D(A) is a solution
of u + Au = f . If f ≥ 0 a.e. in Q, then u ≥ 0 a.e. in Q. In particular, it follows that

‖u‖L1(Q) ≤ ‖f‖L1(Q).

Proof. Since (L1f)(ω, x) =
∫ ∞
0

e−sf̃(ω, x− sω) ds ≥ 0 if f ≥ 0, we obtain u ≥ 0 from
items (iii) and (v) in Lemma 2.6.

Now assume that f ∈ L1(Q) and let v ∈ D(A) the solution of v + Av = |f |. Then
v ≥ 0 and −|f | ≤ f ≤ |f | implies that |u| ≤ v. Therefore, by integrating over Q, we
obtain

‖u‖L1(Q) ≤
∫

Q

v(ω, x) dxdω ≤
∫

Q

[v(ω, x) + Av(ω, x)] dxdω = ‖f‖L1(Q).

It follows from Theorem 2.4 and Corollary 2.7 that the operator A generates a
positive semigroup {U0(t)}t≥0 of contractions acting on Lp(Q).

Let q ∈ L∞(Ω) and f : Ω × S × S → R be a real measurable function satisfying{∫
S
|f(x, ω′, ω)| dω′ ≤ M1 a.e. Ω × S,∫

S
|f(x, ω′, ω)| dω ≤ M2 a.e. Ω × S.

(8)

Associated to these functions, we define the following continuous operators:

(a) B ∈ L(Lp(Q), Lp(Q)) defined by B[u](ω, x) = q(x)u(ω, x),

(b) Kf [u](ω, x) =
∫

S
f(x, ω′, ω)u(ω′, x) dω′.

It follows from (8) that Kf ∈ L(Lp(Q), Lp(Q)) ∀p ∈ [1,+∞) and (see [7])

‖Kf [u]‖Lp(Q) ≤ M
1/p′

1 M
1/p
2 ‖u‖Lp(Q).

The operator A + B − Kf : D(A) → Lp(Q) generates a c0-semigroup {U(t)}t≥0

on Lp(Q) satisfying
‖U(t)‖L ≤ eCt, C = ‖q−‖∞ + M2.

3. Stability and identification of parameters

We consider the initial-boundary value problem for the linear Boltzmann equation⎧⎪⎨⎪⎩
∂tu(t, ω, x) + ω · ∇u(t, ω, x) + q(x)u(t, ω, x) = Kf [u](t, ω, x)
u(0, ω, x) = 0, (ω, x) ∈ S × Ω
u(t, ω, σ) = ϕ(t, ω, σ), (ω, σ) ∈ Σ−, t ∈ (0, T ),

(9)

where q ∈ L∞(Ω) and

Kf [u](t, ω, x) =
∫

S

f(x, ω′, ω)u(t, ω′, x) dω′,
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with f satisfying (8).
By the results stated in section 2, it follows that, for any p ∈ [1,+∞), if

ϕ ∈ Lp(0, T ;Lp(Σ−, dξ)), there exists a unique solution u ∈ C([0, T ]; W̃p) ∩
C1([0, T ];Lp(Q)) of (9). This solution u allows us to define the albedo operator

Aq,f : Lp
(
0, T ;Lp(Σ−, dξ)

)
→ Lp

(
0, T ;Lp(Σ+, dξ)

)
Aq,f [ϕ](t, ω, σ) = u(t, ω, σ), (ω, σ) ∈ Σ+.

As a consequence of Lemmas 2.1 and 2.3, Aq,f is a linear and bounded operator.
So, we denote by ‖Aq,f‖p its norm. In order to simplify our notation, we will consider
from now on ‖·‖L±

p
= ‖·‖Lp(0,T ;Lp(Σ±,dξ)).

We also consider the following backward-boundary value problem, called the ad-
joint problem of (9):⎧⎪⎨⎪⎩

∂tv(t, ω, x) + ω · ∇v(t, ω, x) − q(x)v(t, ω, x) = −K∗
f [v](t, ω, x)

v(T, ω, x) = 0, (ω, x) ∈ S × Ω
v(t, ω, σ) = ψ(t, ω, σ), (ω, σ) ∈ Σ+, t ∈ (0, T ),

(10)

where ψ ∈ Lp′(
0, T ;Lp′

(Σ+, dξ)
)
, p′ ∈ [1,+∞),

K∗
f [v](t, ω′, x) =

∫
S

f(x, ω′, ω)v(t, ω, x) dω

with the corresponding albedo operator A∗
q,f

A∗
q,f : Lp′

(0, T ;Lp′
(Σ+, dξ)) → Lp′

(0, T ;Lp′
(Σ−, dξ))

A∗
q,f [ψ](t, ω, σ) = v(t, ω, σ), (ω, σ) ∈ Σ−.

The operators Aq,f and A∗
q,f satisfy the following property:

Lemma 3.1. Let ϕ ∈ Lp(0, T ; Lp(Σ−; dξ)) and ψ ∈ Lp′
(0, T ; Lp′

(Σ+; dξ)), where
p, p′ ∈ (1,+∞) are such that 1/p + 1/p′ = 1. Then, we have

∫ T

0

∫
Σ−

(ω · ν(σ))ϕ(t, ω, σ)A∗
q,f [ψ](t, ω, σ) dσdωdt =

= −
∫ T

0

∫
Σ+

(ω · ν(σ))ψ(t, ω, σ)Aq,f [ϕ](t, ω, σ) dσdωdt.

Proof. It is a direct consequence of Lemma 2.1. Let u(t, ω, x) the solution of (9) with
boundary condition ϕ and v(t, ω, x) the solution of (10) with boundary condition ψ.
We obtain the result by using (4), once the equation in (9) is multiplied by v and
integrated over Q.
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Lemma 3.2. Let T > 0, q1, q2 ∈ L∞(Ω) and f1, f2 satisfying (8). Assume that
u1 is the solution of (9) with (q, f) = (q1, f1) and boundary condition ϕ ∈ Lp(0, T ;
Lp(Σ−, dξ)), p ∈ (1,+∞) and that v2 is the solution of (10), with (q, f) = (q2, f2)
and boundary condition ψ ∈ Lp′(

0, T ;Lp′
(Σ+, dξ)

)
, 1/p + 1/p′ = 1. Then we have∫ T

0

∫
Q

(
q2(x) − q1(x)

)
u1(t, ω, x)v2(t, ω, x) dxdωdt

+
∫ T

0

∫
Q

Kf1−f2 [u1](t, ω, x)v2(t, ω, x) dxdωdt

=
∫ T

0

∫
Σ+

(ω · ν(σ))
[
A1[ϕ] −A2[ϕ]

]
(t, ω, σ)ψ(t, ω, σ) dσdωdt,

where Aj = Aqj ,fj
, j = 1, 2.

Proof. It is a direct consequence of Lemma 3.1.

Lemma 3.3. Let T > 0, q1, q2 ∈ L∞(Ω), and f1, f2 satisfying (8). We consider
ψ1, ψ2 ∈ C

(
S,C∞

0 (RN )
)

such that

suppψ1(ω, ·) ∩ Ω = (suppψ2(ω, ·) + Tω) ∩ Ω = ∅, ∀ω ∈ S. (11)

Then, there exists C0 > 0 such that, for each λ > 0, there exist R1,λ ∈ C([0, T ]; W̃p)
and R∗

2,λ ∈ C([0, T ]; W̃p′) satisfying

‖R1,λ‖C([0,T ];Lp(Q)) ≤ C0, ‖R∗
2,λ‖C([0,T ];Lp′ (Q)) ≤ C0, ∀ p, p′ ∈ (1,+∞), (12)

with 1/p + 1/p′ = 1, for which the functions u1, v2 defined by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u1(t, ω, x) = ψ1(ω, x − tω) exp
(
−

∫ t

0

q̃1(x − sω) ds + iλ(t − ω · x)
)

+R1,λ(t, ω, x)

v2(t, ω, x) = ψ2(ω, x − tω) exp
(∫ t

0

q̃2(x − sω) ds − iλ(t − ω · x)
)

+R∗
2,λ(t, ω, x)

(13)

are solutions of (9) with (q, f) = (q1, f1) and (10) with (q, f) = (q2, f2) respectively.
Moreover, if f1, f2 ∈ L∞(Ω;L2(S × S)), then we have

lim
λ→+∞

‖R1,λ‖L2([0,T ]×Q) = lim
λ→+∞

‖R∗
2,λ‖L2([0,T ]×Q) = 0. (14)

Proof. Let u be the function

u(t, ω, x) = ψ1(ω, x − tω) exp
(
−

∫ t

0

q̃1(x − sω) ds + iλ(t − ω · x)
)

+ R(t, ω, x). (15)
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By direct calculations, we easily verify that

∂tu + ω · ∇u + q1u − Kf1 [u] = ∂tR + ω · ∇R + q1R − Kf1 [R] − exp(iλt)z1,λ,

where

z1,λ(t, ω, x) =
∫

S

f1(x, ω′, ω)ψ1(ω′, x − tω′)e−
∫ t
0 q̃1(x−sω′) ds−iλω′·x dω′.

By choosing R1,λ ∈ C1([0, T ];Lp(Q)) ∩ C([0, T ];D(A)) the solution of⎧⎪⎨⎪⎩
∂tR + ω · ∇R + q1R = Kf1 [R] + exp(iλt)z1,λ,

R(0, ω, x) = 0, (ω, x) ∈ S × Ω,

R(t, ω, σ) = 0, (ω, σ) ∈ Σ−,

(16)

we see that (11) implies that the function u defined by (15) satisfies (9) with boundary
condition

ϕ(t, ω, σ) = ψ1(ω, σ − tω)e−
∫ t
0 q̃1(σ−sω) ds+iλ(t−ω·σ), (ω, σ) ∈ Σ−.

Multiplying both sides of the equation in (16) by the complex conjugate of |R|p−2R,
integrating it over Q and taking its real part, we get, from Lemma 2.1,

1
p

d

dt

∫
Q

|R(t)|pdωdx +
1
p

∫
Σ+

ω · ν(σ)|R(t)|pdωdσ +
∫

Q

q1|R(t)|pdωdx

−�
∫

Q

Kf1 [R(t)]|R(t)|p−2R(t)dωdx = �
[
eiλt

∫
Q

z1,λ(t)|R(t)|p−2R(t) dωdx

]
.

It follows from the Hölder inequality and (8) that∫
Q

|Kf1 [R(t)]||R(t)|p−1dxdω ≤ Cp‖R(t)‖p
Lp(Q),

where Cp = M
1/p′

1 M
1/p
2 ≤ max{M1,M2}. Therefore, considering the decomposition

q1 = q+
1 − q−1 , we obtain,

d

dt
‖R(t)‖p

Lp(Q) ≤ pC1‖R(t)‖p
Lp(Q) + ‖z1,λ(t)‖p

Lp(Q),

where C1 = ‖q−1 ‖∞ + max{M1,M2} + 1 and the Gronwall inequality implies that

‖R(t)‖p
Lp(Q) ≤ ‖z1,λ(t)‖p

Lp(Q)e
pTC1 , ∀t ∈ [0, T ].

The first inequality in (12) follows easily because

|z1,λ(t, ω, x)| ≤ ‖ψ1‖∞e‖q−
1 ‖∞T M1.
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Since the same arguments hold for v2 and R∗
2,λ with p′ in place of p, we obtain

the second inequality in (12).
We assume now f ∈ L∞(Ω;L2(S × S)). Following the same steps as before, we

obtain
‖R(t)‖2

L2(Q) ≤ ‖z1,λ(t)‖2
L2(Q)e

2C1T , ∀t ∈ [0, T ], (17)

where C1 = ‖q−1 ‖∞ + ‖f‖L∞(Ω;L2(S×S)) + 1. Since for each x ∈ R
N , the map

ω 
→ exp(iλω · x) converges weakly to zero in L2(S) when λ → +∞ and the inte-
gral operator with kernel f1(x, ·, ·) is compact in L2(S), we obtain

lim
λ→+∞

‖z1,λ(t, ·, x)‖L2(S) = 0 a.e. in [0, T ] × Ω.

Moreover, ‖z1,λ(t, ·, x)‖L2(S) ≤ C, where C > 0 is a constant that does not depend
on λ. The Lebesgue’s Dominated Convergence Theorem (Lebesgue Theorem in short)
implies that

lim
λ→+∞

‖z1,λ‖L2([0,T ]×Q) = 0. (18)

From (18) and (17) we obtain (14), and our proof is complete.

We are now in position to prove our main result.

Proof of Theorem 1.1. Let ε = (T − diam(Ω))/2 and consider

Ωε = {x ∈ R
N \ Ω ; dist(x,Ω) < ε }.

Let χ ∈ C(S) and Φ,Ψ ∈ C∞
0 (Ωε). We define ψ1(ω, x) = χ(ω)Φ(x) and ψ2(ω, x) =

Ψ(x). Since T > diam(Ω) implies that ψ1, ψ2 satisfy (11), we may consider the
solutions u1 and v2 defined by (13). Denoting by f = f1 − f2 and ρ = q̃1 − q̃2 (q̃j

being the zero extension of qj in the exterior of Ω), we have by Lemma 3.2,∣∣∣∣ ∫ T

0

∫
Q

ρ(x)e−
∫ t
0 ρ(x−sω) dsχ(ω)Φ(x − tω)Ψ(x − tω) dxdωdt

+
∫ T

0

∫
Q

zλ(t, ω, x)Ψ(x − tω)e
∫ t
0 q̃2(x−sω) ds+iλω·x dxdωdt + Iλ

∣∣∣∣
≤ ‖A1 −A2‖p‖ϕ‖L−

p
‖ψ‖L+

p′
,

where ⎧⎪⎪⎨⎪⎪⎩
zλ(t, ω, x) =

∫
S

f(x, ω′, ω)χ(ω′)Φ(x − tω′)e−iλω′·x−
∫ t
0 q̃1(x−sω′)dsdω′,

ϕ(t, ω, σ) = χ(ω)Φ(σ − tω)eiλ(t−ω·σ)−
∫ t
0 q̃1(σ−sω) ds,

ψ(t, ω, σ) = Ψ(σ − tω)e
∫ t
0 q̃2(σ−sω) ds−iλ(t−ω·σ)

and Iλ represents the sum of the integrals that contain terms with R1,λ and R∗
2,λ.
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Because R1,λ, R∗
2,λ and zλ converge to zero in L2([0, T ]×Q), we get, after taking

the limit as λ → +∞,∣∣∣∣ ∫ T

0

∫
S×RN

ρ(x)e−
∫ t
0 ρ(x−sω) dsχ(ω)Φ(x − tω)Ψ(x − tω) dxdωdt

∣∣∣∣
≤ ‖A1 −A2‖p‖ϕ‖L−

p
‖ψ‖L+

p′

Since∫ T

0

∫
S×RN

ρ(x)e−
∫ t
0 ρ(x−sω) dsχ(ω)Φ(x − tω)Ψ(x − tω) dxdωdt

=
∫ T

0

∫
S×RN

ρ(y + tω)e−
∫ t
0 ρ(y+sω) dsχ(ω)Φ(y)Ψ(y) dydωdt

=
∫

S×RN

[
1 − e−

∫ T
0 ρ(y+sω) ds

]
χ(ω)Φ(y)Ψ(y) dydω,

it follows that∣∣∣∣ ∫
S×RN

[
1 − e−

∫ T
0 ρ(y+sω) ds

]
χ(ω)Φ(y)Ψ(y) dydω

∣∣∣∣ ≤ ‖A1 −A2‖p‖ϕ‖L−
p
‖ψ‖L+

p′
.

Note that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖ψ‖L+

p′
≤ C1‖Ψ‖L∞(RN ), C1 = C(T,M, |S|, |∂Ω|),

lim
p→1

‖ϕ‖L−
p

= ‖ϕ‖L−
1
,

lim sup
p→1

‖A1 −A2‖p ≤ ‖A1 −A2‖1

which yields∣∣∣∣ ∫
S×RN

[
1 − e−

∫ T
0 ρ(y+sω) ds

]
χ(ω)Φ(y)Ψ(y) dydω

∣∣∣∣ ≤ C1‖A1 −A2‖1‖ϕ‖L−
1
‖Ψ‖L∞ .

Note also that ‖ϕ‖L−
1

≤ C2‖Φ‖L1(RN )‖χ‖L1(S), for some C2 that depends as C1

on T , M , |S|, and |∂Ω|. Hence,∣∣∣∣ ∫
S×RN

[
1 − e−

∫ T
0 ρ(y+sω) ds

]
χ(ω)Φ(y)Ψ(y) dydω

∣∣∣∣
≤ C3‖A1 −A2‖1‖Φ‖L1(RN )‖Ψ‖L∞(RN )‖χ‖L1(S).

Let O ⊂ Ωε be an open set such that supp Φ, supp Ψ ⊂ O. Assume that Ψ ≤ 1.
Taking a sequence {Ψk}k such that Ψk converges a.e. in R

N to 1O, the characteristic
function of O, we obtain from Lebesgue Theorem∣∣∣∣ ∫

S×O

[
1 − e−

∫ T
0 ρ(y+sω) ds

]
χ(ω)Φ(y) dydω

∣∣∣∣ ≤ C3‖A1 −A2‖1‖Φ‖L1(RN )‖χ‖L1(S).
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Now, taking the supremum of the above inequality among all Φ with ‖Φ‖L1(RN ) = 1,
we get ∥∥∥∥ ∫

S

[
1 − e−

∫ T
0 ρ(y+sω) ds

]
χ(ω) dω

∥∥∥∥
L∞(O)

≤ C3‖A1 −A2‖1‖χ‖L1(S).

In particular,∣∣∣∣ ∫
S

[
1 − e−

∫ T
0 ρ(y+sω) ds

]
χ(ω) dω

∣∣∣∣ ≤ C3‖A1 −A2‖1‖χ‖L1(S), (19)

for a.e. y ∈ O. Since O can be chosen arbitrarily in Ωε, we obtain (19) for a.e. y ∈ Ωε.
Again, taking the supremum among all χ ∈ C(S), with ‖χ‖L1(S) = 1, we get∣∣∣ e−

∫ T
0 ρ(y+sω) ds − 1

∣∣∣ ≤ C3‖A1 −A2‖1

for a.e. (ω, y) ∈ S × Ωε.
Since ‖qj‖∞ ≤ M , j = 1, 2, the Mean Value Theorem gives

∣∣∣ e−
∫ T
0 ρ(y+sω) ds − 1

∣∣∣ ≥ e−2TM

∣∣∣∣ ∫ T

0

ρ(y + sω) ds

∣∣∣∣.
and consequently ∣∣∣∣ ∫ T

0

ρ(y + sω) ds

∣∣∣∣ ≤ e2TMC3‖A1 −A2‖1

for a.e. (ω, y) ∈ S × Ωε. Since T > diam(Ω) and supp ρ ⊂ Ω, we obtain∣∣∣∣ ∫ ∞

−∞
ρ(y + sω) ds

∣∣∣∣ ≤ e2TMC3‖A1 −A2‖1 (20)

for a.e. (ω, y) ∈ S × R
N .

Since Ω is bounded, there exists a R > 0 such that Ω ⊂ BR, so that we can
rewrite (20) as

|P [ρ](ω, y)| ≤ C4‖A1 −A2‖1 (21)

for a.e. ω ∈ S and a.e. y ∈ ω⊥ ∩ BR, where P [ρ] denotes the X-ray transform of ρ.
Taking the square on both sides of (21), we obtain

‖P [ρ]‖2
L2(T ) =

∫
S

∫
ω⊥∩BR

|P [ρ](ω, y)|2 dydω ≤ C5‖A1 −A2‖2
1, (22)

where T = { (ω, y) ; ω ∈ S, y ∈ ω⊥ } denotes the tangent bundle.
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For the X-ray transform, we have the following well known estimate (see [10])

‖ρ‖H−1/2 ≤ C‖P [ρ]‖L2(T ), (23)

where C > 0 depends only on N . Combining (22) and (23) we obtain (2). The
conclusion follows from interpolation formulæ and classical Sobolev imbedding theo-
rems.

Proof of Theorem 1.2. Since we are assuming that Aq1,f1 = Aq2,f2 , q1 = q2 follows
trivially from (2). As a consequence, the identity in Lemma 3.2 is reduced to∫ T

0

∫
Q

Kf1−f2 [u1](t, ω, x)v2(t, ω, x) dxdωdt = 0. (24)

Assuming that fj(x, ω′, ω) = gj(x)h(ω′, ω), where h ∈ L∞(S×S) and h(ω, ω) �= 0
a.e. on S, we have that fj satisfies (8) with M1 = M2 = αN‖gj‖∞‖h‖∞, where
αN = 2πN/2/Γ(N/2) is the measure of the unit sphere of R

N .
For 0 < r < 1 we define χr : S × S → R as χr(ω, ω′) = P (rω, ω′), where P is the

Poisson kernel for B1(0), i.e.,

P (x, y) =
1 − |x|2

αN |x − y|N .

From the well known properties of P (see Theorem 2.46 of [8]), we have

0 ≤ χr(ω, ω′) ≤ 2
αN (1 − r)N−1

, ∀ω, ω′ ∈ S,∫
S

χr(ω, ω′) dω′ = 1, ∀ 0 < r < 1, ∀ω ∈ S

lim
r→1

∫
S

χr(ω, ω′)ψ(ω′) dω′ = ψ(ω),

where the limit is taken in the topology of Lp(S), p ∈ [1,+∞) and uniformly on S if
ψ ∈ C(S).

As before, we take Ωε = {x ∈ R
N\Ω ; dist(x,Ω) < ε }, where ε = (T−diam(Ω))/2.

For ω̃ ∈ S, 0 < r, r′ < 1, we define the functions ψ1(ω, x) = χr(ω̃, ω)Φ(x) and
ψ2(ω, x) = χr′(ω̃, ω)Ψ(x), where Φ,Ψ ∈ C∞

0 (Ωε),
It follows from Lemma 3.3 that there exist functions u1,r and v2,r′ in such way

that (24) takes the form

∫ T

0

∫
Q

[
η(x)

∫
S

h(ω, ω′)χr(ω̃, ω′)Φ(x − tω′)e−
∫ t
0 q̃(x−sω′)ds−iλx·ω′

dω′
]

× χr′(ω̃, ω)Ψ(x − tω)e
∫ t
0 q̃(x−sω)ds+iλx·ωdxdωdt = Iλ,r′,r(ω̃), (25)
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where q̃ = q̃1 = q̃2, η = g̃1 − g̃2 and Iλ,r,r′ denotes the sum of the integrals that
contain the terms with R1,λ,r and R∗

2,λ,r′ .
First of all, we write the left hand side of (25) as

Jλ,r′,r(ω̃) =
∫ T

0

∫
Q

ηKh

[
χr(ω̃, ·)u0,λ

]
χr′(ω̃, ·)v0,λ dxdωdt,

where ⎧⎪⎪⎨⎪⎪⎩
u0,λ(t, ω, x) = Φ(x − tω) exp

[
−

∫ t

0

q̃(x − sω)ds − iλω · x
]
,

v0,λ(t, ω, x) = Ψ(x − tω) exp
[∫ t

0

q̃(x − sω)ds + iλω · x
]
.

Taking into account the properties of χr, we have, as r → 1,

Kh[χr(ω̃, ·)u0,λ](t, ω, x) → h(ω, ω̃)u0,λ(t, ω̃, x)

a.e. in [0, T ] × S × Q. Moreover, since
∫

S
χr(ω̃, ω′)dω′ = 1 for 0 < r < 1, it follows

that
|ηKh[χr(ω̃, ·)u0,λ]χr′(ω̃, ·)v0,λ| ≤ CN (1 − r′)1−N ,

a.e. in [0, T ] × Q, where CN > 0 is independent of r. Therefore, as an application of
Lebesgue Theorem, we have

Jλ,r′,r(ω̃) → Jλ,r′(ω̃), a.e. ω̃ ∈ S,

where

Jλ,r′(ω̃) =
∫ T

0

∫
Q

η(x)h(ω̃, ω)u0,λ(t, ω̃, x)χr′(ω̃, ω)v0,λ(t, ω, x) dxdωdt

=
∫ T

0

∫
Ω

η(x)K∗
h

[
χr′(ω̃, ·)v0,λ

]
(t, ω̃, x)u0,λ(t, ω̃, x) dxdt.

We repeat the same procedure with r′ → 1 to obtain Jλ,r′(ω̃) → Jλ(ω̃) a.e. ω̃ ∈ S,
where

Jλ(ω̃) =
∫ T

0

∫
Ω

η(x)h(ω̃, ω̃)v0,λ(t, ω̃, x)u0,λ(t, ω̃, x) dxdt

= h(ω̃, ω̃)
∫ T

0

∫
Ω

η(x)Φ(x − tω̃)Ψ(x − tω̃) dxdt.

(26)

Now we rewrite the right hand side of (25) as

Iλ,r′,r(ω̃) =
∫ T

0

∫
Q

η
(
Kh[R1,λ,r]χr′(ω̃, ·)v0,λ

+ Kh[χr(ω̃, ·)u0,λ]R∗
2,λ,r′ + Kh[R1,λ,r]R∗

2,λ,r′
)
dxdωdt,
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where R1,λ,r is the solution of the initial-boundary value problem⎧⎪⎨⎪⎩
∂tR + ω · ∇R + q1R = g1Kh[R] + exp(iλt)g1z1,λ,r,

R(0, ω, x) = 0, (ω, x) ∈ S × Ω,

R(t, ω, σ) = 0, (ω, σ) ∈ Σ−,

(27)

with
z1,λ,r(t, ω̃, ω, x) =

∫
S

h(ω, ω′)χr(ω̃, ω′)u0,λ(t, ω′, x) dω′

and R∗
2,λ,r′ is the solution of the corresponding adjoint problem with z2,λ,r′ .

Again, the properties of χr and Lebesgue Theorem give, as r → 1,

z1,λ,r −→ z1,λ in L2([0, T ] × S × Q),

where z1,λ(t, ω̃, ω, x) = h(ω, ω̃)u0,λ(t, ω̃, x). From the continuity of the operators U(t)
and Kh we obtain, as r → 1,

Kh[R1,λ,r](ω̃) −→ Kh[R1,λ](ω̃) in C([0, T ];L2(Q))

for almost every ω̃ ∈ S, where R1,λ is the solution of (27) with z1,λ taking the place of
z1,λ,r. Therefore, taking the limit as r → 1, we have Iλ,r′,r(ω̃) → Iλ,r′(ω̃) a.e. ω̃ ∈ S,
where

Iλ,r′(ω̃) =
∫ T

0

∫
Q

η
(
Kh[R1,λ]χr′(ω̃, ·)v0,λ + h(·, ω̃)u0,λR∗

2,λ,r′

+ Kh[R1,λ]R∗
2,λ,r′

)
dxdωdt

=
∫ T

0

∫
Q

η(K∗
h[χr′(ω̃, ·)v0,λ]R1,λ + K∗

h

[
R∗

2,λ,r′
]
R1,λ)dxdω′dt+

+
∫ T

0

∫
Ω

ηK∗
h[R∗

2,λ,r′ ](t, ω̃, x)u0,λ(t, ω̃, x) dxdt

We repeat the same procedure with r′ → 1 to obtain Iλ,r′(ω̃) → I∗λ(ω̃) a.e. ω̃,
where

I∗λ(ω̃) =
∫ T

0

∫
Ω

η
(
Kh

[
R1,λ

]
v0,λ + K∗

h

[
R∗

2,λ

]
u0,λ

)
dxdt

+
∫ T

0

∫
Q

ηKh

[
R1,λ

]
R∗

2,λdxdωdt. (28)

In order to take the limit as λ → +∞ in (28), we point out that x 
→ eiλω̃·x

converges weakly to zero in L2(Ω) for all ω̃ ∈ S. Therefore, using the Lebesgue
Theorem and the continuity of the operators U(t) and Kh we may conclude that

eiλtg1z1,λ(t, ω̃, ·, ·) ⇀ 0 ⇒ R1,λ(t, ω̃, ·, ·) ⇀ 0 ⇒ Kh[R1,λ](t, ω̃, ·, ·) ⇀ 0, (29)
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weakly in L2(Q), ∀t ∈ [0, T ], a.e. ω̃ ∈ S.
On another hand, it follows from (12) that ω 
→ R1,λ(t, ω̃, ω, x) is bounded in

L2(S) a.e. in [0, T ] × Q. Since Kh is compact, we have (by taking a sequence λn

if necessary) that Kh[R1,λ](t, ω̃, ·, x) converges strongly in L2(S) as λ → +∞. As a
consequence of the Lebesgue Theorem, Kh[R1,λ](t, ω̃, ·, ·) converges strongly in L2(Q),
∀t ∈ [0, T ], a.e. ω̃ ∈ S. In particular, we have from (29) that

Kh[R1,λ](t, ω̃, ·, ·) −→ 0 strongly in L2(Q), ∀t ∈ [0, T ], a.e. ω̃ ∈ S. (30)

With the same arguments, we also obtain

Kh[R∗
2,λ](t, ω̃, ·, ·) −→ 0 strongly in L2(Q), ∀t ∈ [0, T ], a.e. ω̃ ∈ S. (31)

Since u0,λ and v0,λ are bounded functions, we see from (30), (31), and (28) that

lim
λ→+∞

I∗λ(ω̃) = 0, a.e. ω̃ ∈ S. (32)

Since we have by (25), Jλ,r′,r(ω̃) = Iλ,r′,r(ω̃) a.e. ω̃ ∈ S, we take the limit in r′, r
and λ and we get, from (26), (32), and the assumption that h(ω̃, ω̃) �= 0, that∫ T

0

∫
RN

η(x + tω̃)Φ(x)Ψ(x) dxdt =
∫ T

0

∫
Ω

η(x)Φ(x − tω̃)Ψ(x − tω̃) dxdt = 0.

Since Φ and Ψ are arbitrary and T > diam(Ω), we obtain∫ +∞

−∞
η(x + tω̃) dt = 0, a.e. x ∈ R

N , ω̃ ∈ S,

which means, by standard arguments for the X-ray transform, that η(x) = 0 a.e. in R
N .

Hence the result.
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