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Universidad Autóma del Estado de Morelos

Av. Universidad 1001, Col. Chamilpa

62210 Cuernavaca, Morelos — Mexico

gabriela@servm.fc.uaem.mx

Instituto de Matemáticas
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ABSTRACT

In this paper we prove that a wild knot K which is the limit set of a Kleinian
group acting conformally on the unit 3-sphere, with its standard metric, is ho-
mogeneous: given two points p, q ∈ K there exists a homeomorphism f of the
sphere such that f(K) = K and f(p) = q. We also show that if the wild knot is
a fibered knot then we can choose an f which preserves the fibers.
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Introduction

The birth of wild topology was in the 1920’s with works of Alexander, Antoine, Artin,
and Fox, among others. At that time one of the main problems was to generalize the
Schoenflies Theorem. Let S be a simple closed surface in R

3 which is homeomorphic
to the unit sphere S

2. Let h be a homeomorphism of S onto the unit sphere S
2

in R
3. Is there an extension h̃ of h such that h̃ is a homeomorphism of R

3 onto
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Figure 1: An example of a wild knot.

itself? Alexander proved this result in the special case that S is a finite polytope. At
the same time, however, he gave his famous example, the Alexander horned sphere,
where its unbounded complement in R

3 is not simply connected and, in fact, its
fundamental group is infinitely generated. Since the complement of S

2 in R
3 is not

simply connected, it follows that no homeomorphism of R
3 onto itself will send the

horned sphere onto S
2 (see [5, 9]). The work of Alexander was published in 1924.

In 1948, Artin and Fox gave the definition of tame embeddings and wild embeddings
and constructed a number of surprising examples. For instance, see figure 1.

Many works by Antoine, Bing, Harold, Moise, Mazur, Brown, Montesinos, among
others have contributed much to the understanding of wild sets in R

3.
Let K ⊂ S

3 be a knot. We say that a point x ∈ K is locally flat if there exists an
open neighborhood U of x such that there is a homeomorphism of pairs: (U,U ∩K) ∼
(Int(B3), Int(B1)). Otherwise, x is said to be a wild point. A knot K is a wild knot
if it contains at least one wild point.

We say that a knot K ⊂ S
3 is homogeneous if given two points p, q ∈ K, there

exists a homeomorphism ψ : S
3 → S

3 such that ψ(K) = K and ψ(p) = q.
The wild knot K given by Artin and Fox (figure 1) is not homogeneous. In fact,

it contains just one wild point p, hence it is not possible to give a homeomorphism
ψ : S

3 → S
3 such that ψ(K) = K and ψ(p) = q, q �= p, since any homeomorphism

sends wild points into wild points. In general, wild knots are not homogeneous.
The purpose of this paper is to show that dynamically defined wild knots (see

section 1) are homogeneous. In section 2, we will give a proof of this fact.

1. Preliminaries

In this section, we will describe the construction of dynamically defined wild knots.
We will begin with some basic definitions.

Let Möb(Sn) denote the group of Möbius transformations of the n-sphere
S

n = R
n ∪ {∞}, i.e., the group of diffeomorphisms of the n-sphere that preserves

angles with respect to the standard metric. Let Γ ⊂ Möb(Sn) be a discrete subgroup.
Then x ∈ S

n is a point of discontinuity for Γ if there is a neighborhood U of x such
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Figure 2: A pearl-necklace whose template is the trefoil knot.

k

Figure 3: Reflection with respect to Σk.

that U ∩ gU �= ∅ only for finitely many g ∈ Γ. The domain of discontinuity Ω(Γ)
consists of all points of discontinuity.

Definition 1.1 ([6]). A Kleinian group is a subgroup of Möb(Sn) with non-empty
domain of discontinuity. The complement S

n − Ω(Γ) = Λ(Γ) is called limit set of Γ.

Next, we will give the construction of dynamically defined wild knots.

Definition 1.2. A necklace T1 of n-pearls (n ≥ 3), is a collection of n consecutive
2-spheres Σ1, Σ2, . . . ,Σn in S

3, such that Σi ∩Σj = ∅ (j �= i+1, i−1 mod n), except
that Σi and Σi+1 are tangent (i = 1, 2, . . . , n − 1) and Σ1 and Σn are tangent. Each
2-sphere is called a pearl.

If the points of tangency are joined by spherical geodesic segments in S
3, we obtain

a polygonal knot K1. It is called the polygonal template of T1. We define the filled-in
T as |T1| =

⋃n
i=1 Bi, where Bi is the round closed 3-ball whose boundary ∂Bi is Σi.

Example 1.3. K = Trefoil knot (see figure 2).

Let Γ be the group generated by reflections Ij , through Σj (j = 1, . . . , n). Then
Γ is a Kleinian group. We will describe geometrically the action of Γ.

(i) First stage: Observe that when we reflect with respect to each Σk (k = 1, 2, . . . ,
n), a mirror image of K1 is mapped into the ball Bk (see figure 3).

After reflecting with respect to each pearl, we obtain a new necklace T2 of
n(n − 1) pearls, subordinate to a new knot K2; which is in turn isotopic to the
connected sum of n + 1 copies of K1 (see figure 4).
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K1

Figure 4: A schematic figure of the reflecting process first step.

k

j

Figure 5: Reflection with respect to Σk after reflecting with respect to Σj .

(ii) Second stage: Now, we reflect with respect to each pearl of T2. When we are
finished, we obtain a new necklace T3 of n(n − 1)2 pearls. Its template is a
polygonal knot K3; which is in turn isotopic to the connected sum of n2 −n+1
copies of K1 and n copies of its mirror image (recall that composition of an even
number of reflections is orientation-preserving). Observe that |T3| ⊂ |T2| (see
figure 5).

(iii) k-th stage: We reflect with respect of each pearl of Tk. At the end of this stage,
we obtain a new necklace Tk+1 of n(n − 1)k pearls, subordinate to a polygonal
knot Kk+1. By construction, |Tk+1| ⊂ |Tk|.

Then, the limit set is given by the inverse limit (see [6, 8])

Λ(Γ) = lim←−
k

|Tk| =
∞⋂

k=1

|Tk|.

It has been proved (see [6, 8]) that the limit set Λ(Γ) is a wild knot in the sense of
Artin and Fox. It is called a dynamically-defined wild knot.
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V1 k 1

Figure 6: A tubular neighborhood as a union of “cylinders”.

2. Homogeneity

Let T1 be a n1-pearl necklace subordinate to the polygonal knot K1. We can assume
without loss of generality that K1 ⊂ R

3 ⊂ S
3 = R

3 ∪ {∞}.
Let V1 be a closed tubular neighborhood of K1 and π1 : V1 → K1 be the projection.

We can assume that π−1
1 ({x}) is an Euclidean 2-disk of radius r1 > 0 independent

of x. If {p11 , . . . , p1n1
} are the points of tangency of consecutive pearls of T1, we can

also assume that π−1
1 ({p1j

}) is tangent to the consecutive pearls at p1j
(1 ≤ j ≤ n1).

The tubular neighborhood V1 is the union of n1 “solid cylinders” V11 , . . . , V1n1
where

V1j
= π−1

1 ({[p1j
, p1j+1 ]}) is called solid cylinder, since it is homeomorphic to a solid

cylinder C = D
2 × [0, 1] (see figure 6).

For the second stage, we have a pearl necklace T2 with n2 pearls subordinate to
the polygonal knot K2. Let V2 ⊂ Int(V1) be a closed tubular neighborhood of K2 and
π2 : V2 → K2 be the projection. We again assume that π−1

2 ({x}) is an Euclidean 2-
disk of radius r2 > 0 independent of x. Notice that the points { p11 , . . . , p1n1

} are also
points of tangency of consecutive pearls of T2. We will denote by { p1i,21 , . . . , p1i,2n−1 }
⊂ T2 the corresponding points of tangency of consecutive pearls of V1i

∩V2, 1 ≤ i ≤ n.
We can again assume that π−1

2 ({p1i,2j
}) is tangent to the consecutive pearls at p1i,2j

(1 ≤ i ≤ n, 1 ≤ j ≤ n − 1). The tubular neighborhood V2 is the union of n2 solid
cylinders V1i2j

(1 ≤ i ≤ n, 1 ≤ j ≤ n − 1) where V1i2j
= π−1

2 ({ [p1i2j
, p1i2j+1 ] }).

We continue inductively, so at the end of the k-th stage of the reflecting pro-
cess, we have the pearl necklace Tk with nk pearls subordinate to the polygonal knot
Kk. Let Vk be a closed tubular neighborhood of Kk such that Vk ⊂ Int(Vk−1). Let
πk : Vk → Kk be the projection. We assume that π−1

k ({x}) is an Euclidean 2-disk of
radius rk > 0 independent of x. We will denote by { p1i1 ,2i2 ,...,k1 , . . . , p1i1 ,2i2 ,...,kn−1 }
⊂ Tk the corresponding points of tangency of consecutive pearls of (V1i1 ,2i2 ,...,(k−1)ik−1

)
∩ Vk, 1 ≤ i1 ≤ n and 1 ≤ i2, . . . ik−1 ≤ n − 1. The tubular neighborhood Vk is the
union of nk solid cylinders V1i1 ,2i2 ,...,(k−1)ik−1 ,kik

. Notice that limk→∞ rk = 0 and
Λ = ∩∞

k=1Vk.
Let p, q ∈ Λ. There exist two sequences of solid cylinders {V1i1 ,2i2 ,...,nin

},
and {V1j1 ,2j2 ,...,njn

} where V1i1 ,2i2 ,...,nin
and V1j1 ,2j2 ,...,njn

∈ Vn, such that p =
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1i1

Figure 7: A solid tangle.

⋂∞
n=1 V1i1 ,2i2 ,...,nin

and q =
⋂∞

n=1 V1j1 ,2j2 ,...,njn
. In fact, these sequences converge

to p and q respectively, with respect to the Hausdorff metric of closed sets on S
3.

We define the homeomorphism F0 : (S3 − Int(V1)) → (S3 − Int(V1)) such that it
sends ∂V1i1

∩ ∂V1 into ∂V1j1
∩ ∂V1, ∂V1i1+1 ∩ ∂V1 into ∂V1j1+1 ∩ ∂V1 and so on. This

map also sends π−1
1 (p1i1

)∩V1 into π−1
1 (p1j1

)∩V1, π−1
1 (p1i1+1)∩V1 into π−1

1 (p1j1+1)∩V1

and so on.
Next, we will define a homeomorphism f1 : (∂V1 ∪ ∂V2) → (∂V1 ∪ ∂V2) such that

f1|∂V1 = F0. Let B1k1
= ∪n−1

k2=1V1k12k2
. The pair (V1k1

, B1k1
∩ V2) is a solid tangle;

i.e. a solid cylinder with a knotted hole (see Figure 7), and it is homeomorphic to
the solid tangle (C, K̃), where C is a solid cylinder and K̃ is the mirror image of the
knot K via the homeomorphism h1k1

, which will be used below.
Since, F0 sends ∂V1k1

∩ V1 into ∂V1l1
∩ V1, we define the map f1 in the following

way. If k1 �= i1, then f1 sends the pair (∂V1k1
, ∂B1k1

∩ V2) into (∂V1l1
, ∂B1l1

∩ V2),
where ∂V1k12k2

∩V2 is sent to ∂V1l12k2
∩V2 and (π−1

1 (p1k1
)− Int(π−1

2 (p1k12k2
))) is sent

to (π−1
1 (p1l1

)−Int(π−1
2 (p1l12k2

))). If k1 = i1, then f1 sends the pair (∂V1i1
, ∂B1i1

∩V2)
into (∂V1j1

, ∂B1j1
∩V2) such that ∂V1i12i2

∩V2 goes into ∂V1j12j2
∩V2 and (π−1

1 (p1i1
)−

Int(π−1
2 (p1i12i2

))) is sent to (π−1
1 (p1j1

) − Int(π−1
2 (p1j12j2

))) (see figure 8).
Notice that the composition map h1l1

◦ f1 ◦ h−1
1k1

is isotopic to the identity map
I(C,K̃) and this fact will be used to extend the map f1 to a map F1 : (V1 − Int(V2)) →
(V1 − Int(V2)) via the following Lemma.

Lemma 2.1. Let M be a compact 3-manifold with ∂M �= ∅ (no necessarily connected).
Let g : ∂M → ∂M be a homeomorphism which is isotopic to the identity map I∂M .
Then g admits an extension G : M → M . Furthermore, suppose in addition that
there exists a locally trivial fibration π : M → S

1 such that its restriction to ∂M is
also a locally trivial fibration and that g leaves invariant the fibers in the boundary.
Then g can be extended to a homeomorphism which preserves the fibers of π.
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V1i1

V1i1

V1j1

V1j1
V1j1

2i2

2i2

2j2

2j2

V1i1

Figure 8: Geometric description of the map f1.

Proof. Let ψ : ∂M × [0, 1] → M be a collaring of the boundary, i.e., ψ is a homeomor-
phism such that ψ(x, 0) = x. Let N = ψ(∂M × [0, 1]) ⊂ M . Let {gt}, t ∈ [0, 1], be an
isotopy of g to the identity, i.e., go = g, g1 = I∂M . Let H : ∂M × [0, 1] → ∂M × [0, 1]
be given by the formula H(x, t) = (gt(x), t). Let G0 : N → N = ψ◦H ◦ψ−1. Then we
define G : M → M as G(y) = G0(y) if y ∈ N and G(y) = y if y /∈ N . For the rest we
simply observe that the fibers of π are surfaces that meet transversally the boundary
and therefore the collaring can be chosen in such a way that ψ({(x, t)|t ∈ [0, 1]}) is
contained in a fiber for each fixed x ∈ ∂M .

We continue inductively, so at the k-stage, we have a homeomorphism Fk :
(Vk − Int(Vk+1)) → (Vk − Int(Vk+1)) such that the solid cylinder (∂V1i12i2 ...kik

,
∂B1i12i2 ...kik

∩ Vk) is sent into (∂V1j12j2 ...kjk
, ∂B1j12j2 ...kjk

∩ Vk), in such a way that
the cylinder ∂V1i12i2 ...(k+1)ik+1

∩Vk+1 goes into the cylinder ∂V1j12j2 ...(k+1)jk+1
∩Vk+1

and (π−1
k (p1i12i2 ...kik

) − Int(π−1
k+1(p1i12i2 ...(k+1)ik+1

))) is sent to (π−1
k (p1j12j2 ...kjk

) −
Int(π−1

k+1(p1j12j2 ...(k+1)jk+1
))).

This construction allows us to define a map F : (S3 − Λ) → (S3 − Λ) as F (x) =
Fk(x) if x ∈ (Vk − Int(Vk+1)). Notice that F is a homeomorphism, since each Fk is a
homeomorphism and Fk(x) = Fk+1(x) for x ∈ ∂Vk+1 and for all k. We extend F to
a map F̃ : S

3 → S
3 in the following way. Let x ∈ Λ. Then, there exists a sequence of

cylinders {V1j1 ,2j2 ,...,njn
}, where V1j1 ,2j2 ,...,njn

⊂ Vn such that x =
⋂∞

n=1 V1j1 ,2j2 ,...,njn
.

We define F̃ (x) =
⋂

F (V1j1 ,2j2 ,...,njn
). Notice that F̃ is well-defined and is continuous.

In fact, since F is a homeomorphism, we just need to prove that F̃ is continuous in Λ.
Given x ∈ Λ and let {xn} be a sequence that converges to x. We can assume,
without loss of generality, that xn ∈ V1j1 ,2j2 ,...,njn

⊂ Vn, hence F̃ (xn) = F (xn) ∈
F (Vj1,j2,...,jn

), so limn→∞ F (xn) = F̃ (x). Therefore, F̃ is continuous.

Theorem 2.2. The map F̃ : S
3 → S

3 is a homeomorphism such that F̃ |Λ = Λ and
F̃ (p) = F̃ (q).
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Proof. Since Λ =
⋂∞

k=1 Vk, and F̃ (Vk) = Vk, we have that F̃ (Λ) = Λ.
Next, we will prove that F̃ is a bijection. Since F̃ |S3−Λ is a bijection, it is

enough to prove that F̃ |Λ is it. Let a, b ∈ Λ. Then a = ∩V1l1 ,2l2 ,...,nln
and

b = ∩V1r1 ,2r2 ,...,nrn
, where V1l1 ,2l2 ,...,nln

, V1r1 ,2r2 ,...,nrn
⊂ Vn. If F̃ (a) = F̃ (b), this

implies that F̃ (V1l1 ,2l2 ,...,nln
) ∩ F̃ (V1r1 ,2r2 ,...,nrn

) �= ∅. Since, F̃ |S3−Λ is a homeomor-
phism, we have that V1l1 ,2l2 ,...,nln

∩ V1r1 ,2r2 ,...,nrn
�= ∅, but this is a contradiction.

Hence a = b. For each x = ∩V1j1 ,2j2 ,...,njn
∈ Λ, let x′ = ∩F̃−1(V1j1 ,2j2 ,...,njn

). By the
above, F̃ (x′) = x. It follows that, F̃ |Λ : Λ → Λ is a bijection, hence F̃ is a bijection.
Therefore F̃ : S

3 → S
3 is a continuous bijection, hence F̃ is a homeomorphism.

Corollary 2.3. Dynamically defined wild knots are homogeneous.

Proof. Let p, q ∈ Λ. Then p =
⋂

V1l1 ,2l2 ,...,nln
and q =

⋂
V1r1 ,2r2 ,...,nrn

, where
V1l1 ,2l2 ,...,nln

, V1r1 ,2r2 ,...,nrn
∈ Vn. By the above, we can construct a homeomorphism

F̃ : S
3 → S

3 such that F̃ |Λ = Λ and F̃ (p) = F̃ (q). Therefore, Λ is homogeneous.

Remark 2.4. The same method applies to prove the following theorem.

Theorem 2.5. Let Tk ⊂ S
3 be a nested decreasing sequence of smooth solid tori

(k ∈ N), i.e., Tk+1 ⊂ Int(Tk). Suppose that
⋂∞

k=1 Tk := K is a knot (wild or not).
Then K is homogeneous.

Remark 2.6. Let γ ⊂ Λ be an orbit under the Kleinian group Γ. Notice that the
action of Γ is minimal, i.e., the orbits are dense. Let x, y ∈ γ. Then, using the
action of Γ, we can construct a homeomorphism H : S

3 → S
3 such that H|Λ = Λ and

H(p) = H(q). However, the above theorem holds for any couple of points p, q ∈ Λ.

3. Dynamically-defined fibered wild knots

We recall that a knot or link L in S
3 is fibered if there exists a locally trivial fibration

f : (S3−L) → S
1. We require that f be well-behaved near L, that is, each component

Li is to have a neighborhood framed as D
2 × S

1, with Li
∼= {0} × S

1, in such a way
that the restriction of f to (D2 − {0}) × S

1 is the map into S
1 given by (x, y) → y

|y| .
It follows that each f−1(x) ∪ L, x ∈ S

1, is a 2-manifold with boundary L: in fact a
Seifert surface for L (see [9, page 323]).

Examples 3.1. The right-handed trefoil knot and the figure-eight knot are fibered
knots with fiber the punctured torus.

For dynamically-defined wild knots we have the following result.

Theorem 3.2. Let Σ1, Σ2, . . . ,Σn be round 2-spheres in S
3 which form a necklace

whose template is a non-trivial tame fibered knot K. Let Γ be the group generated by
reflections Ij on Σj (j = 1, 2, . . . , n) and let Γ̃ be the orientation-preserving index two
subgroup of Γ. Let Λ(Γ) = Λ(Γ̃) be the corresponding limit set. Then:
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S

T

Figure 9: The fiber intersects each pearl in arcs.

S

S

*

*j

ja

Figure 10: Sum of two surfaces S∗
1 and S∗j

2 along arc aj .

(i) There exists a locally trivial fibration ψ : (S3 − Λ(Γ)) → S
1, where the fiber

Σθ = ψ−1(θ) is an orientable infinite-genus surface with one end.

(ii) Σθ − Σθ = Λ(Γ), where Σθ is the closure of Σθ in S
3.

Next, we will briefly describe the fiber Σθ. For a proof of the above theorem,
see [4].

Let T1 be a pearl-necklace subordinate to the fibered tame knot K1 with fiber S1.
Let P̃ : (S3 − K1) → S

1 be the given fibration. Observe that P̃ |S3−|T1| ≡ P is a
fibration and, after modifying P̃ by isotopy if necessary, we can consider that the
fiber S cuts each pearl Σi ∈ T1 in arcs ai, whose end-points are Σi−1 ∩ Σi and
Σi ∩ Σi+1. These two points belong to the limit set (see figure 9).

The fiber P̃−1(θ) = P−1(θ) is a Seifert surface S∗
1 of K1, for each θ ∈ S

1. We
suppose S∗

1 is oriented.
The reflection Ij maps both a copy of T1 − Σj (called T j

1 ) and a copy of S∗
1

(called S∗j
2 ) into the ball Bj , for j = 1, 2, . . . , n. Observe that both T j

1 and S∗j
2 have

opposite orientation and that S∗
1 and S∗j

2 are joined by the arc aj (see figure 10)
which, in both surfaces, has the same orientation.

The necklaces T j
1 and T1 are joined by the points of tangency of the pearl Σj

and the orientation of these two points is preserved by the reflection Ij . Thus, we
have obtained a new pearl-necklace isotopic to the connected sum T1#T j

1 , whose

109 Revista Matemática Complutense
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complement also fibers over the circle with fiber the sum of S∗
1 with S∗j

2 along arc aj ,
namely the fiber is S∗

1#aj
S∗j

2 .
Now do this for each j = 1, . . . , n. At the end of the first stage, we have a new

pearl-necklace T2 whose template is the knot K2 (see section 1). Its complement
fibers over the circle with fiber the Seifert surface S∗

2 , which is in turn homeomorphic
to the sum of n + 1 copies of S∗

1 along the respective arcs.
Continuing this process, we have from the second step onwards, that n− 1 copies

of S∗
1 are added along arcs to each surface S∗i

k (the surface corresponding to the k-th
stage). Notice that in each step, the points of tangency are removed since they belong
to the limit set, and the length of the arcs aj tends to zero.

From the remarks above, we have that Σθ is homeomorphic to an orientable
infinite-genus surface. In fact, it is the sum along arcs of an infinite number of copies
of S∗.

Using the second part of Lemma 2.1 one has the following:

Theorem 3.3. Let K1 be a tame fibered knot with fiber S1. Let Λ be the wild knot
obtained from K1 through a reflecting process. Then, given p, q ∈ Λ, there exists a
homeomorphism F̃ : S

3 → S
3 such that F̃ |Λ = Λ, F̃ (p) = F̃ (q) and preserves the

fibers.

Proof. Let P : (S3−K) → S
1 be the given fibration. We can assume that the fiber cuts

each pearl Σi of the pearl-necklace as in figure 9. Let p, q ∈ Λ. Then, there exist two
sequences of solid cylinders {V1i1 ,2i2 ,...,nin

}, and {V1j1 ,2j2 ,...,njn
} where V1i1 ,2i2 ,...,nin

and V1j1 ,2j2 ,...,njn
∈ Vn, such that p =

⋂∞
n=1 V1i1 ,2i2 ,...,nin

and q =
⋂∞

n=1 V1j1 ,2j2 ,...,njn
.

Let Vk be as in section 2. Consider the map fk : (∂Vk ∩ ∂Vk+1) → (∂Vk ∩ ∂Vk+1).
By the previous description, we know that V1 − Int(V2) fibers over the circle and

that f1 leaves invariant the fibers on the boundary. Then by Lemma 2.1, f1 admits and
extension F1 : (V1−Int(V2)) → (V1−Int(V2)) which preserves the fibers. We continue
inductively, so at the end of the k-stage, we have that the homeomorphism fk preserves
the fibers, hence it can be extended to a map Fk : (Vk−Int(Vk+1)) → (Vk−Int(Vk+1))
which also preserves the fibers.

Let F̃ : S
3 → S

3 be as in section 2. Then, by Theorem 2.2 we have that F̃ |Λ = Λ,
F̃ (p) = F̃ (q). The map F = F̃ |S3−Λ defined by F (x) = Fk(x) if x ∈ Vk − Int(Vk+1)
is a homeomorphism (see section 2) which preserves fibers. Therefore, the result
follows.
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