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ABSTRACT

We describe a sufficient condition for a finitely generated group to have infinite
asymptotic dimension. As an application, we conclude that the first Grigorchuk
group has infinite asymptotic dimension.
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The first Grigorchuk group is described in [1, 2, 5]. This Grigorchuk group, which
we will denote by Γ, has many interesting properties. It is a finitely generated
2-group with intermediate growth, whose word problem is solvable, and which does
not admit a finite dimensional linear representation that is faithful. Also, Γ and Γ×Γ
are commensurable, which means that Γ and Γ × Γ have subgroups of finite index
which are isomorphic. A detailed exposition can be found in [5].

We prove that Γ has asymptotic dimension infinity, asdim Γ = ∞. If one excludes
Gromov’s “random groups” [3], all previously known examples of groups G with
asdim G = ∞ are based on the fact that G has a free Abelian subgroup of arbitrary
large rank. The Grigorchuk group is of different nature: since Γ is a 2-group, it does
not have a (nontrivial) free Abelian subgroup.

Let (X, dX) and (Y, dY ) be metric spaces. We say that a map f : X → Y is proper
if the preimage of each bounded set is bounded; it is bornologous if, for all R > 0,
there is an S > 0 such that dY (f(x), f(y)) < S whenever dX(x, y) < R; a map is
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called coarse if it is both proper and bornologous. If S is a set, then f, g : S → X are
said to be close if sups∈S d(f(s), g(s)) < ∞. A coarse map f : X → Y is said to be a
coarse equivalence if there is a coarse map g : Y → X such that g ◦ f is close to idX

and f ◦ g is close to idY . A coarse map f : X → Y is said to be a coarse embedding
if f : (X, dX) → (f(X), dY |f(X)) is a coarse equivalence. In particular, an isometric
embedding is a coarse embedding. Also, if fi : (Xi, dXi

) → (Yi, dYi
) (i = 1, 2) are

coarse equivalences, then so is f1 ×f2 : (X1 ×X2, δ1) → (Y1 ×Y2, δ2), where δ1 and δ2

are the corresponding sum metrics.
Restricting attention to finitely generated groups, since any two word metrics

(say d1 and d2) on a finitely generated group G are equivalent, the map idG : (G, d1) →
(G, d2) is a coarse equivalence. When G and H are groups equipped with word metrics
dG and dH , then the sum metric dG + dH on G × H is also a word metric (for the
obvious generating set). If H ≤ G is a subgroup of finite index of (the finitely
generated group) G, then the inclusion map H → G is a coarse equivalence. Also, an
isomorphism is a coarse equivalence. See [6] for further details.

Definition 1 ([4]). A metric space (X, d) is said to have asdim X ≤ n, if for each
R > 0, there is an S > 0 and R-disjoint, S-bounded families U0,U1, . . . ,Un of subsets
of X such that U := ∪iUi is a cover of X.

We say that a family V of subsets of X is R-disjoint if d(U, V ) ≥ R for all U, V ∈ V
with U 	= V ; V is said to be S-bounded if diamV ≤ S for all V ∈ V. One can
show that coarsely equivalent spaces have the same asymptotic dimension. Thus, for
finitely generated groups, the asymptotic dimension of the group does not depend on
the choice of the word metric.

Definition 2. Two groups Γ1 and Γ2 are commensurable if there exist subgroups
H1 ≤ Γ1 and H2 ≤ Γ2, each of finite index, such that H1 and H2 are isomorphic.

By the comments above, asdim Γ1 = asdim Γ2 if Γ1 and Γ2 are commensurable.

Theorem 3. Let G be a finitely generated, infinite group which is commensurable
with its square G × G. Then asdim G = ∞.

Proof. We first show that Gn is coarsely equivalent to G for all n ≥ 1. Proceeding
inductively (the n = 1 case is immediate), we assume Gn is coarsely equivalent to G.
But Gn+1 is coarsely equivalent to Gn × G, which in turn is coarsely equivalent
to G×G, and so by hypothesis Gn+1 is equivalent to G. This proves that asdimGn =
asdimG for all n ≥ 1.

Also, by Exercise IV.A.12 of [5], there is an isometric embedding f : Z → G, where
G is taken with a word metric. Thus, for each n ≥ 1, we have an isometric embedding
f × f × · · · × f : Zn → Gn, where we take the sum metrics on Zn and Gn. Since an
isometric embedding is a coarse embedding, we have that asdim Gn ≥ asdimZn = n.
Thus, asdimG ≥ n for all n.

Corollary 4. Let Γ be the Grigorchuk group. Then asdim Γ = ∞.
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Proof. Γ is finitely generated by definition. Proposition VIII.14 and Corollary VIII.15
from [5] show that Γ satisfies the hypotheses of the theorem.

It is interesting to note that asdim Γ = ∞, yet Γ does not contain an isomorphic
copy of Zn. However, Zn does coarsely embed into Γ.

Finally, if one has a finitely generated group which is known to be commensurable
with its square, then the asymptotic dimension is either 0 or infinity, depending on
whether the group is finite or infinite.
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