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ABSTRACT

We give some characterizations of the rectifying curves in the dual space and
show that rectifying dual space curves can be stated with the aid of dual unit
spherical curves. Thus, we have a link between rectifying dual space curves and
classical surfaces in the Euclidean three-space.
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Introduction

In the Euclidean three-space R
3, lines combined with one of their two directions can be

represented by unit dual vectors over the ring of dual numbers. The most important
properties of real vector analysis are valid for the dual vectors. The oriented lines
in R

3 are in one-to-one correspondence with the points of a dual unit sphere. A dual
point on dual unit sphere in D

3 corresponds to a line in R
3 and two different points

on D
3 represent two skew-lines in R

3 in general. A differentiable curve on dual unit
sphere in D

3 represents a ruled surface in R
3 (see [4, 5]).

A curve in R
3 whose position vector always lies in its rectifying plane is called a

rectifying curve. A useful method of determining rectifying curves in the Euclidean
three-space R

3 has been developed by Chen [1]. He shows that it can be possible to
determine completely all rectifying curves in R

3.
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Chen and Dillen [2] find a relationship between rectifying curves and the centrodes
given by the endpoints of the Darboux vectors of a space curve and playing an impor-
tant role in mechanics. The centrode of a space curve with constant curvature and
nonconstant torsion is a rectifying curve and vice versa. Moreover, there exists an
inequality for the geodesic curvature of the central projection of a space curve into a
unit sphere where equality holds exactly for a rectifying curve.

In this paper, by using the method in [1], we have characterizations of rectifying
curves in the dual space D

3. In section 2, we characterize rectifying dual space curves
with respect to the distance function, the components of the position vector and
harmonic curvature of dual space curve. In the last section, we show that rectifying
dual space curves can be stated with the aid of dual unit spherical curves.

Therefore, this work gives a link with the classical surface theory since a differen-
tiable curve on the dual unit sphere corresponds to a ruled surface in R

3.

1. Preliminaries

By a dual number x̂, we mean an ordered pair of the form (x, x∗) for all x, x∗ ∈ R.
Let the set R × R be denoted as D. Two inner operations and an equality on
D = { (x, x∗) | x, x∗ ∈ R } are defined as follows:

(i) ⊕ : D × D → D for x̂ = (x, x∗), ŷ = (y, y∗) defined as

x̂ ⊕ ŷ = (x, x∗) ⊕ (y, y∗) = (x + y, x∗ + y∗)

is called the addition in D.

(ii) � : D × D → D for x̂ = (x, x∗), ŷ = (y, y∗) defined as

x̂ � ŷ = x̂ŷ = (x, x∗) � (y, y∗) = (xy, xy∗ + x∗y)

is called the multiplication in D.

(iii) If x = y, x∗ = y∗ for x̂ = (x, x∗), ŷ = (y, y∗) ∈ D, x̂ and ŷ are equal, and it is
indicated as x̂ = ŷ.

If the operations of addition, multiplication and equality on the set D = R × R

with set of real numbers R are defined as above, the set D is called the dual numbers
system and the element (x, x∗) of D is called a dual number. In a dual number
x̂ = (x, x∗) ∈ D, the real number x is called the real part of x̂ and the real number
x∗ is called the dual part of x̂. The dual number (1, 0) = 1 is called unit element
of multiplication operation in D or real unit in D. The dual number (0, 1) is to be
denoted with ε in short, and the (0, 1) = ε is to be called dual unit. In accordance
with the definition of the operation of multiplication, it can easily be seen that ε2 = 0.
Also, the dual number x̂ = (x, x∗) ∈ D can be written as x̂ = x + εx∗ (see [6, 7]).

The set of D = {x̂ = x + εx∗|x, x∗ ∈ R} of dual numbers is a commutative ring
according to the operations
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(i) (x + εx∗) + (y + εy∗) = (x + y) + ε(x∗ + y∗),

(ii) (x + εx∗)(y + εy∗) = xy + ε(xy∗ + yx∗).

The dual number x̂ = x + εx∗ divided by the dual number ŷ = y + εy∗ provided
y �= 0 can be defined as

x̂

ŷ
=

x + εx∗

y + εy∗ =
x

y
+ ε

x∗y − xy∗

y2
.

The set of

D
3 = D × D × D = { �̂x | �̂x = (x1 + εx∗

1
, x2 + εx∗

2
, x3 + εx∗

3
)

= (x1 , x2 , x3) + ε(x∗
1
, x∗

2
, x∗

3
)

= �x + ε
−→
x∗, �x,

−→
x∗ ∈ R

3 }
is a module on the ring D. For any �̂x = �x + ε

−→
x∗, �̂y = �y + ε

−→
y∗ ∈ D

3, the scalar or inner
product and the vector product of �̂x and �̂y are defined by, respectively,

〈�̂x, �̂y〉 = 〈�x, �y 〉 + ε(〈�x,
−→
y∗〉 + 〈−→x∗, �y 〉),

�̂x ∧ �̂y = (x̂2 ŷ3 − x̂3 ŷ2 , x̂3 ŷ1 − x̂1 ŷ3 , x̂1 ŷ2 − x̂2 ŷ1),

where x̂
i

= x
i
+ εx∗

i
, ŷ

i
= y

i
+ εy∗

i
∈ D, 1 ≤ i ≤ 3. If x �= 0, the norm ‖�̂x‖ of

�̂x = �x + ε
−→
x∗ is defined by

‖�̂x‖ =
√
〈�̂x, �̂x〉 = ‖�x‖ + ε

〈�x,
−→
x∗〉

‖�x‖ .

A dual vector �̂x with norm 1 is called a dual unit vector. Let �̂x = �x + ε
−→
x∗ ∈ D

3. The
set

S
2 = { �̂x = �x + ε

−→
x∗ | ‖�̂x‖ = (1, 0); �x,

−→
x∗ ∈ R

3 }
is called the dual unit sphere with the center Ô in D

3.
If every x

i
(t) and x∗

i
(t), 1 ≤ i ≤ 3, real valued functions, are differentiable, the

dual space curve

x̂ : I ⊂ R −→ D
3

t −→ −−→
x̂(t) = (x1(t) + εx∗

1
(t), x2(t) + εx∗

2
(t), x3(t) + εx∗

3
(t))

=
−−→
x(t) + ε

−−−→
x∗(t)

in D
3 is differentiable. We call the real part

−−→
x(t) the indicatrix of

−−→
x̂(t). The dual arc

length of the curve
−−→
x̂(t) from t1 to t is defined as

ŝ =

t∫
t1

∥∥(−−→
x̂(t)

)′∥∥ dt =

t∫
t1

∥∥(−−→
x(t)

)′∥∥ dt + ε

t∫
t1

〈
�t,

(−−−→
x∗(t)

)′〉
dt = s + εs∗, (1)

499
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where �t is a unit tangent vector of
−−→
x(t). From now on we will take the arc length s

of
−−→
x(t) as the parameter instead of t.
Now we will obtain equations relative to the derivatives of dual Frenet vectors

throughout the curve in D
3. Let

x̂ : I −→ D
3

s −→ −−→
x̂(s) =

−−→
x(s) + ε

−−−→
x∗(s)

be a C4 curve with the arc length parameter s of the indicatrix. Then,

d�̂x

dŝ
=

d�̂x

ds

ds

dŝ
= �̂t

is called the dual unit tangent vector of
−−→
x̂(s). With the aid of equation (1), we have

ŝ = s + ε

s∫
s1

〈
�t,

(−→
x∗)′〉 ds

and from this dŝ
ds = 1 + ε �, where the prime denotes differentiation with respect to

the arc length s of indicatrix and �=
〈
�t,

(−→
x∗)′〉. Since �̂t has constant length 1, its

differentiation with respect to ŝ, which is given by

d�̂t

dŝ
=

d�̂t

ds

ds

dŝ
=

d2�̂x

dŝ2
= κ̂�̂n,

measures the way the curve is turning in D
3. The norm of the vector d�̂t

dŝ is called

curvature function of
−−→
x̂(s). We impose the restriction that the function κ̂ : I → D is

never pure dual. Then, the dual unit vector �̂n = 1
κ̂

d�̂t
dŝ is called the principal normal

of
−−→
x̂(s). The dual vector �̂

b is called the binormal of
−−→
x̂(s). We call the dual vectors

�̂t, �̂n, �̂
b the dual Frenet trihedron of

−−→
x̂(s) at the point x̂(s). The equalities relative to

derivatives of dual Frenet vectors �̂t, �̂n, �̂b throughout the dual space curve are written
in the matrix form

d

dŝ

⎡
⎢⎣
�̂t
�̂n
�̂
b

⎤
⎥⎦ =

⎡
⎣ 0 κ̂ 0
−κ̂ 0 τ̂
0 −τ̂ 0

⎤
⎦

⎡
⎢⎣
�̂t
�̂n
�̂
b

⎤
⎥⎦ , (2)

where κ̂ = κ + εκ
∗ is nowhere pure dual curvature and τ̂ = τ + ετ∗ is nowhere pure

dual torsion. The formulae (2) are called the Frenet formulae (see [6]). The planes

spanned by {�̂t,�̂b}, {�̂t, �̂n}, and {�̂n,
�̂
b} at each point of the dual space curve are called

the rectifying plane, the osculating plane, and the normal plane, respectively.
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Since the position vector of a rectifying dual space curve lies in the rectifying plane
of the curve, the position vector can be written as

−−→
x̂(s) = λ̂(s)

−−→
t̂(s) + μ̂(s)

−−→
b̂(s)

for some dual functions λ̂(s) and μ̂(s).

2. Some characterizations of rectifying curves in D
3

Now we characterize rectifying curves in dual space D
3.

Theorem 2.1. Let x̂ : I → D
3 be a rectifying curve in dual space D

3 with κ̂ = κ+εκ
∗

such that κ > 0 and let ŝ be dual arc length of the dual space curve x̂. Then the
following statements are valid:

(i) The dual distance function ρ̂ = ‖−−→x̂(s)‖ satisfies ρ̂2 = ŝ2 + ĉ1 ŝ+ ĉ2 for some dual
constants ĉ1 and ĉ2 .

(ii) The tangential component of the position vector of the dual space curve is given
by 〈−−→

x̂(s),
−−→
t̂(s)

〉
= ŝ + k̂,

where k̂ is a dual constant.

(iii) The normal component x̂N of the position vector of the dual space curve is of
dual constant length and the dual distance function ρ̂ is nonconstant.

(iv) The torsion τ̂ = τ + ετ∗ is nowhere pure dual, that is τ �= 0, and the binormal

component
〈−−→
x̂(s),

−−→
b̂(s)

〉
of the position vector is a dual constant.

Conversely, if x̂ : I → D
3 is a curve in D

3 with κ̂ = κ + εκ
∗, where κ > 0, and if

one of (i), (ii), (iii), or (iv) holds, then x̂ is a rectifying dual space curve.

Proof. Let us first suppose that x̂ : I → D
3 is parameterized by the dual arc length

function ŝ. Then, the position vector
−−→
x̂(s) of the dual space curve x̂ satisfies the

equation
−−→
x̂(s) = λ̂(s)

−−→
t̂(s) + μ̂(s)

−−→
b̂(s) (3)

for some dual functions λ̂(s) and μ̂(s). Differentiating equation (3) with respect to
the dual arc length function ŝ and using the Frenet equations (2), we get

d

dŝ
λ̂(s) = (1, 0) = 1 + ε 0 = 1, λ̂(s)κ̂(s) = τ̂(s)μ̂(s),

d

dŝ
μ̂(s) = 0. (4)
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Hence, from equations (4) we obtain that λ̂(s) = ŝ + k̂ for some dual constant
k̂ = k + εk∗, where k, k∗ ∈ R, and that μ̂(s) = dual constant . On the other hand,
since

λ̂(s)κ̂(s) = (s + k)κ + ε((s∗ + k∗)κ + (s + k)κ∗) �= 0,

the dual constant μ̂(s) is nonzero. Taking into consideration equation (3), we have
〈−−→
x̂(s),

−−→
t̂(s)

〉
= ŝ + k̂. (5)

Thus we have proved statement (ii).
Now, if we take the derivative of

ρ̂2 =
〈−−→
x̂(s),

−−→
x̂(s)

〉
with respect to the dual arc length function ŝ and use equation (5), we find

ρ̂2 = ŝ2 + ĉ1 ŝ + ĉ2 ,

where ĉ1 and ĉ2 are dual constants. Hence, statement (i) is obtained.
From equation (3) it is clear that the normal component x̂N of the position vector

of the dual space curve is given by equation
〈−−→
x̂(s),

−−→
b̂(s)

〉
= μ̂(s).

Here, since μ̂(s) is a dual constant, we get that the normal component x̂N of the po-
sition vector of the dual space curve has a dual constant length. Thus, statement (iii)
is proved.

And finally, from the dual constancy of μ̂, the fact that κ > 0, the relation
λ̂(s) = ŝ + k̂, and the second equation of (4) we have statement (iv).

Conversely, assume that statement (i) or statement (ii) holds. Then, we have

〈−−→x̂(s),
−−→
t̂(s)〉 = ŝ + k̂, k̂ ∈ D. Differentiating this equation with respect to ŝ, we obtain

κ̂〈−−→x̂(s),
−−→
n̂(s)〉 = 0. Since κ > 0 by assumption, 〈−−→x̂(s),

−−→
n̂(s)〉 = 0 is found. Hence, the

dual space curve x̂ is rectifying.
Now, suppose that statement (iii) holds. Then, we have

〈−−→
x̂(s),

−−→
x̂(s)

〉
=

〈−−→
x̂(s),

−−→
t̂(s)

〉2 + ĉ,

where ĉ is a dual constant. Differentiation of this equation with respect to ŝ shows
that 〈−−→

x̂(s),
−−→
t̂(s)

〉
=

(
1 + κ̂

〈−−→
x̂(s),

−−→
n̂(s)

〉)〈−−→
x̂(s),

−−→
t̂(s)

〉
. (6)

On the other hand, since the distance function ρ̂ is a nonconstant, we get

〈−−→x̂(s),
−−→
t̂(s)〉 �= 0. Moreover, from equation (6) and the assumption that κ > 0, we

obtain 〈−−→x̂(s),
−−→
n̂(s)〉 = 0, which means that x̂ is a rectifying dual space curve.

Finally, if statement (iv) holds, then by using Frenet equations (2), we easily
obtain that the dual space curve x̂ is a rectifying dual space curve.
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The Frenet formulae given by (2) can be interpreted kinematically as follows: if
a moving point moves along a dual space curve x̂ supposed as the dual unit speed,

then the moving dual frame {
−−→
t̂(s),

−−→
n̂(s),

−−→
b̂(s)} moves in accordance with (2). This

motion consists of an instantaneous translation along x̂ and an instantaneous rotation
about x̂. Then, the instantaneous rotation is determined by an angular velocity vector
given by dual Darboux vector

�̂
∂ = τ̂

−−→
t̂(s) + κ̂

−−→
b̂(s)

which satisfies

d
−−→
t̂(s)
dŝ

= �̂
∂ ×

−−→
t̂(s),

d
−−→
n̂(s)
dŝ

= �̂
∂ ×−−→

n̂(s),

d
−−→
b̂(s)
dŝ

= �̂
∂ ×

−−→
b̂(s).

The direction of the dual Darboux vector is that of the instantaneous axis of rota-
tion. Dual Darboux rotation of dual Frenet frame can be separated into two rotation
motions (see [3]):

Dual tangent vector
−−→
t̂(s) rotates with a κ̂ angular speed round the dual binormal

vector
−−→
b̂(s), that is

d
−−→
t̂(s)
dŝ

= (κ̂
−−→
b̂(s)) ×

−−→
t̂(s)

and the dual binormal vector
−−→
b̂(s) rotates with a τ̂ angular speed round the dual

tangent vector
−−→
t̂(s), that is

d
−−→
b̂(s)
dŝ

= (τ̂
−−→
t̂(s)) ×

−−→
b̂(s).

From the application of the second equation of (4), we know that the position
dual vector of a rectifying dual space curve is always in the direction of the dual Dar-
boux vector. Therefore, rectifying dual space curves can be interpreted kinematically
as those dual space curves whose position dual vector field determines the axis of
instantaneous rotation at each point of the dual space curve.

In the next theorem, for rectifying dual space curves we get a characterization in
terms of the harmonic curvature τ̂

κ̂
.

Theorem 2.2. Let x̂ : I → D
3 be a dual space curve with κ̂ = κ + εκ

∗ such that
κ > 0 and let ŝ be the dual arc length of the dual space curve x̂. Then x̂ is congruent
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to a rectifying dual space curve if and only if the harmonic curvature τ̂
κ̂

of the dual
space curve x̂ is a nonconstant linear function in dual arc length function ŝ, that is,
τ̂
κ̂

= ĉ1 ŝ + ĉ2 , where ĉ1 = c1 + εc∗
1
, ĉ2 = c2 + εc∗

2
∈ D and c1 �= 0.

Proof. Let x̂ : I → D
3 be a unit speed dual space curve with κ̂ = κ + εκ

∗, in which
κ > 0. If x̂ is a rectifying dual space curve, then by the proof of Theorem 2.1 and by
relations (4) and (5), we have

τ̂

κ̂
=

ŝ + k̂

â
,

where â is a dual constant. Hence, the harmonic curvature τ̂
κ̂

of the dual space curve
x̂ is a nonconstant linear function of the dual arc length function ŝ.

Conversely, let us suppose that the harmonic curvature τ̂
κ̂

is a nonconstant linear
function such that τ̂

κ̂
= ĉ1 ŝ + ĉ2 , where ĉ1 , ĉ2 ∈ D and ĉ1 is nowhere pure dual. If we

take â = 1
ĉ1

and k̂ = âĉ2 , then we get τ̂
κ̂

= ŝ+k̂
â . Thus, by using Frenet equations (2),

we find that
d

dŝ

[−−→
x̂(s) − (ŝ + k̂)

−−→
t̂(s) − â

→
b̂(s)

]
= 0,

which means that the dual space curve x̂ is congruent to a rectifying dual space
curve.

3. Classification of rectifying dual space curves

Now we give a theorem determining the parameterization of a unit speed rectifying
curve in D

3.

Theorem 3.1. Let x̂ : I → D
3 be a dual space curve with κ̂ = κ + εκ

∗ such that
κ > 0. Then, the dual space curve x̂ is a rectifying dual space curve if and only if,
up to parameterization, x̂ is given by

x̂(t) = (â sec t̂)ŷ(t), (7)

where â = a + εa∗ ( a > 0) is a dual number and ŷ = ŷ(t) a dual unit speed curve
in S

2.

Proof. Let us suppose that the dual curve x̂ is a rectifying dual space curve with
κ̂ = κ + εκ

∗ such that κ > 0 and that x̂ = x̂(s) is a dual unit speed curve. From
Theorem 2.1 we know that the dual distance function ρ̂ = ‖−−→x̂(s)‖ satisfies ρ̂2 =
ŝ2 + ĉ1 ŝ+ ĉ2 for some dual constants ĉ1 and ĉ2 . After making a suitable translation in
ŝ, we obtain ρ̂2 = ŝ2 + ĉ for some dual constant ĉ = c + εc∗, where c > 0. Therefore,
we may choose ĉ = â2. Next, we define a dual space curve in the dual unit sphere S

2

by ŷ = x̂
ρ̂ . Hence, we have

x̂(s) = (ŝ2 + â2)
1
2 ŷ(s). (8)

Revista Matemática Complutense
2007: vol. 20, num. 2, pags. 497–506 504
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If we take the derivative of equation (8) with respect to ŝ, we get

dx̂(s)
dŝ

=
ŝ√

ŝ2 + â2
ŷ(s) +

√
ŝ2 + â2

dŷ(s)
dŝ

. (9)

On the other hand, since 〈ŷ(s), ŷ(s)〉 = 1,
〈
ŷ(s), dŷ(s)

dŝ

〉
= 0. Thus, by taking into

consideration that x̂ = x̂(s) is a dual unit speed curve in (9), we find
∥∥dŷ(s)

dŝ

∥∥ = â
ŝ2+â2 .

Then,

t̂ =

ŝ∫
o

â

û2 + â2
dû = arctan

( ŝ

â

)
.

So, ŝ = â tan t̂. By using this in (8), we have (7).
Conversely, if x̂ : I → D

3 is a dual space curve defined by

x̂(t) = (â sec t̂)ŷ(t) (10)

for a dual number â = a + εa∗ (a > 0) and a dual unit speed curve ŷ = ŷ(t) in S
2,

then we get
dx̂(t)

dt̂
= (â sec t̂)

{
(tan t̂)ŷ(t) +

dŷ(t)
dt̂

}
. (11)

Since ŷ(t) and dŷ(t)

dt̂
are orthonormal vector fields, from (11) we find

∥∥∥∥dx̂(t)
dt̂

∥∥∥∥ = â sec2 t̂. (12)

From equations (10), (11), and (12), we get

〈x̂N , x̂N 〉 = ρ̂2(t) −
〈
x̂(t), dx̂(t)

dt̂

〉2

∥∥dx̂(t)

dt̂

∥∥2 = â2,

which shows that the normal component x̂N of the position dual vector has constant
length. Hence, from Theorem 2.1 it is seen that x̂ is a rectifying dual space curve.

We know that oriented lines in a Euclidean three-space R
3 may be represented by

unit vectors with three components over the ring of dual numbers. A differentiable
curve on the dual unit sphere depending on a real parameter v corresponds to a ruled
surface in R

3. This correspondence is one to one and allows the geometry of ruled
surfaces to be represented by the geometry of dual spherical curves on a unit dual
sphere. Dual spherical geometry, expressed with the aid of unit dual vectors, is closely
analogous to real spherical geometry, expressed with the aid of unit real vectors.
Therefore, the properties of elementary real spherical geometry can be carried over
by analogy into the geometry of lines R

3 (see [4, 5]).
In the light of all mentioned above, the following corollary gives a link between

our work and the classical surface theory.
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Corollary 3.2. Let x̂ : I → D
3 be a rectifying dual space curve. Then,

1
â

cos t̂ x̂(t)

corresponds to a ruled surface in R
3.
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