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ABSTRACT

We study compact embeddings for weighted spaces of Besov and Triebel-Lizorkin
type where the weight belongs to some Muckenhoupt Ap class. For weights of
purely polynomial growth, both near some singular point and at infinity, we
obtain sharp asymptotic estimates for the entropy numbers and approximation
numbers of this embedding. The main tool is a discretization in terms of wavelet
bases.

Key words: wavelet bases, Muckenhoupt weighted function spaces, compact embed-
dings, entropy numbers, approximation numbers.

2000 Mathematics Subject Classification: 46E35, 42C40, 42B35, 41A46, 47B06.

Introduction

In recent years, some attention has been paid to compactness of embeddings of func-
tion spaces of Sobolev type as well as to analytic and geometric quantities describing
this compactness, in particular, corresponding approximation and entropy numbers.
As an application D. E. Edmunds and H. Triebel [12] proposed a program to inves-
tigate the spectral properties of certain pseudo-differential operators based on the
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asymptotic behavior of entropy and approximation numbers, together with Carl’s
inequality and the Birman-Schwinger principle. Similar questions in the context of
weighted function spaces of this type were studied by the first named author and
H. Triebel, see [19], and were continued and extended by Th. Kühn, H.-G. Leopold,
W. Sickel and the second author in the series of papers [23–25]. In all the above
papers the authors considered the class of so-called “admissible” weights. These are
smooth weights with no singular points. One can take w(x) = (1 + |x|2)α/2, α ∈ R,
x ∈ R

n, as a prominent example.
In this paper we follow a different approach and consider weights from the Mucken-

houpt class A∞. In contrast to “admissible” weights the A∞ weights may have local
singularities, which can influence properties of the embeddings of function spaces.
Now the weight w(x) = |x|α, α > −n, may serve as a classical example. Weighted
Besov and Triebel-Lizorkin spaces with Muckenhoupt weights are well known con-
cepts, see [3–6, 15, 31, 32] and, more recently, [1, 2, 18]. But (the compactness of)
Sobolev embeddings of such spaces were not yet studied in detail. The present paper
fills in this gap. First we give a necessary and sufficient condition on the parameters
and weights of the Besov spaces which guarantees compactness of the corresponding
embeddings. Then we determine the exact asymptotic behavior of entropy and ap-
proximation numbers of the embeddings of the spaces with weights that have purely
polynomial growth, both near some singular point and at infinity. In both cases we
use the technique of discretization, i.e., we reduce the problem to the corresponding
problem for some suitable sequence spaces. This can be done in terms of wavelet
bases. Then one obtains estimates of the following type: if the weight is of type

w(x) ∼
{
|x|α if |x| ≤ 1,

|x|β if |x| > 1,
with α > −n, β > 0,

and As
p,q stands for either Besov spaces Bs

p,q or Triebel-Lizorkin spaces F s
p,q with

s2 ≤ s1, 0 < p1, p2 < ∞, 0 < q1, q2 ≤ ∞, then

id : As1
p1,q1

(Rn, w) ↪−→ As2
p2,q2

(Rn)

is compact if, and only if,

β

p1
>

n

p∗
and δ > max

(
α

p1
,

n

p∗

)
,

where δ = s1 − s2 − n
p1

+ n
p2

and 1
p∗ = max

(
1
p2

− 1
p1

, 0
)
, as usual. For the entropy

numbers of this embedding we can prove that for k ∈ N,

ek

(
id : As1

p1,q1
(Rn, w) ↪−→ As2

p2,q2
(Rn)

) ∼ k−( β
np1

+ 1
p1

− 1
p2

) if
β

p1
< δ,

and

ek

(
id : As1

p1,q1
(Rn, w) ↪−→ As2

p2,q2
(Rn)

) ∼ k− s1−s2
n if

β

p1
> δ.
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There are parallel results for the limiting case β
p1

= δ and for approximation numbers.
It is remarkable that — apart from the criterion for compactness of the embedding —
the parameter α, connected with the “local” singularity has no further influence on the
“degree” of compactness (measured in terms of entropy or approximation numbers,
respectively).

The study of entropy and approximation numbers of embeddings in the context
of more general weights is postponed; likewise applications are out of the scope of the
present paper.

The paper is organized as follows. In section 1 we recall basic facts about Muck-
enhoupt weights and weighted spaces needed later on. We also prove the wavelet
characterization of Besov spaces via compactly supported wavelets. Section 2 is de-
voted to the continuity and compactness of the embeddings. For weights of purely
polynomial growth we find simpler conditions. In the last two sections we determine
exact asymptotic behavior of the entropy and approximation numbers for purely poly-
nomial weights.

1. Weighted function spaces

First of all we need to fix some notation. By N we denote the set of natural numbers,
by N0 the set N ∪ {0}, by C the complex plane, by R

n euclidean n-space, n ∈ N, and
by Z

n the set of all lattice points in R
n having integer components.

The positive part of a real function f is given by f+(x) = max(f(x), 0). For two
positive real sequences {ak}k∈N and {bk}k∈N we mean by ak ∼ bk that there exist
constants c1, c2 > 0 such that c1 ak ≤ bk ≤ c2 ak for all k ∈ N; similarly for positive
functions.

Given two (quasi-)Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the
natural embedding of X in Y is continuous.

All unimportant positive constants will be denoted by c, occasionally with sub-
scripts. For convenience, let both dx and |·| stand for the (n-dimensional) Lebesgue
measure in the sequel. If not otherwise indicated, log is always taken with respect to
base 2.

1.1. Muckenhoupt weights

We briefly recall some fundamentals on Muckenhoupt classes Ap.

Definition 1.1. Let w be a positive, locally integrable function on R
n, and

1 < p < ∞. Then w belongs to the Muckenhoupt class Ap, if there exists a con-
stant 0 < A < ∞ such that for all balls B the following inequality holds:(

1
|B|

∫
B

w(x) dx

)1/p

·
(

1
|B|

∫
B

w(x)−p′/p dx

)1/p′

≤ A,
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where p′ is the dual exponent to p given by 1/p′ + 1/p = 1 and |B| stands for the
Lebesgue measure of the ball B.

The limiting cases p = 1 and p = ∞ can be incorporated as follows. By a weight w
we shall always mean a locally integrable function w ∈ Lloc

1 (Rn), positive a.e. in the
sequel. Let M stand for the Hardy-Littlewood maximal operator given by

Mf(x) = sup
B(x,r)∈B

1
|B(x, r)|

∫
B(x,r)

|f(y)| dy, x ∈ R
n,

where B is the collection of all open balls

B(x, r) = { y ∈ R
n : |y − x| < r }, r > 0.

Definition 1.2. A weight w belongs to the Muckenhoupt class A1 if there exists a
constant 0 < A < ∞ such that the inequality

Mw(x) ≤ Aw(x)

holds for almost all x ∈ R
n. The Muckenhoupt class A∞ is given by

A∞ =
⋃
p>1

Ap.

Since the pioneering work of Muckenhoupt [27–29], these classes of weight func-
tions have been studied in great detail, we refer, in particular, to the monographs [16;
36, chap. 5; 37; 38, chap. 9], for a complete account on the theory of Muckenhoupt
weights. We use the abbreviation

w(Ω) =
∫

Ω

w(x) dx, (1)

where Ω ⊂ R
n is some bounded, measurable set. For convenience, we recall a few

basic properties only; in particular, the class Ap is stable with respect to translation,
dilation and multiplication by a positive scalar. Moreover, it is known:

Lemma 1.3. Let 1 < p < ∞.

(i) If w ∈ Ap, then we have w−p′/p ∈ Ap′ , where 1/p + 1/p′ = 1.

(ii) w ∈ Ap possesses the doubling property, i.e., there exists a constant c > 0 such
that

w(B2) ≤ cw(B1)

holds for arbitrary balls B1 = B(x, r) and B2 = B(x, 2r) with x ∈ R
n, r > 0.

(iii) Let 1 ≤ p1 < p2 ≤ ∞. Then we have Ap1 ⊂ Ap2 .
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(iv) If w ∈ Ap, then there exists some number r < p such that w ∈ Ar.

Note that the somehow surprising property (iv) is closely connected with the
so-called “reverse Hölder inequality,” a fundamental feature of Ap weights, see [36,
chap. 5, Prop. 3, Cor.]. In our case this fact will re-emerge in the number

rw := inf{r ≥ 1 : w ∈ Ar}, w ∈ A∞, (2)

that plays an essential role later on. Obviously, 1 ≤ rw < ∞, and w ∈ Arw
if, and

only if, rw = 1 in view of (iv).
In the sequel we shall use decompositions of Ap weights into A1 weights several

times, for that reason we collect a few related facts, see [13, Lemma 2.3; 36, chap. 5,
§§1.4, 1.9, 5.3, 6.1], and also [38, chap. 9, Thm. 2.1, secs. 4, 5].

Lemma 1.4.

(i) Let 1 ≤ p1, p2 < ∞, w1 ∈ Ap1 , w2 ∈ Ap2 , and θ ∈ [0, 1]. Let

w
1
p = w

1−θ
p1

1 w
θ

p2
2 ,

1
p

=
1 − θ

p1
+

θ

p2
.

Then w ∈ Ap.

(ii) The minimum, maximum, and the sum of finitely many A1 weights yields again
an A1 weight.

(iii) Let w1 and w2 be A1 weights, and 1 ≤ p < ∞. Then w = w1w
1−p
2 ∈ Ap.

Conversely, suppose that w ∈ Ap, then there exist v1, v2 ∈ A1 such that
w = v1v

1−p
2 .

(iv) A positive, locally integrable function w on R
n belongs to Ap, 1 ≤ p < ∞, if,

and only if,

1
|B|

∫
B

f(y) dy ≤
(

c

w(B)

∫
B

fp(x)w(x) dx

)1/p

(3)

holds for all nonnegative f and all balls B.

Of course, Lemma 1.3 (i) can be understood as a special case of Lemma 1.4 (i).
Moreover, let E ⊂ B and f = χE , then (3) implies that

|E|
|B| ≤ c′

(
w(E)
w(B)

)1/p

, E ⊂ B, (4)

whenever w ∈ Ap, 1 ≤ p < ∞.
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Examples 1.5.

(i) One of the most prominent examples of a Muckenhoupt weight w ∈ Ap,
1 ≤ p < ∞, is given by w(x) = |x|�, with

w(x) = |x|� ∈ Ap if, and only if,

{
−n < � < n(p − 1), if 1 < p < ∞,

−n < � ≤ 0, if p = 1.

Thus rw = 1 + �+
n and w ∈ Arw

if � ≤ 0, whereas w /∈ Arw
for � > 0.

(ii) Let
v(x) = |x|α log−β(2 + |x|) or v(x) = |x|α logβ(2 + |x|−1).

Then, also in view of Lemma 1.4 one verifies that

v ∈ A1 if

{
β ∈ R, if − n < α < 0,

β ≥ 0, if α = 0,

whereas the counterpart for 1 < p < ∞ reads as

v ∈ Ap if − n < α < n(p − 1), β ∈ R,

see also [13, Lemma 2.3]. Similarly as above, rv = 1 + α+
n .

(iii) Finally,
w(x) = |xn|α ∈ Ap if, and only if, − 1 < α < p − 1,

where x = (x1, . . . , xn) ∈ R
n and 1 ≤ p < ∞. This is a special case of

[13, Lemma 2.3], see also [18, Prop. 2.8]. We return to these examples (and
combinations of them) in the sequel.

1.2. Function spaces of type Bs
p,q(R

n, w) and F s
p,q(R

n, w) with w ∈ A∞

Let w ∈ A∞ be a Muckenhoupt weight, and 0 < p < ∞. Then the weighted Lebesgue
space Lp(Rn, w) contains all measurable functions such that

‖f | Lp(Rn, w)‖ =
(∫

Rn

|f(x)|pw(x) dx

)1/p

is finite. Note that for p = ∞ one obtains the classical (unweighted) Lebesgue space,

L∞(Rn, w) = L∞(Rn), w ∈ A∞. (5)

We thus restrict ourselves to p < ∞ in what follows.
The Schwartz space S(Rn) and its dual S ′(Rn) of all complex-valued tempered

distributions have their usual meaning here. Let ϕ0 = ϕ ∈ S(Rn) be such that

suppϕ ⊂ {y ∈ R
n : |y| < 2} and ϕ(x) = 1 if |x| ≤ 1,
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and for each j ∈ N let ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x). Then {ϕj}∞j=0 forms a smooth
dyadic resolution of unity. Given any f ∈ S ′(Rn), we denote by Ff or f̂ , and
F−1f or f∨, its Fourier transform and its inverse Fourier transform, respectively. Let
f ∈ S ′(Rn), then the compact support of ϕj f̂ implies by the Paley-Wiener-Schwartz
theorem that (ϕj f̂)∨ is an entire analytic function on R

n.

Definition 1.6. Let 0 < q ≤ ∞, 0 < p < ∞, s ∈ R, and {ϕj}j a smooth dyadic
resolution of unity. Assume w ∈ A∞.

(i) The weighted Besov space Bs
p,q(R

n, w) is the set of all distributions f ∈ S ′(Rn)
such that

‖f | Bs
p,q(R

n, w)‖ =
( ∞∑

j=0

2jsq‖F−1(ϕjFf) | Lp(Rn, w)‖q

)1/q

(6)

is finite. In the limiting case q = ∞ the usual modification is required.

(ii) The weighted Triebel-Lizorkin space F s
p,q(R

n, w) is the set of all distributions
f ∈ S ′(Rn) such that

‖f | F s
p,q(R

n, w)‖ =
∥∥∥∥( ∞∑

j=0

2jsq|F−1(ϕjFf)(·)|q
)1/q ∣∣∣∣ Lp(Rn, w)

∥∥∥∥
is finite. In the limiting case q = ∞ the usual modification is required.

Remark 1.7. The spaces Bs
p,q(R

n, w) and F s
p,q(R

n, w) are independent of the partic-
ular choice of the smooth dyadic resolution of unity {ϕj}j appearing in their defi-
nitions. They are quasi-Banach spaces (Banach spaces for p, q ≥ 1), and S(Rn) ↪→
Bs

p,q(R
n, w) ↪→ S ′(Rn), similarly for the F -case, where the first embedding is dense

if q < ∞; see [3]. Moreover, for w0 ≡ 1 ∈ A∞ we re-obtain the usual (unweighted)
Besov and Triebel-Lizorkin spaces; we refer, in particular, to the series of monographs
by Triebel [39–42], for a comprehensive treatment of the unweighted spaces.

The above spaces with weights of type w ∈ A∞ have been studied systemati-
cally by Bui et al. in [3–6]. It turned out that many of the results from the un-
weighted situation have weighted counterparts: e.g., we have F 0

p,2(R
n, w) = hp(Rn, w),

0 < p < ∞, where the latter are Hardy spaces, see [3, Thm. 1.4], and, in particu-
lar, hp(Rn, w) = Lp(Rn, w) = F 0

p,2(R
n, w), 1 < p < ∞, w ∈ Ap, see [37, chap. VI,

Thm. 1]. Concerning (classical) Sobolev spaces W k
p (Rn, w) (built upon Lp(Rn, w) in

the usual way) it holds

W k
p (Rn, w) = F k

p,2(R
n, w), k ∈ N0, 1 < p < ∞, w ∈ Ap,

see [3, Thm. 2.8]. Further results, concerning, for instance, embeddings, (real) inter-
polation, extrapolation, lift operators, duality assertions can be found in [3,4,16,32].
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Rychkov extended in [33] the above class of weights in order to incorporate locally reg-
ular weights, creating in that way the class Aloc

p . Recent works are due to Roudenko
[15,31,32] and Bownik [1, 2]. We partly rely on our approach [18].

We collect some more or less immediate embedding results for weighted spaces of
the above type that will be used later. For that purpose we adopt the nowadays usual
custom to write As

p,q instead of Bs
p,q or F s

p,q, respectively, when both scales of spaces
are meant simultaneously in some context.

Proposition 1.8. Let 0 < q ≤ ∞, 0 < p < ∞, s ∈ R, and w ∈ A∞.

(i) Let −∞ < s1 ≤ s0 < ∞ and 0 < q0 ≤ q1 ≤ ∞. Then

As0
p,q(R

n, w) ↪−→ As1
p,q(R

n, w) and As
p,q0

(Rn, w) ↪−→ As
p,q1

(Rn, w).

(ii) We have

Bs
p,min(p,q)(R

n, w) ↪−→ F s
p,q(R

n, w) ↪−→ Bs
p,max(p,q)(R

n, w).

(iii) Assume that there are numbers c > 0, d > 0, such that, for all balls,

w(B(x, r)) ≥ crd, 0 < r ≤ 1, x ∈ R
n. (7)

Let 0 < p0 < p1 < ∞, −∞ < s1 < s0 < ∞, with

s0 − d

p0
= s1 − d

p1
. (8)

Then

Bs0
p0,q(R

n, w) ↪−→ Bs1
p1,q(R

n, w), (9)
and

F s0
p0,∞(Rn, w) ↪−→ F s1

p1,q(R
n, w). (10)

(iv) Let w satisfy (7) and let 0 < p0 < p < p1 < ∞, −∞ < s1 < s < s0 < ∞ satisfy

s0 − d

p0
= s − d

p
= s1 − d

p1
.

Then
Bs0

p0,p(R
n, w) ↪−→ F s

p,q(R
n, w) ↪−→ Bs1

p1,p(R
n, w). (11)

Proof. Parts (i)–(iii) coincide with [3, Thm. 2.6] where, in particular, assumption (7)
is denoted by w ∈ Md. As for (iv) we use the partial result

F s0
p0,∞(Rn, w) ↪−→ Bs1

p1,p0
(Rn, w) (12)
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from [3, Thm. 2.6] together with (10) and interpolation results for weighted F -spaces
in [3, Thm. 3.5]. Obviously, the right-hand side of (11) is a consequence of (12)
together with (i) (for A = F ). As for the left-hand side, choose, for given s0, p0,
and s, suitable numbers σ1, σ2, and 0 < θ < 1 such that for appropriate r1, r2,

σ1 > s0 > σ2 > s, s0 = (1 − θ)σ1 + θσ2 and σi − d

p0
= s − d

ri
, i = 1, 2.

According to (10),

Fσi
p0,∞(Rn, w) ↪→ F s

ri,q(R
n, w), i = 1, 2.

On the other hand, the interpolation results [3, Thm. 3.5] read in our case as(
Fσ1

p0,∞(Rn, w), Fσ2
p0,∞(Rn, w)

)
θ,p

= Bs0
p0,p(R

n, w)

and (
F s

r1,q(R
n, w), F s

r2,q(R
n, w)

)
θ,p

= F s
p,q(R

n, w),

which concludes the proof of (11).

Remark 1.9. The above embeddings (i) and (ii) are natural extensions from the un-
weighted case w ≡ 1, see [39, Prop. 2.3.2/2], whereas (iii) and (iv) with d = n have
their unweighted counterparts in [35, Thm. 3.2.1; 39, Thm. 2.7.1].
Remark 1.10. We shall need an extension of the (unweighted) Besov spaces Bs

p,q(R
n)

to so-called weak -Bs
p,q spaces. By this we mean the modification of (6) (with w ≡ 1)

when Lp(Rn) is replaced by the Lorentz space Lp,∞(Rn),

‖f | weak-Bs
p,q(R

n)‖ =
( ∞∑

j=0

2jsq‖F−1(ϕjFf) | Lp,∞(Rn)‖q

)1/q

. (13)

Note that
‖f | Lp,∞(Rn)‖ ∼ sup

t>0
t

1
p f∗(t),

where f∗ is the non-increasing rearrangement of f , as usual,

f∗(t) = inf
{

s ≥ 0 : |{x ∈ R
n : |f(x)| > s }| ≤ t

}
, t ≥ 0.

We recall the definition of atoms. Let for m ∈ Z
n and ν ∈ N0, Qν,m denote the

n-dimensional cube with sides parallel to the axes of coordinates, centered at 2−νm

and with side length 2−ν . For 0 < p < ∞, ν ∈ N0, and m ∈ Z
n we denote by χ

(p)
ν,m

the p-normalized characteristic function of the cube Qν,m,

χ(p)
ν,m(x) = 2

νn
p χν,m(x) =

{
2

νn
p for x ∈ Qν,m,

0 for x /∈ Qν,m,

hence ‖χ(p)
ν,m | Lp(Rn)‖ = 1.
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Definition 1.11. Let K ∈ N0 and b > 1.

(i) The complex-valued function a ∈ CK(Rn) is said to be an 1K-atom if
supp a ⊂ bQ0,m for some m ∈ Z

n, and |Dαa(x)| ≤ 1 for |α| ≤ K, x ∈ R
n.

(ii) Let s ∈ R, 0 < p ≤ ∞, and L + 1 ∈ N0. The complex-valued function
a ∈ CK(Rn) is said to be an (s, p)K,L-atom if for some ν ∈ N0,

supp a ⊂ bQν,m for some m ∈ Z
n,

|Dαa(x)| ≤ 2−ν(s−n
p )+|α|ν for |α| ≤ K, x ∈ R

n,∫
Rn

xβa(x) dx = 0 for |β| ≤ L.

We shall denote an atom a(x) supported in some Qν,m by aν,m in the sequel. For
0 < p < ∞, 0 < q ≤ ∞, w ∈ A∞, we introduce suitable sequence spaces bpq(w) by

bp,q(w) =
{

λ = {λν,m}ν,m : λν,m ∈ C,

‖λ | bp,q(w)‖ =
( ∞∑

ν=0

∥∥∥∥ ∑
m∈Zn

λν,m χ(p)
ν,m|Lp(Rn, w)

∥∥∥∥q)1/q

< ∞
}

. (14)

Then the atomic decomposition result used below reads as follows.

Proposition 1.12. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, and w ∈ A∞ be a weight
with rw given by (2). Let K, L + 1 ∈ N0 with

K ≥ (1 + [s])+ and L ≥ max
(
−1,

[
n

(
rw

p
− 1

)
+

− s

])
.

Then f ∈ S ′(Rn) belongs to Bs
pq(R

n, w) if, and only if, it can be written as a series

f =
∞∑

ν=0

∑
m∈Zn

λνmaν,m(x), converging in S ′(Rn), (15)

where aν,m(x) are 1K-atoms (ν = 0) or (s, p)K,L-atoms (ν ∈ N) and λ ∈ bpq(w).
Furthermore

inf‖λ | bpq(w)‖
is an equivalent quasi-norm in Bs

pq(R
n, w), where the infimum ranges over all admis-

sible representations (15).

The above result coincides with [18, Thm. 3.10], see also [1, Theorem 5.10].
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1.3. Wavelet characterizations of Besov spaces with A∞ weights

Nowadays there is a variety of excellent (text)books on wavelet theory and hence we
may assume that the reader is familiar with basic assertions. For general background
material on wavelets we refer, in particular, to [10,21,26,43].

Let φ̃ be an orthogonal scaling function on R with compact support and of suf-
ficiently high regularity. Let ψ̃ be an associated wavelet. Then the tensor-product
approach yields a scaling function φ and associated wavelets ψ1, . . . , ψ2n−1, all defined
now on R

n. We suppose

φ̃ ∈ CN1(R) and supp φ̃ ⊂ [−N2, N2]

for certain natural numbers N1 and N2. This implies

φ, ψi ∈ CN1(Rn) and suppφ, suppψi ⊂ [−N3, N3]n, i = 1, . . . , 2n − 1. (16)

We shall use the standard abbreviations

φν,m(x) = 2νn/2φ(2νx − m) and ψi,ν,m(x) = 2νn/2ψi(2νx − m).

Apart from function spaces with weights we introduce sequence spaces with
weights. Let σ ∈ R. We extend (14) by

bσ
p,q(w) :=

{
λ = {λν,m}ν,m : λν,m ∈ C,

‖λ | bσ
p,q(w)‖ =

( ∞∑
ν=0

2νσq

∥∥∥∥ ∑
m∈Zn

λν,m χ(p)
ν,m

∣∣∣∣ Lp(Rn, w)
∥∥∥∥q)1/q

< ∞
}

and

�p(w) :=
{

λ = {λm}m : λm ∈ C,

‖λ | �p(w)‖ =
∥∥∥∥ ∑

m∈Zn

λmχ
(p)
0,m

∣∣∣∣ Lp(Rn, w)
∥∥∥∥ < ∞

}
.

If σ = 0 we write bp,q(w) instead of bσ
p,q(w); moreover, if w ≡ 1 we write bσ

p,q instead
of bσ

p,q(w).
For smooth weights and compactly supported wavelets it makes sense to consider

the Fourier-wavelet coefficients of tempered distributions f ∈ S ′(Rn) with respect to
such an orthonormal basis.

Theorem 1.13. Let 0 < p, q ≤ ∞ and let s ∈ R. Let φ be a scaling function and
let ψi, i = 1, . . . , 2n − 1, be the corresponding wavelets satisfying (16). We assume
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that |s| < N1. Then a distribution f ∈ S ′(Rn) belongs to Bs
p,q(R

n, w), if, and only if,∥∥f | Bs
p,q(R

n, w)
∥∥∗ =

∥∥{〈f, φ0,m〉}m∈Zn

∣∣ �p(w)
∥∥

+
2n−1∑
i=1

∥∥{〈f, ψi,ν,m〉}ν∈N0,m∈Zn

∣∣ bσ
p,q(w)

∥∥ < ∞, (17)

where σ = s + n
2 − n

p . Furthermore, ‖f | Bs
p,q(R

n, w)‖∗ may be used as an equivalent
(quasi-)norm in Bs

p,q(R
n, w).

Proof. The idea of the proof is standard, see [31, Theorem 10.2].
First we assume that (17) holds. There exists a positive constant c such that

functions ai,ν,m(x) = c−12−ν(s+ n
2 −n

p )ψi,ν,m are (s, p)-atoms and a0,m(x) = c−1φ0,m

are 1-atoms. The distribution f can be represented in the following way:

f =
∑

m∈Zn

〈f, φ0,m〉φ0,m +
2n−1∑
i=0

∑
ν∈N0

∑
m∈Zn

〈f, ψi,ν,m〉ψi,ν,m

=
∑

m∈Zn

c〈f, φ0,m〉a0,m +
2n−1∑
i=1

∑
ν∈N0

∑
m∈Zn

c2ν(s+ n
2 −n

p )〈f, ψi,ν,m〉ai,ν,m, (18)

see also Remark 1.14 below. So Proposition 1.12 implies

‖f | Bs
p,q(R

n, w)‖

≤ C

∥∥∥∥ ∑
m∈Zn

〈f, φ0,m〉χ(p)
ν,m

∣∣∣∣ Lp(Rn, w)
∥∥∥∥

+
2n−1∑
i=0

( ∞∑
ν=0

∥∥∥∥ ∑
m∈Zn

2ν(s+ n
2 −n

p )〈f, ψi,ν,m〉χ(p)
ν,m

∣∣∣∣Lp(Rn, w)
∥∥∥∥q)1/q

≤ C
∥∥{〈f, φ0,m〉}

m∈Zn

∣∣ �p(w)
∥∥ +

2n−1∑
i=0

∥∥{〈f, ψi,ν,m〉}
ν∈N0,m∈Zn

∣∣bσ
p,q(w)

∥∥.

Now let f ∈ Bs
p,q(R

n, w). We can define an equivalent (quasi-)norm in the
Besov spaces with A∞ weights using the inhomogeneous ϕ-transform, see [1, 14].
Let Φ ∈ S(Rn) and Φ0 ∈ S(Rn) satisfy supp Φ̂ ⊂ [−π, π] \ {0}, supp Φ̂0 ⊂ [−π, π],
and supj∈N{ |Φ̂(2−jξ)|, |Φ̂0(ξ)| } > 0 for all ξ ∈ R

n. Given a pair Φ0, Φ ∈ S(Rn)
satisfying the above conditions one can find functions Ψ0, Ψ ∈ S(Rn) satisfying the
same conditions and such that

Φ̂0(ξ)Ψ̂0(ξ) +
∞∑

j=1

Φ̂(2−jξ)Ψ̂(2−jξ) = 1
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for all ξ ∈ R
n, see [14]. Let Φj,m(x) = 2nj/2Φ(2jx − m), j ∈ N, and m ∈ Z

n.
Moreover, we put Φ0,m(x) = Φ0(x − m), m ∈ Z

n. In a similar way we define Ψj,m.
The inhomogeneous ϕ-transform SΦ is a map taking each f ∈ S ′(Rn) into the sequence
SΦ(f) = (SΦf)j,m defined by

(SΦf)j,m = 〈f,Φj,m〉, j ∈ N0, and m ∈ Z
n.

The inhomogeneous inverse ϕ-transform TΨ is a map taking each sequence
λ = {λj,m}j∈N0,m∈Zn to

TΨ(λ) =
∞∑

j=0

∑
m∈Zn

λj,mΨj,m,

with convergence in S ′(Rn). We have the following representation formula,

f = TΨ ◦ SΦ(f) (19)

for any f ∈ S ′(Rn). The operator SΦ is a bounded operator from Bs
p,q(R

n, w)
into bσ

p,q(w) and TΨ is a bounded operator from bσ
p,q(w) onto Bs

p,q(R
n, w). More-

over, TΨ ◦ SΦ is the identity operator on Bs
p,q(R

n, w). Thus∥∥{〈f,Φj,m〉}j,m

∣∣ bσ
p,q(w)

∥∥ ≤ C
∥∥f

∣∣ Bs
p,q(R

n, w)
∥∥. (20)

Applying the formula (19) to the function ψi,ν,m we get

〈f, ψi,ν,m〉 =
∞∑

j=0

∑
k∈Zn

〈f,Ψj,k〉〈ψi,ν,m, Φj,k〉.

A similar formula holds for 〈f, φ0,m〉. The numbers λ(ν,m),(j,k) = 〈ψi,ν,m, Φj,k〉 form
the almost diagonal matrix in the sense of Frazier and Jawerth, see [14, Lemmas 3.6,
3.8 and Remarks in §12]. Thus the almost diagonal operator related to the matrix
is bounded in bσ

p,q(w), see [1, §5.4]. Since the coefficients 〈f,Ψj,k〉 satisfy also the
inequality (20) we get

‖f | Bs
p,q(R

n, w)‖∗ ≤ C
∥∥{〈f,Ψj,m〉}j,m

∣∣ bσ
p,q(w)

∥∥ ≤ C
∥∥f

∣∣ Bs
p,q(R

n, w)
∥∥.

This finishes the proof.

Remark 1.14. The representability (18) of f ∈ S ′(Rn) may not be clear immedi-
ately. However, using Hölder’s inequality and the already mentioned “reverse Hölder
inequality” of A∞ weights ([36, chap. 5, Prop. 3, Cor.]) one can reduce the argu-
ment to the corresponding one for admissible weights, say, of type 〈x〉α, α ∈ R,
since Bs

p,q(R
n, w) can be squeezed in between spaces of type Bs

pi,q(R
n, 〈x〉αi), i = 1, 2

(for suitably chosen αi, pi, i = 1, 2). But then [20] implies the representability (18)
(at the expense of some higher smoothness and cancellation needed for the atomic
decomposition argument according to Proposition 1.12), see also [42].
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2. Continuity and compactness of embeddings

We start with a general result on weighted embeddings and discuss its consequences
in different settings afterwards.

Proposition 2.1. Let w1 and w2 be two A∞ weights and let −∞ < s2 ≤ s1 < ∞,
0 < p1, p2 ≤ ∞, 0 < q1, q2 ≤ ∞. We put

1
p∗

:=
(

1
p2

− 1
p1

)
+

and
1
q∗

:=
(

1
q2

− 1
q1

)
+

.

(i) There is a continuous embedding Bs1
p1,q1

(Rn, w1) ↪→ Bs2
p2,q2

(Rn, w2) if, and only
if, {

2−ν(s1−s2)
∥∥{ (w2(Qν,m))1/p2(w1(Qν,m))−1/p1}m

∣∣ �p∗
∥∥ }

ν
∈ �q∗ . (21)

(ii) The embedding Bs1
p1,q1

(Rn, w1) ↪→ Bs2
p2,q2

(Rn, w2) is compact if, and only if,
(21) holds and, in addition,

lim
ν→∞ 2−ν(s1−s2)‖{(w2(Qν,m))1/p2(w1(Qν,m))−1/p1}m | �p∗‖ = 0 if q∗ = ∞,

and

lim
|m|→∞

(w2(Qν,m))−1/p2(w1(Qν,m))1/p1 = ∞ for all ν ∈ N0 if p∗ = ∞. (22)

Proof. It follows from the last theorem that the mapping

T : f �−→ ({〈f, φ0,m〉}m∈Zn , {〈f, ψi,ν,m〉}ν∈N0,m∈Zn,i=1,...,2n−1

)
is an isomorphism of Bs

p,q(R
n, w) onto �p(w) ⊕ (⊕2n−1

i=1 bσ
p,q(w)

)
, σ = s + n

2 − n
p . It

can be easily seen that the last sequence space is isomorphic to bσ
p,q(w). Consequently

we have the following commutative diagrams,

Bs1
p1,q1

(Rn, w1)
T ��

Id

��

bσ1
p1,q1

(w1)

id

��
and

bσ1
p1,q1

(w1)
T−1

��

id

��

Bs1
p1,q1

(Rn, w1)

Id

��
Bs2

p2,q2
(Rn, w2) bσ2

p2,q2
(w2)

S�� bσ2
p2,q2

(w2) Bs2
p2,q2

(Rn, w2),
S−1

��

where T and S are the corresponding isomorphisms and σi = si + n
2 − n

pi
, i = 1, 2.

On the other hand, one can easily verify that the expression( ∞∑
ν=0

2νσq

( ∑
m∈Zn

|λν,m|p2νnw(Qν,m)
)q/p)1/q
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is an equivalent norm in bσ
p,q(w). But w(Qν,m) > 0 for any ν and m. So we can

reduce the investigation of the embeddings of two weighted sequence spaces to the
study of embeddings of a weighted space into an unweighted one, using the following
commutative diagrams,

bσ1
p1,q1

(w1)
A ��

Id

��

bσ1
p1,q1

(w1/w2)

id

��
and

bσ1
p1,q1

(w1/w2)
A−1

��

id

��

bσ1
p1,q1

(w1)

Id

��
bσ2
p2,q2

(w2) bσ2
p2,q2

A−1
�� bσ2

p2,q2
bσ2
p2,q2

(w2),
A��

where bσ2
p2,q2

denotes an unweighted space, i.e., with weight w ≡ 1. But the nec-
essary and sufficient conditions for the boundedness and compactness of the em-
beddings bσ1

p1,q1
(w1/w2) → bσ2

p2,q2
are known, see [24, Theorem 1]. Taking wν,m =(

2νnw(Qν,m)
)1/p in the last mentioned theorem we get the result.

Remark 2.2. In view of (5) it is clear that we obtain unweighted Besov spaces if
p1 = p2 = ∞. Then by (1), w1(Qν,m) = w2(Qν,m) = 2−νn for all ν ∈ N0 and m ∈ Z

n,
such that (21) leads to p∗ = ∞, i.e., p1 ≤ p2, and

δ := s1 − n

p1
− s2 +

n

p2
> 0, (23)

with the extension to δ = 0 if q1 ≤ q2, i.e., q∗ = ∞. Moreover, by (22), the embedding
is never compact (as is well-known in this case).

Furthermore, (i) generalizes Proposition 1.8 (iii), in particular (9), since taking
w1 = w2 = w satisfying (7), we obtain that w(Qν,m) ≥ c2−νd for all m ∈ Z

n which
immediately leads to p∗ = ∞ in (21), i.e., p1 ≤ p2. Moreover, (8) then yields that
2−ν(s1−s2+d( 1

p2
− 1

p1
)) = 1 for all ν ∈ N0. Hence q∗ = ∞, that is, q1 ≤ q2. Thus

Proposition 2.1 (i) implies (9).

Examples 2.3. We collect some elementary examples and explicate the proposition in
their context.

(i) Let
wα(x) = |x|α, x ∈ R

n, −n < α < ∞. (24)

It is well known that wα ∈ A1 if α ≤ 0 and wα ∈ Ar provided that α < n(r−1).
If α > 0, then the embedding

Bs1
p1,q1

(Rn, wα) ↪→ Bs2
p2,q2

(Rn)

is continuous if, and only if, α
p1

> n
p∗ and δ ≥ α

p1
if q∗ = ∞ or δ > α

p1
if q∗ < ∞.

The embedding is compact if, and only if, α
p1

> n
p∗ and δ > α

p1
. If −n < α < 0,

then the embedding is not continuous.
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(ii) We consider (24) with −n < α < 0; here one can deal with embeddings

Bs1
p1,q1

(Rn) ↪−→ Bs2
p2,q2

(Rn, wα).

The embedding is continuous if, and only if, α
p2

< − n
p∗ and δ ≥ − α

p2
if q∗ = ∞

or δ > − α
p2

if q∗ < ∞. The embedding is compact if, and only if, α
p2

< − n
p∗ and

δ > − α
p2

.

(iii) If
wα,(n)(x) = |xn|α, x = (x1, . . . , xn) ∈ R

n, α > 0,

then the embedding

Bs1
p1,q1

(Rn, wα,(n)) ↪−→ Bs2
p2,q2

(Rn)

is continuous if, and only if, p∗ = ∞ and δ ≥ α
p1

if q∗ = ∞ or δ > α
p1

if q∗ < ∞.
The embedding is never compact.

Further examples are studied in detail in the next sections.
As already mentioned, we may restrict ourselves to the situation when only the

source space is weighted, and the target space unweighted. However, for compari-
son with the unweighted case we shall study two types of embeddings; firstly and
essentially we concentrate on

Bs1
p1,q1

(Rn, w) ↪−→ Bs2
p2,q2

(Rn), (25)

where w ∈ A∞. We shall assume in the sequel that p1 < ∞ for convenience, since
otherwise we have Bs1

p1,q1
(Rn, w) = Bs1

p1,q1
(Rn), recall (5), and we arrive at the un-

weighted situation in (25) which is well-known already. Therefore we stick here to the
general assumptions

−∞ < s2 ≤ s1 < ∞, 0 < p1 < ∞, 0 < p2 ≤ ∞, 0 < q1, q2 ≤ ∞. (26)

Secondly, we shall occasionally formulate some results in the “double-weighted” situ-
ation, in particular, corresponding to the setting

Bs1
p1,q1

(Rn, w) ↪−→ Bs2
p2,q2

(Rn, w) (27)

with
−∞ < s2 ≤ s1 < ∞, 0 < p1, p2 < ∞, 0 < q1, q2 ≤ ∞. (28)

Example 2.4. Obviously all Examples 2.3 have their immediate counterparts for em-
beddings of type (27), e.g.,

Bs1
p1,q1

(Rn, wα) ↪−→ Bs2
p2,q2

(Rn, wα), −n < α < ∞, (29)

is continuous if, and only if, p∗ = ∞ (that is, p1 ≤ p2) and δ ≥ α( 1
p1

− 1
p2

) ≥ 0 if
q∗ = ∞, or δ > α( 1

p1
− 1

p2
) ≥ 0 if q∗ < ∞. The embedding (29) is compact if, and

only if, δ > α( 1
p1

− 1
p2

) > 0. If −n < α < 0, then the embedding is never compact.
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Remark 2.5. The continuity assertion of the above example is well-known in the
unweighted case α = 0. However, there is no compactness in unweighted situations
possible, unlike in (29).

2.1. Weights of purely polynomial growth

We consider weights of polynomial growth both near zero and infinity of the form

wα,β(x) =

{
|x|α if |x| ≤ 1,

|x|β if |x| > 1,
with α > −n, β > −n. (30)

Obviously this refines the approach (24), i.e., for α = β > −n we arrive at Exam-
ple 2.3 (i), wα,α = wα. Note that rwα,β

= 1 + max(α,β,0)
n in this case.

Proposition 2.6. Let wα, wβ be given by (24), respectively, and wα,β by (30).

(i) Let wα ∈ Ar and wβ ∈ Ar, 1 ≤ r < ∞. Then wα,β ∈ Ar.

(ii) Let the parameters be given by (26). The embedding Bs1
p1,q1

(Rn, wα,β) ↪→
Bs2

p2,q2
(Rn) is continuous if, and only if,⎧⎨⎩

either β ≥ 0 if p∗ = ∞,

or
β

p1
>

n

p∗
if p∗ < ∞,

(31)

and one of the following conditions is satisfied:

δ ≥ max
(

α

p1
, 0

)
if q∗ = ∞, p∗ = ∞,

δ ≥ max
(

α

p1
,

n

p∗

)
if q∗ = ∞, p∗ < ∞,

n

p∗
�= α

p1
,

δ > max
(

α

p1
,

n

p∗

)
otherwise.

(iii) The embedding As1
p1,q1

(Rn, wα,β) ↪→ As2
p2,q2

(Rn) is compact if, and only if,

β

p1
>

n

p∗
and δ > max

(
n

p∗
,

α

p1

)
.

Proof. According to Lemma 1.4, the minimum and maximum of two A1 weights is
also an A1 weight. Moreover, w1−r ∈ Ar if w ∈ A1. Using the above facts one can
prove part (i).
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Parts (ii) and (iii) for Besov spaces follow easily from Proposition 2.1 since for any
α > −n we have

wα(Qν,0) ∼ 2−ν(n+α) and wα(Qν,m) ∼ 2−ν(n+α)|m|α if m �= 0.

Part (iii) for Triebel-Lizorkin spaces follows from the Besov case in combination with
Proposition 1.8 (iii).

Remark 2.7. When p∗ < ∞, the restriction β
p1

> n
p∗ in (31) cannot be weakened;

however, the limiting case β
p1

= n
p∗ can be included in the framework of weak -Besov

spaces, recall their definition in (13). This will be contained as a special case in
Proposition 2.10 below. Obviously, Proposition 1.8 and part (ii) of Proposition 2.6
imply continuity assertion in the F -case, too, where some care is needed whenever the
q-parameters are involved. However, we are mainly interested in compact embeddings
in the sequel and omit further discussion.

We turn to the double-weighted situation now.

Proposition 2.8. Let wα1,β1 and wα2,β2 be given by (30).

(i) Let the parameters be given by (28). The embedding Bs1
p1,q1

(Rn, wα1,β1) ↪→
Bs2

p2,q2
(Rn, wα2,β2) is continuous if, and only if,⎧⎪⎪⎨⎪⎪⎩

either
β1

p1
− β2

p2
≥ 0 if p∗ = ∞,

or
β1

p1
− β2

p2
>

n

p∗
if p∗ < ∞,

and one of the following conditions is satisfied:

δ ≥ max
(

α1

p1
− α2

p2
, 0

)
if q∗ = ∞, p∗ = ∞,

δ ≥ max
(

α1

p1
− α2

p2
,

n

p∗

)
if q∗ = ∞, p∗ < ∞,

n

p∗
�= α1

p1
− α2

p2
,

δ > max
(

α1

p1
− α2

p2
,

n

p∗

)
otherwise.

(32)

(ii) The embedding As1
p1,q1

(Rn, wα1,β1) ↪→ As2
p2,q2

(Rn, wα2,β2) is compact if, and only
if,

β1

p1
− β2

p2
>

n

p∗
and δ > max

(
α1

p1
− α2

p2
,

n

p∗

)
.

Proof. The argument is parallel to that one given for Proposition 2.6 above.
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Remark 2.9. If we take α2 = β2 = 0 we get Proposition 2.6. In case of α1 = α2 = α
and β1 = β2 = β we obtain an embedding of type (27), in that way extending
Example 2.4 (where we considered the special case α = β). Then the embed-
ding Bs1

p1,q1
(Rn, wα,β) ↪→ Bs2

p2,q2
(Rn, wα,β) is continuous if, and only if, p1 ≤ p2,

β( 1
p1

− 1
p2

) ≥ 0, and one of the following conditions is satisfied:

δ ≥ max(α, 0)
(

1
p1

− 1
p2

)
if q∗ = ∞,

δ > max(α, 0)
(

1
p1

− 1
p2

)
if q∗ < ∞.

The embedding Bs1
p1,q1

(Rn, wα,β) ↪→ Bs2
p2,q2

(Rn, wα,β) is compact if, and only if,

β > 0, p1 < p2, and δ > max(α, 0)
(

1
p1

− 1
p2

)
.

As already mentioned, we deal with the limiting case β
p1

= n
p∗ separately; in view

of (31) it is excluded in the context of target spaces Bs
p,q(R

n) (apart from p∗ = ∞).
But in the context of weak -Besov spaces we obtain the following extension.

Proposition 2.10. Let −∞ < s2 ≤ s1 < ∞, 0 < p1 < ∞, 0 < q1, q2 ≤ ∞, α > −n,
β > 0, and assume

(α − β)+
p1

≤ s1 − s2.

Let p2 be given by 1
p2

= 1
p1

+ β
np1

. Then

Bs1
p1,q1

(Rn, wα,β) ↪−→ weak-Bs2
p2,q2

(Rn) (33)

if ⎧⎪⎪⎨⎪⎪⎩
either s2 < s1 − (α − β)+

p1
, 0 < q2 ≤ ∞,

or s2 = s1 − (α − β)+
p1

, q1 ≤ q2 ≤ ∞.

Proof. Step 1. By elementary embeddings (monotonicity of the spaces) it is sufficient
to prove (33) for the case s2 = s1 − (α−β)+

p1
, and q1 = q2 = q only, that is, using

notation (30), we have to show that

Bs1
p1,q(R

n, wα,β) ↪−→ weak-Bs2
p2,q(R

n),
1
p2

=
1
p1

+
β

np1
, s2 = s1 − (α − β)+

p1
, (34)

with s1 ∈ R, 0 < p1 < ∞, 0 < q ≤ ∞, α > −n, β > 0.

153
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Step 2. We first assume α ≤ β such that s2 = s1 = s and (34) reads as

Bs
p1,q(R

n, wα,β) ↪−→ weak-Bs
p2,q(R

n),
1
p2

=
1
p1

+
β

np1
, α ≤ β.

The argument is based on the observation that

Lp1(R
n, w) ↪−→ Lp2,∞(Rn) (35)

if w−1/p1 ∈ Lr,∞(Rn), 1
r = 1

p2
− 1

p 1
. Recall that real interpolation together with

Hölder’s inequality gives

Lp1(R
n) · Lr,∞(Rn) ↪−→ Lp2,p1(R

n)

in the sense that for all h ∈ Lp1(R
n), g ∈ Lr,∞(Rn), then hg ∈ Lp2,p1(R

n) with

‖hg | Lp2,p1(R
n)‖ ≤ c ‖h | Lp1(R

n)‖ ‖g | Lr,∞(Rn)‖. (36)

Now let f ∈ Lp1(R
n, w). Then h = fw1/p1 ∈ Lp1(R

n). Assume for the moment that
g = w−1/p1 ∈ Lr,∞(Rn) with r = np1

β . Then (36) implies (35).

‖f | Lp2,∞(Rn)‖ ≤ c ‖f | Lp2,p1(R
n)‖

≤ c′ ‖fw1/p1 | Lp1(R
n)‖ ‖w−1/p1 | Lr,∞(Rn)‖

≤ c′′ ‖f | Lp1(R
n, w)‖.

It remains to show that w
−1/p1
α,β ∈ Lr,∞(Rn) for −n < α ≤ β, β > 0. Let

g(x) = w
−1/p1
α,β (x) =

{
|x|− α

p1 if |x| ≤ 1,

|x|− β
p1 if |x| > 1.

Then, for α ≥ 0,

g∗(t) ∼
{

t−
α

np1 if t ≤ 1,

t−
β

np1 if t > 1,

and so

‖g | Lr,∞(Rn)‖ ∼ sup
0<t<1

t
1
r g∗(t) + sup

t≥1
t

1
r g∗(t) ∼ sup

0<t<1
t

β−α
np1 + sup

t≥1
t

β−β
np1 ∼ 1

for 0 ≤ α ≤ β. In case of −n < α < 0 we get at least g∗(t) ≤ ct−
1
r , t > 0, leading to

g = w
−1/p1
α,β ∈ Lr,∞(Rn) again.

Step 3. Assume α > β > 0 such that we have s2 = s1 − α−β
p1

< s1 in (34). In
view of Proposition 2.8 (i) we have

Bs1
p1,q(R

n, wα,β) ↪→ Bs2
p1,q(R

n, wβ,β), δ = s1 − s2 =
α − β

p1
> 0,
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see (32). Moreover, Step 2 yields

Bs2
p1,q(R

n, wβ,β) ↪−→ weak-Bs2
p2,q(R

n),
1
p2

=
1
p1

+
β

np1
,

and this concludes the proof.

2.2. General weights

Now we deal with general weights w ∈ Ar, 1 ≤ r < ∞, and will check what Proposi-
tion 2.1 means in this context. Essentially, we concentrate on two types of embeddings:
either the target space is unweighted,

idw : Bs1
p1,q1

(Rn, w) ↪→ Bs2
p2,q2

(Rn), (37)

with (26), or both source space and target space share the same weight,

idww : Bs1
p1,q1

(Rn, w) ↪→ Bs2
p2,q2

(Rn, w), (38)

with (28), recall also Proposition 1.8.
We begin with a short preparation in order to apply Proposition 2.1 for such

situations. Hence we have to consider expressions of type w2(Qν,m)1/p2w1(Qν,m)−1/p1

only, that is, 2−νn/p2w(Qν,m)−1/p1 in case of (37), and w(Qν,m)
1

p2
− 1

p1 in case of (38).
Let w ∈ Ar, 1 ≤ r < ∞. Then, by (4),

w(Qν,m) ≥ c2−νnrw(Q0,l) for all Qν,m ⊂ Q0,l, ν ∈ N0, m, l ∈ Z
n. (39)

So, for any κ < 0,

w(Qν,m)κ ≤ c′2−νnrκw(Q0,l)κ, Qν,m ⊂ Q0,l,

and thus

‖{w(Qν,m)κ}m | �∞‖ ≤ c2−νrnκ
(
inf

l
w(Q0,l)

)κ
, κ < 0, ν ∈ N0, (40)

with w ∈ Ar, 1 ≤ r < ∞. Moreover, for arbitrary γ > 0, (39) leads to

lim
|m|→∞

w(Qν,m)γ = ∞ for all ν ∈ N0 if, and only if, lim
|l|→∞

w(Q0,l) = ∞. (41)

Summarizing the above considerations, we find that for embeddings of type (37)
or (38) the conditions

inf
l

w(Q0,l) ≥ c > 0, (42)

and
lim

|l|→∞
w(Q0,l) = ∞, (43)
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are essential when p1 ≤ p2, i.e., p∗ = ∞. If p∗ < ∞, then careful calculation leads to

∥∥{w(Qν,m)κ}m

∣∣ �p∗
∥∥ ≤ c 2−νrnκ+ν n

p∗
(∑

l

w(Q0,l)κp∗)1/p∗

= c 2−νrnκ+ν n
p∗

∥∥{w(Q0,l)κ}l

∣∣ �p∗
∥∥

for κ < 0, ν ∈ N0, as the counterpart of (40). This corresponds to (37) with
κ = −1/p1 < 0. Therefore the adequate replacement of (42) for p∗ < ∞ reads as∥∥{

w(Q0,l)−1/p1
}

l

∣∣ �p∗
∥∥ < ∞. (44)

Note that there cannot be a continuous embedding of type (38) if p1 > p2, w ∈ A∞,
and (at least) (42) is assumed to hold, since (39) implies then for some r, 1 ≤ r < ∞,
that

w(Qν,m) ≥ c′2−νnr for all ν ∈ N0, m ∈ Z
n,

such that ∥∥∥{
w(Qν,m)

1
p2

− 1
p1

}
m

∣∣∣ �p∗

∥∥∥ =
(∑

m

w(Qν,m)
)1/p∗

diverges for any ν ∈ N0. So we are left to consider the case p1 ≤ p2 as far as (38) is
concerned. We begin with the case (37).

Corollary 2.11. Let the parameters be given by (26) with p1 ≤ p2. Let w ∈ A∞
with rw given by (2).

(i) Let

δ >
n

p1
(rw − 1). (45)

Then idw in (37) is continuous if, and only if, (42) is satisfied.

The embedding idw in (37) is compact if, and only if, (43) holds.

(ii) Let δ < 0, then Bs1
p1,q1

(Rn, w) is not embedded in Bs2
p2,q2

(Rn).

(iii) Let δ = 0. When q∗ < ∞, then Bs1
p1,q1

(Rn, w) is not embedded in Bs2
p2,q2

(Rn).

When q∗ = ∞ and w ∈ Arw
, that is, rw = 1, then idw in (37) is continuous if,

and only if, (42) is satisfied.

(iv) If (45) is not satisfied, then for every r > rw there exists an Ar weight v
satisfying (42) such that the space Bs1

p1,q1
(Rn, v) is not embedded in Bs2

p2,q2
(Rn).

Proof. Step 1. If (42) does not hold, then obviously there is no embedding (indepen-
dent of δ) in view of (21) and our above discussion. Similarly, if (43) does not hold,
then the embedding cannot be compact in view of (22) and (41) with γ = 1/p1.
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Step 2. Let (45) be satisfied and r > rw such that

δ >
n

p1
(r − 1) >

n

p1
(rw − 1), (46)

then w ∈ Ar. Thus (40) with κ = −1/p1 < 0 leads for (21) (with w1 ≡ w, w2 ≡ 1)
to the estimate

2−ν(s1−s2)
∥∥{

(w2(Qν,m))1/p2(w1(Qν,m))−1/p1
}

m

∣∣ �∞
∥∥

≤ c 2−ν(s1−s2+
n
p2

−nr
p1

)(inf
l

w(Q0,l)
)−1/p1

= c 2−ν(δ− n
p1

(r−1))(inf
l

w(Q0,l)
)−1/p1

. (47)

So the continuity and compactness of the embedding follow from Proposition 2.1 in
view of (42) and (46). Together with Step 1 this concludes the proof of (i). As
far as (iii) with q∗ = ∞ and w ∈ Arw

= A1 is concerned, we can adapt the above
argument by taking r = rw = 1 such that (47) and (21) (with q∗ = ∞) give the result.

Step 3. Concerning (ii) and (iii) it remains to show that for δ < 0 or δ = 0 and
q∗ < ∞ there is no embedding (37) (even) if (42) is satisfied. Since

w(Q0,m) ≥ 2nν min
l:Qν,l⊂Q0,m

w(Qν,l),

one obtains ‖{w(Q0,m)−1/p1}m | �∞‖ ≤ 2−nν/p1‖{w(Qν,l)−1/p1}l | �∞‖. Thus,∥∥∥{
2−ν(s1−s2)−ν n

p2
∥∥{

w(Qν,l)−1/p1
}

l

∣∣ �∞
∥∥}

ν

∣∣∣ �q∗

∥∥∥
≥

∥∥∥{
2−νδ

∥∥{
w(Q0,m)−1/p1

}
m

∣∣ �∞
∥∥}

ν

∣∣∣ �q∗

∥∥∥
=

∥∥{
w(Q0,m)−1/p1

}
m

∣∣ �∞
∥∥ ∥∥{

2−νδ
}

ν

∣∣ �q∗
∥∥ = ∞

if δ < 0 or δ ≤ 0 and q∗ < ∞.

Step 4. If (45) is not satisfied, then for any r > rw there is some 0 < α such that

δ <
α

p1
<

n

p1
(r − 1).

Hence v = wα ∈ Ar and the embedding Bs1
p1,q1

(Rn, wα) ↪→ Bs2
p2,q2

(Rn) does not hold,
see Example 2.3 (i).

Remark 2.12. It is obvious that we obtain by (i)–(iii) a complete characterization
(with respect to δ) in case of w ∈ A1 only, i.e., when rw = 1. Otherwise there
remains the gap

0 < δ ≤ n

p1
(rw − 1)
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(apart from the complementing assertion (iv), of course). However, it is not surprising
that general features of w like rw and (42) are not appropriately adapted for the
interplay with the parameters (26) as required in Proposition 2.1. Reviewing, for
instance, Proposition 2.6 and its proof one realizes that more information of the
weight is used than reflected by rw and (42) only. For example, Corollary 2.11 covers
only the cases β ≥ 0 and δ > max(α,β)

p1
in Proposition 2.6 (with p1 ≤ p2), thus

neglecting the (admitted) situations when max(α,0)
p1

≤ δ ≤ max(α,β)
p1

. But this requires
further information on the weight, as already mentioned.

Corollary 2.13. Let the parameters be given by (26) with p1 > p2. Let w ∈ A∞
and rw be given by (2).

(i) Let
δ >

n

p∗
+

n

p1
(rw − 1).

The embedding idw in (37) is compact if, and only if, (44) holds.

(ii) Let δ < n
p∗ , then Bs1

p1,q1
(Rn, w) is not embedded in Bs2

p2,q2
(Rn).

(iii) Let δ = n
p∗ . When q∗ < ∞, then Bs1

p1,q1
(Rn, w) is not embedded in Bs2

p2,q2
(Rn).

When q∗ = ∞ and w ∈ Arw
, that is, rw = 1, then idw in (37) is continuous if,

and only if, (44) is satisfied.

(iv) If n
p∗ < δ < n

p1
(rw − 1), then for every r > rw there exists an Ar weight v

satisfying (44) such that the space Bs1
p1,q1

(Rn, v) is not embedded in Bs2
p2,q2

(Rn).

Proof. This is a consequence of our above considerations and parallel arguments as
presented for the case p∗ = ∞. As for (iv), our assumption on r implies that we can
always find some number α with

n

p1
(r − 1) >

α

p1
> δ >

n

p∗
,

such that v = wα ∈ Ar serves as an example in view of Example 2.3 (i).

We turn to the double-weighted situation now and restrict ourselves to the case
w1 = w2, i.e., when both spaces are weighted in the same way.

Corollary 2.14. Let the parameters be given by (28) with p1 < p2. Let w ∈ A∞
and rw be given by (2).

(i) Let

δ > (rw − 1)
(

n

p1
− n

p2

)
. (48)

The embedding
idww : Bs1

p1,q1
(Rn, w) ↪→ Bs2

p2,q2
(Rn, w) (49)
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is continuous if, and only if, (42) is satisfied.
The embedding (49) is compact if, and only if, (43) is satisfied.

(ii) Let δ < 0, then Bs1
p1,q1

(Rn, w) is not embedded in Bs2
p2,q2

(Rn, w).

(iii) Let δ = 0. When q∗ < ∞, then Bs1
p1,q1

(Rn, w) is not embedded in Bs2
p2,q2

(Rn, w).
When q∗ = ∞ and w ∈ Arw

, that is, rw = 1, then idww in (49) is continuous
if, and only if, (42) is satisfied.

(iv) If the condition (48) does not hold, then for every r > rw there exists an Ar

weight v satisfying (42) such that the space Bs1
p1,q1

(Rn, v) is not embedded in
Bs2

p2,q2
(Rn, v).

Proof. The proof of parts (i)–(iii) is completely parallel to the proof of Corollary 2.11,
where we apply (40) for κ = 1

p2
− 1

p1
< 0, and (41) with γ = 1

p2
− 1

p1
. If (48) does not

hold, then there is some 0 < α such that

δ < α

(
1
p1

− 1
p2

)
< (r − 1)

(
n

p1
− n

p2

)
.

Then v = wα ∈ Ar and the embedding Bs1
p1,q1

(Rn, wα) ↪→ Bs2
p2,q2

(Rn, wα) does not
hold, see Example 2.4.

Remark 2.15. Note that the compactness in (i) is in some sense surprising as it is
different from the unweighted situation w ≡ 1 (where one cannot have a compact
embedding as is well-known). Of course, there is no contradiction as (43) is not
satisfied in this case.

Moreover, Corollary 2.14 refines Proposition 1.8 (iii) in some sense: Assume that
(42) is satisfied; then since for an arbitrary ball B(x, �) with radius 0 < � < 1 there
is some m ∈ Z

n such that B(x, �) ⊂ Q0,m (apart from a universal constant) and (4)
implies for w ∈ Ar that

w(B(x, �)) ≥ c�nrw(Q0,m),

we obtain (7) with d = rn. The limiting case δ = (r − 1)( n
p1

− n
p2

) in (48) coincides
with (8) for d = nr such that (9) covers the continuity of the embedding (49).

We end this section with a somehow astonishing result dealing with the situation
p1 = p2. It turns out that there is no direct influence of the weights on the continuity
or compactness of the embedding (49).

Corollary 2.16. Let the parameters be given by (28) with p1 = p2. Let w ∈ A∞.
Then the embedding (49) is continuous if, and only if,{

s1 − s2 > 0 if q∗ < ∞,

s1 − s2 ≥ 0 if q∗ = ∞.

The embedding (49) is never compact.

Proof. This is an immediate consequence of (21) and (22).
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3. Entropy numbers of compact embeddings

Let X, Y be two quasi-Banach spaces and let T : X → Y be a bounded linear
operator. The k-th (dyadic) entropy number of T , k ∈ N, is defined as

ek(T ) = inf{ε > 0 : T (BX) can be covered by 2k−1 balls of radius ε in Y },
where BX denotes the closed unit ball in X. Due to the well known fact that

T : X −→ Y is compact if, and only if, lim
k→∞

ek(T : X → Y ) = 0,

the entropy numbers can be viewed as a quantification of the notion of compactness.
On the other hand, the k-th approximation number of T is defined as

ak(T ) = inf{ ‖T − L‖ : rankL < k }.
If ak(T ) → 0 for k → ∞, then T is compact. So the asymptotic behavior of ap-
proximation numbers also gives us the quantitative analysis of compactness of the
operator. Further properties like multiplicativity and additivity, as well as applica-
tions of entropy and approximation numbers can be found in [9, 11,12,30].

We consider the weights w ∈ A∞ such that

w(x) ∼ wα,β(x) =

{
|x|α if |x| ≤ 1,

|x|β if |x| > 1,
with α > −n, β > 0. (50)

It follows from Theorem 1.13 that the investigation of the asymptotic behavior of
entropy numbers of the embedding

Bs1
p1,q1

(Rn, w) ↪→ Bs2
p2,q2

(Rn) (51)

can be reduced to the estimation of the asymptotic behavior of entropy numbers of
embeddings of corresponding sequence spaces bs1

p1,q1
(w) ↪→ bs2

p2,q2
, see the proof of

Proposition 2.1. First we regard the part near zero. To make the notation more
transparent we introduce the following spaces,

�q(2jθ�p(w)) =
{

λ = {λj,m}j,m : λj,m ∈ C, j, m ∈ N0,

‖λ | �q(2jθ�p(w))‖ =
( ∞∑

j=0

2jθq

( ∞∑
m=0

|λj,m|pw(j,m)
) q

p
) 1

q

< ∞
}

, (52)

�q(2jθ�γ2nj

p (w)) =
{
{sj,l}j,l ∈ �q(2jθ�p(w)) : sj,l = 0 if l > γ2nj

}
,

�q(2jθ �̃γ2j

p (w)) =
{
{sj,l}j,l ∈ �q(2jθ�p(w)) : sj,l = 0 if l ≤ γ2nj

}
,

(with the usual modification in (52) when p = ∞ and/or q = ∞), γ ∈ N. We put
wξ(j, l) = lξ if l �= 0 and wξ(j, 0) = 1, j ∈ N0.
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Lemma 3.1. Let 0 < p1 < ∞, 0 < p2 ≤ ∞, 0 < q1, q2 ≤ ∞, ξ ∈ R, θ > 0, and
γ ∈ N. Assume ξ

p1
> − θ

n + 1
p∗ . Then there are positive constants c and C such that

for all k ∈ N the estimates

ck−( θ
n + ξ

p1
+ 1

p1
− 1

p2
) ≤ ek(id : �q1(2

jθ�γ2jn

p1
(wξ)) → �q2(�

γ2nj

p2
)) ≤ Ck−( θ

n + ξ
p1

+ 1
p1

− 1
p2

)

hold.

Proof. Step 1. Preparations. For ξ = 0 (unweighted case) the result is known, see
[41, Thm. 8.2]. So we assume that ξ �= 0. Let

Λ := {λ = {λj,l}j,l : λj,l ∈ C, j ∈ N0, 0 ≤ l ≤ γ2nj}, (53)

and
B1 = �q1(2

jθ�γ2nj

p1
(wξ)), B2 = �q2(�

γ2nj

p2
). (54)

Let Pj : Λ �→ Λ be the canonical projection onto j-level, i.e., for λ = {λj,l} we put

(Pjλ)l :=

{
λk,l if k = j,

0 otherwise,
l ∈ N0. (55)

To shorten the notation we put 1/p = 1/p1 − 1/p2. Elementary properties of the
entropy numbers yield

ek

(
Pj : B1 �→ B2

) ≤ 2−jθ ek(Id : �γ2nj

p1
(wξ) �→ �γ2nj

p2
), (56)

and

ek

(
Id : �γ2nj

p1
(wξ) �→ �γ2nj

p2

)
= ek

(
Dσ : �γ2nj

p1
�→ �γ2nj

p2

)
, (57)

where Dσ is the diagonal operator defined by the sequence σl = l−ξ/p1 if l > 0 and
σ0 = 1.

Step 2. The estimate from above. We use the notation of operator ideals, see
[9,30] for details. Here we recall only what we need for the proof. For a given bounded
linear operator T ∈ L(X, Y ), where X and Y are Banach spaces, and a positive real
number r we put

L(e)
r,∞(T ) := sup

k∈N

k1/r ek(T ). (58)

The last expression is an operator quasi-norm. Using (56) and (57) we find

L(e)
r,∞(Pj : B1 �→ B2) ≤ c 2−jθ L(e)

r,∞(Dσ : �γ2nj

p1
�→ �γ2nj

p2
). (59)
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Substep 2.1. We fix j in this substep and put Nj = γ2nj . Let σ∗
l denote the

non-increasing rearrangement of σl, l = 0, . . . , Nj . Thus

σ∗
l =

{
σl if ξ ≥ 0,

(Nj − l)−ξ/p1 if ξ < 0.

It should be clear that

ak

(
Dσ : �Nj

p1
�→ �Nj

p1

) ≤ σ∗
k if k ≤ Nj + 1, (60)

and ak

(
Dσ : �

Nj
p1 �→ �

Nj
p1

)
= 0 if k > Nj + 1.

For any β > 0 there exists Cβ > 0 such that

sup
l≤k

lβel

(
Dσ : �Nj

p1
�→ �Nj

p1

) ≤ Cβ sup
l≤k

lβal

(
Dσ : �Nj

p1
�→ �Nj

p1

)
, (61)

see [8, Thm. 1; 9, p. 96] and its extension to quasi-Banach spaces in [12, Thm. 1.3.3].
Let ξ > 0. Taking β = ξ

p1
we get from (60) and (61) that

k
ξ

p1 ek

(
Dσ : �Nj

p1
�→ �Nj

p1

) ≤ c sup
l≤k

l
ξ

p1 al(Dσ) ≤ Cξ,p1 . (62)

Now (62) and the multiplicativity of entropy numbers imply

k
1
r e2k−1

(
Dσ : �Nj

p1
�→ �Nj

p2

) ≤ C k
1
r − ξ

p1 ek

(
id : �Nj

p1
�→ �Nj

p2

)
.

Consequently,

L(e)
r,∞

(
Dσ : �Nj

p1
�→ �Nj

p2

) ≤ c L(e)
s,∞

(
id : �Nj

p1
�→ �Nj

p2

)
(63)

if 1
s = 1

r − ξ
p1

> 0.
If 0 < p1 ≤ p2 ≤ ∞, then Schütt’s characterization of the asymptotic behavior of

the entropy numbers ek

(
id : �N

p1
�→ �N

p2

)
, see [34], implies

L(e)
s,∞

(
id : �N

p1
�→ �N

p2

) ≤ c

{
N

1
s− 1

p if 1
s − 1

p > 0,

(log N)1/s if 1
s − 1

p ≤ 0.
(64)

Under the assumption 1
r > ξ

p1
+ 1

p we conclude from (63) and (64) that

L(e)
r,∞

(
Dσ : �Nj

p1
�→ �Nj

p2

) ≤ C 2jn( 1
r − ξ

p1
− 1

p ), (65)

where the constant C depends on γ, but is independent of j.
If 0 < p2 < p1 < ∞, then

L(e)
s,∞

(
id : �N

p1
�→ �N

p2

) ≤ c N
1
s− 1

p , (66)
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and (63) and (66) imply for 1
r > max( ξ

p1
+ 1

p , 0) that

L(e)
r,∞

(
Dσ : �Nj

p1
�→ �Nj

p2

) ≤ C 2jn( 1
r − ξ

p1
− 1

p ). (67)

Let ξ < 0. Then

sup
l≤k

lβal

(
Dσ : �Nj

p1
�→ �Nj

p1

) ≤ sup
l≤k

lβ(Nj − l)−ξ/p1

≤ min(k, cβ,ξ,p1Nj)β(Nj − min(k, cβ,ξ,p1Nj))−ξ/p1

≤ Cβ,ξ,p1

{
kβ

(
Nj − k

)−ξ/p1 if k < cβ,ξ,p1Nj ,

N
β−ξ/p1
j if k ≥ cβ,ξ,p1Nj .

Consequently,
kβek

(
Dσ : �Nj

p1
�→ �Nj

p1

) ≤ Cβ,ξ,p1N
β−ξ/p1
j . (68)

Now using (68) we obtain

k
1
r e2k−1

(
Dσ : �Nj

p1
�→ �Nj

p2

) ≤ C N
β− ξ

p1
j k

1
r −βek

(
id : �Nj

p1
�→ �Nj

p2

)
. (69)

Let us choose first r such that 1
r > max(0, 1

p ), and now β > 0 such that
1
s = 1

r − β > max(0, 1
p ). Then (68) and (64) or (66), respectively, imply

L(e)
r,∞

(
Dσ : �Nj

p1
�→ �Nj

p2

) ≤ CN
β− ξ

p1
j (Nj + 1)

1
r −β− 1

p ≤ C2jn( 1
r − ξ

p1
− 1

p ), (70)

where the constant C depends on γ, but is independent of j.

Substep 2.2. Now, for given M ∈ N0, let

P :=
M∑

j=0

Pj and Q :=
∞∑

j=M+1

Pj . (71)

The expression L
(e)
r,∞(T ) is a quasi-norm therefore there exists a number 0 < � ≤ 1

such that
L(e)

r,∞
(∑

j

Tj

)�

≤
∑

j

L(e)
r,∞(Tj)�, (72)

see König [22, 1.c.5]. Hence, (59) and (65)–(72) yield

L(e)
r,∞(P : B1 �→ B2)� ≤

M∑
j=0

L(e)
r,∞(Pj : B1 �→ B2)� ≤ c1

M∑
j=0

2jn�( 1
r −( ξ

p1
+ 1

p )− θ
n )

≤ c2 2nM�( 1
r −( ξ

p1
+ 1

p )− θ
n ) (73)
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with a constant c2 independent of M , if 1
r ≥ ξ

p1
+ 1

p + θ
n . Hence

e2nM (P : B1 �→ B2) ≤ c3 2−nM( θ
n + ξ

p1
+ 1

p ) . (74)

We proceed similarly to (73) and obtain

L(e)
r,∞(Q : B1 �→ B2)� ≤ c1

∞∑
j=M+1

2jn�( 1
r −( ξ

p1
+ 1

p )− θ
n ) ≤ c22

nM�( 1
r −( ξ

p1
+ 1

p )− θ
n )

if

max
(

0,
1
p
,

ξ

p1
+

1
p

)
<

1
r

<
ξ

p1
+

1
p

+
θ

n
.

This is always possible in view of our assumptions. Hence

e2nM (Q : B1 �→ B2) ≤ c3 2−nM( θ
n + ξ

p1
+ 1

p ). (75)

Summarizing we get from (74) and (75) (replacing nM by M),

e2M+1(id : B1 �→ B2) ≤ e2M (P : B1 �→ B2) + e2M (Q : B1 �→ B2)

≤ c 2−M( θ
n + ξ

p1
+ 1

p ).

Now by monotonicity of the entropy numbers the estimate from above follows.

Step 3. To estimate the entropy numbers from below we regard the diagonal
operator Dσ between finite-dimensional sequence spaces �

Nj
p1 and �

Nj
p2 . Let an operator

Qj : �
Nj
p1 (wξ) �→ B1 be given by

(Qjλ)u,l :=

{
λl if u = j,

0 otherwise,
u ∈ N0, l ∈ N0.

It should be clear that ‖Qj‖ ≤ 2jθ. The identity operator Id : �
Nj
p1 (wξ) �→ �

Nj
p2 can be

factorized by
Id = Pj ◦ id ◦Qj ,

where the operator Pj is regarded as an operator acting between B2 and �
Nj
p2 . Since

‖Pj‖ = 1, we get

ek

(
Id : �Nj

p1
(wξ) �→ �Nj

p2

) ≤ ‖Qj‖‖Pj‖ek(id : B1 �→ B2)

≤ 2jθek(id : B1 �→ B2). (76)
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First we consider the case ξ > 0. By the result of Gordon, König, and Schütt, see [17]
or [22, p. 131], we have

sup
l∈N

2−k/(2l) (σ0 · σ1 · · ·σl−1)1/l ≤ ek+1

(
Dσ : �Nj

p1
�→ �Nj

p1

)
≤ 6 sup

l∈N

2−k/(2l) (σ0σ1 · · ·σl−1)1/l.

Let

Cξ,p1 = sup
λ>0

eξ/p1
λξ/p1

2λ/2
.

Stirling’s formula yields

e
11ξ
12p1√

2

(√
2π

6
√

3
)−ξ/p1

k−ξ/p1 ≤ ek+1

(
Dσ : �γ2nj

p1
�→ �γ2nj

p1

) ≤ 6Cξ,p1k
−ξ/p1 (77)

and the constant Cξ,p1 is independent of j and γ = Nj2−nj . Now using (57) and (77)
we get

c k−ξ/p1 ≤ ek

(
Dσ : �Nj

p1
�→ �Nj

p1

)
≤ ek

(
Dσ : �Nj

p1
�→ �Nj

p2

)∥∥id : �Nj
p2

�→ �Nj
p1

∥∥
≤ C2jn/pek

(
Id : �Nj

p1
(wξ) �→ �Nj

p2

)
. (78)

Thus (76) and (78) imply for k = 2nj ,

c2−jn( θ
n + ξ

p1
+ 1

p ) ≤ e2nj (id : B1 �→ B2) .

When ξ < 0, note that for σ̃l = σ−1
l we have Id = DσDσ̃. So by (57) and (77) we get

e2k

(
Id : �Nj

p1
�→ �Nj

p2

) ≤ ek

(
Dσ̃ : �Nj

p1
�→ �Nj

p1

)
ek

(
Dσ : �Nj

p1
�→ �Nj

p2

)
≤ C kξ/p1 ek

(
Id : �Nj

p1
(wξ) �→ �Nj

p2

)
.

We take k = 2nj . Schütt’s lower estimates of ek

(
Id : �

Nj
p1 �→ �

Nj
p2

)
, 0 < p1 ≤ p2 ≤ ∞,

and (76) imply

c2−nj 1
p ≤ e2nj+1

(
Id : �Nj

p1
�→ �Nj

p2

) ≤ c1 2nj ξ
p1 e2nj

(
Id : �Nj

p1
(wξ) �→ �Nj

p2

)
≤ c2 2nj( ξ

p1
+ θ

p1
) e2nj (id : B1 �→ B2).

If 0 < p2 ≤ p1 ≤ ∞ one should use the estimate ek

(
Id : �

Nj
p1 �→ �

Nj
p2

) ∼ 2−
k

2Nj N
− 1

p

j

and (76). This finishes the proof.

Before we present our result concerning the asymptotic behavior of entropy num-
bers for the compact embedding (51) with weights of type (50), we recall the following
result of [23, Thm. 1; 24, Cors. 4.15, 4.16]. Let the weight wβ(x), β > 0, be given by

wβ(x) = (1 + |x|2)β/2, x ∈ R
n. (79)
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Proposition 3.2. Let the parameters satisfy (26) with δ > 0, recall (23). Assume
β > 0. Then the embedding

�q1

(
2jδ�p1(w

β)
)

↪−→ �q2(�p2)

is compact if, and only if,

min
(

δ,
β

p1

)
>

n

p∗
.

In that case one has for δ �= β
p1

,

ek

(
�q1

(
2jδ�p1

(
wβ

))
↪→ �q2 (�p2)

)
∼ k−min(δ,β/p1)

n − 1
p1

+ 1
p2 , k ∈ N.

In case of δ = β
p1

, one has for τ = s1−s2
n + 1

q2
− 1

q1
> 0 that

ek

(
�q1

(
2jδ�p1

(
wβ

))
↪→ �q2 (�p2)

)
∼ k− s1−s2

n (1 + log k)τ , k ∈ N,

whereas τ < 0 leads to

ek

(
�q1

(
2jδ�p1

(
wβ

))
↪→ �q2(�p2)

)
∼ k− s1−s2

n , k ∈ N.

Remark 3.3. Note that the compactness assertion coincides with Proposition 2.6 (iii)
with α = 0. Embeddings of functions spaces with weights of type (79) have been
studied by many authors for several years, in particular the limiting case δ = β

p1
attracted a lot of attention; we do not want to report on this history here. There are
two-sided estimates for the case δ = β/p1 , τ = 0, in [23].

Recall that As
p,q stands for either Bs

p,q or F s
p,q if no distinction is needed.

Theorem 3.4. Let the parameters satisfy (26) and let the weight w ∈ A∞ be of
type (50) with

β

p1
>

n

p∗ , α > −n, and δ > max
(

n

p∗ ,
α

p1

)
. (80)

(i) If β
p1

< δ, then

ek

(
As1

p1,q1
(Rn, w) ↪→ As2

p2,q2
(Rn)

) ∼ k−( β
np1

+ 1
p1

− 1
p2

).

(ii) If β
p1

> δ, then

ek

(
As1

p1,q1
(Rn, w) ↪→ As2

p2,q2
(Rn)

) ∼ k− s1−s2
n .
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(iii) If β
p1

= δ and τ = s1−s2
n + 1

q2
− 1

q1
> 0, then

ek

(
Bs1

p1,q1
(Rn, w) ↪→ Bs2

p2,q2
(Rn)

) ∼ k− s1−s2
n (1 + log k)τ .

(iv) If β
p1

= δ and τ < 0, then

ek

(
Bs1

p1,q1
(Rn, w) ↪→ Bs2

p2,q2
(Rn)

) ∼ k− s1−s2
n .

Remark 3.5. It is surprising that α, independently of its value (within the given
bounds), does not influence the asymptotic behavior of entropy numbers.

Proof. First we consider the Besov spaces. It follows from Theorem 1.13 that

ek

(
Bs1

p1,q1
(Rn, w) ↪→ Bs2

p2,q2
(Rn)

) ∼ ek

(
bσ1
p1,q1

(w) ↪→ bσ2
p2,q2

)
,

where σi = si + n
2 − n

pi
, see the proof of Proposition 2.1. So we can deal with

sequence spaces. It should be clear that it is sufficient to regard the weights w = wα,β .
Moreover,

ek

(
bσ1
p1,q1

(wα,β) ↪→ bσ2
p2,q2

) ∼ ek

(
bδ
p1,q1

(wα,β) ↪→ bp2,q2

)
∼ ek

(
�q1(2

jδ�p1(w̃α,β)) ↪→ �q2(�p2)
)
,

where δ = σ1 − σ2 = s1 − n
p1

− s2 + n
p2

, see (23), and

w̃α,β(j, l) =

⎧⎪⎨⎪⎩
1 if l = 0,

(2−j l)α/n if 2−j l < 1,

(2−j l)β/n if 2−j l ≥ 1.

We divide the identity operator

Id : �q1

(
2jδ�p1(w̃α,β)

)
↪−→ �q2(�p2)

into two parts
Id = Id1 + Id2,

where

Id1 : �q1

(
2jδ�2

jn

p1
(w̃α,β)

)
↪−→ �q2(�p2)

and
Id2 : �q1

(
2jδ �̃2

jn

p1
(w̃α,β)

)
↪−→ �q2(�p2).

Now it follows from Lemma 3.1 with θ = δ − α
p1

and ξ = α
n that

ek(Id1) ∼ k−( δ
n + 1

p1
− 1

p2
) = k− s1−s2

n .

The estimate of ek(Id2) follows from the estimates for the weights wβ(x) =
(1 + |x|2)β/2, see Proposition 3.2. The corresponding estimates for Triebel-Lizorkin
spaces follow by Proposition 1.8 and the properties of entropy numbers.
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We turn to the related double-weighted situation. Using the same method as
above we get for entropy numbers:

Theorem 3.6. Let the parameters satisfy (28) and let the weights wα1,β1 , wα2,β2 ∈ A∞
be of type (50) with

β1

p1
− β2

p2
>

n

p∗
and δ > max

(
α1

p1
− α2

p2
,

n

p∗

)
.

(i) If β1
p1

− β2
p2

< δ, then

ek

(
As1

p1,q1
(Rn, wα1,β1) ↪→ As2

p2,q2
(Rn, wα2,β2)

) ∼ k− 1
n (

n+β1
p1

−n+β2
p2

).

(ii) If β1
p1

− β2
p2

> δ, then

ek

(
As1

p1,q1
(Rn, wα1,β1) ↪→ As2

p2,q2
(Rn, wα2,β2)

) ∼ k− s1−s2
n .

(iii) If β1
p1

− β2
p2

= δ and τ = s1−s2
n + 1

q2
− 1

q1
> 0, then

ek

(
Bs1

p1,q1
(Rn, wα1,β1) ↪→ Bs2

p2,q2
(Rn, wα2,β2)

) ∼ k− s1−s2
n (1 + log k)τ .

(iv) If β1
p1

− β2
p2

= δ and τ < 0, then

ek

(
Bs1

p1,q1
(Rn, wα1,β1) ↪→ Bs2

p2,q2
(Rn, wα2,β2)

) ∼ k− s1−s2
n .

Remark 3.7. The proof of the above theorem is the same as the proof of Theorem 3.4.
In particular we use Lemma 3.1 and Proposition 3.2. There is nothing substantially
new in this approach, but it has some interesting consequences concerning embeddings
of type (49). In particular, if we take α2 = β2 = 0, then Theorem 3.6 coincides with
Theorem 3.4. If α1 = α2 = α and β1 = β2 = β and

β > 0, p1 < p2, δ > max(α, 0)
(

1
p1

− 1
p2

)
,

then

ek

(
Bs1

p1,q1
(Rn, wα,β) ↪→ Bs2

p2,q2
(Rn, wα,β)

)

∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k−n+β

n

(
1

p1
− 1

p2

)
, β( 1

p1
− 1

p2
) < δ,

k− s1−s2
n , β( 1

p1
− 1

p2
) > δ,

k− s1−s2
n (1 + log k)τ , β( 1

p1
− 1

p2
) = δ, τ > 0,

k− s1−s2
n , β( 1

p1
− 1

p2
) = δ, τ < 0,

where τ = s1−s2
n + 1

q2
− 1

q1
as above.
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4. Approximation numbers of compact embeddings

Finally, we study corresponding approximation numbers. For convenience we re-
call the well known estimates of approximation numbers of embeddings of finite-
dimensional spaces, see [7, 12,30].

Lemma 4.1. Let N, k ∈ N.

(i) If 0 < p1 ≤ p2 ≤ 2 or 2 ≤ p1 ≤ p2 ≤ ∞, then there is a positive constant C
independent of N and k such that

ak

(
id : �N

p1
�→ �N

p2

) ≤ C

{
1 if k ≤ N,

0 if k > N.

(ii) If 0 < p1 < 2 < p2 ≤ ∞, (p1, p2) �= (1,∞), then there is a positive constant C
independent of N and k such that

ak

(
id : �N

p1
�→ �N

p2

) ≤ C

⎧⎪⎨⎪⎩
1 if k ≤ N2/t,

N1/tk−1/2 if N2/t < k ≤ N,

0 if k > N,

where 1
t = max

(
1
p2

, 1
p′
1

)
.

(iii) Let 0 < p2 < p1 ≤ ∞. Then

ak

(
id : �N

p1
�→ �N

p2

)
=

(
N − k + 1

)1/p2−1/p1
, k = 1, . . . , N.

Moreover, if k ≤ N
4 , then we have an equivalence in (i) and (ii).

Lemma 4.2.

(i) Let 0 < p1 ≤ p2 ≤ ∞, (p1, p2) �= (1,∞), 0 < q1, q2 ≤ ∞, θ > 0, and ξ
p1

> − θ
n .

Then for all k ∈ N the following estimate

ak

(
id : �q1

(
2jθ�γ2nj

p1
(wξ)

) → �q2

(
�γ2nj

p2

)) ∼ k−κ

holds, where

κ =

⎧⎪⎨⎪⎩
θ
n + ξ

p1
for 0 < p1 ≤ p2 ≤ 2 or 2 ≤ p1 < p2 ≤ ∞,

θ
n + ξ

p1
+ 1

2 − 1
t for 0 < p1 < 2 < p2 ≤ ∞ and θ

n + ξ
p1

> 1
t ,(

θ
n + ξ

p1

)
t
2 for 0 < p1 < 2 < p2 ≤ ∞ and θ

n + ξ
p1

< 1
t ,

and t = min(p2, p
′
1).
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(ii) Let 0 < p2 < p1 ≤ ∞, 0 < q1, q2 ≤ ∞, θ > 0. We assume that ξ
p1

> − θ
n + 1

p∗ .
Then for all k ∈ N the following estimate

ak(id : �q1(2
jθ�γ2nj

p1
(wξ)) → �q2(�

γ2nj

p2
)) ∼ k−

(
θ
n + ξ

p1
+ 1

p1
− 1

p2

)
holds.

Proof. Step 1. Preparations. We put Nj = γ2nj , 1/p = 1/p1 − 1/p2, and use the
notations (53), (54), and (55). Monotonicity arguments and elementary properties of
the approximation numbers yield parallel to (56) and (57),

ak

(
Pj : B1 �→ B2

) ≤ 2−jθ ak

(
Id : �Nj

p1
(wξ) �→ �Nj

p2

)
, (81)

and
ak

(
Id : �Nj

p1
(wξ) �→ �Nj

p2

)
= ak

(
Dσ : �Nj

p1
�→ �Nj

p2

)
, (82)

where Dσ is again the diagonal operator defined by the sequence σl = (1 + l)−
ξ

p1 .
Using (81) and (82) we find

L(a)
r,∞(Pj : B1 �→ B2) ≤ c 2−jθ L(a)

r,∞(Dσ : �Nj
p1

�→ �Nj
p2

), (83)

where L
(a)
r,∞(T ) is the obvious counterpart of (58) for approximation numbers.

Step 2. We consider the estimate from above.
Substep 2.1. First we estimate L

(a)
r,∞(Dσ : �

Nj
p1 �→ �

Nj
p2 ). We prove that

L(a)
r,∞

(
Dσ : �Nj

p1
�→ �Nj

p2

) ≤ C 2jn( 1
r − ξ

p1
), (84)

if 0 < p1 ≤ p2 ≤ 2 or 2 ≤ p1 ≤ p2 ≤ ∞. On the other hand, for 0 < p1 < 2 < p2 ≤ ∞
and (p1, p2) �= (1,∞) we show that

L(a)
r,∞

(
Dσ : �Nj

p1
�→ �Nj

p2

) ≤ C2jn( 1
r − 1

2+ 1
t − ξ

p1
) if

1
r

> max
(1

2
,

ξ

p1
+

1
2
− 1

t

)
, (85)

L(a)
r,∞

(
Dσ : �Nj

p1
�→ �Nj

p2

) ≤ C 2jn( 2
rt− ξ

p1
) if max

(
0,

tξ

2p1

)
<

1
r

<
1
2
. (86)

The last inequality holds if ξ
p1

< 1
t .

Let us choose K ∈ N such that 2n(K−1) ≤ Nj < 2nK and let Πi : �
Nj
p1 �→ �

Nj
p1 be a

projection defined in the following way

(Πiλ)l :=

{
λl if 2n(i−1) ≤ l < min(2ni, Nj),
0 otherwise,
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for λ = {λl}, and i = 1, 2, . . . , K. Then

Dσ =
K∑

i=1

Dσ ◦ Πi.

Multiplicativity of approximation numbers yields

ak

(
Dσ ◦ Πi : �Nj

p1
�→ �Nj

p2

) ≤ C 2−n(i−1) ξ
p1 ak

(
id : �2

n(i−1)
p1

�→ �2
n(i−1)

p2

)
, i ∈ N.

Let r be some real positive number. Now part (i) of Lemma 4.1 implies

L(a)
r,∞

(
Dσ ◦ Πi : �Nj

p1
�→ �Nj

p2
) ≤ C 2n(i−1)( 1

r − ξ
p1

) (87)

if 0 < p1 ≤ p2 ≤ 2 or 2 ≤ p1 ≤ p2 ≤ ∞. In a similar way part (ii) of Lemma 4.1
implies

L(a)
r,∞

(
Dσ ◦ Πi : �Nj

p1
�→ �Nj

p2

) ≤ C 2n(i−1)( 1
t + 1

r − 1
2− ξ

p1
) if

1
2

<
1
r
, (88)

L(a)
r,∞

(
Dσ ◦ Πi : �Nj

p1
�→ �Nj

p2

) ≤ C 2n(i−1)( 2
rt− ξ

p1
) if 0 <

1
r

<
1
2
, (89)

for 0 < p1 < 2 < p2 ≤ ∞.
If 0 < p1 ≤ p2 ≤ 2 or 2 ≤ p1 ≤ p2 ≤ ∞ we choose 1

r > max
(

ξ
p1

, 0
)
. Then the

(adapted) argument of (72) and (87) gives

L(a)
r,∞

(
Dσ : �Nj

p1
�→ �Nj

p2

)� ≤
K∑

i=1

L(a)
r,∞(Dσ ◦ Πi : �Nj

p1
�→ �Nj

p2
)�

≤ c1

K−1∑
i=0

2−�ni
(

ξ
p1

− 1
r

)
≤ c2 2�nK

(
1
r − ξ

p1

)
for some �, 0 < � ≤ 1. This implies (84) in view of our choice of K.

Now let 0 < p1 < 2 < p2 ≤ ∞. We choose r such that 1
r > 1

2 and that 1
r − 1

2 +
1
t − ξ

p1
> 0. The formula (88) yields

L(a)
r,∞

(
Dσ : �Nj

p1
�→ �Nj

p2

)� ≤
K∑

i=1

L(a)
r,∞

(
Dσ ◦ Πi : �Nj

p1
�→ �Nj

p2

)�

≤ c1

K−1∑
i=0

2−�ni
(

ξ
p1

− 1
t − 1

r + 1
2

)
≤ c2 2�nK

(
1
r − 1

2+ 1
t − ξ

p1

)
.
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The constant c2 is independent of K. This implies (85). Similarly, if max
(
0, tξ

2p1

)
<

1
r < 1

2 , then (89) yields

L(a)
r,∞

(
Dσ : �Nj

p1
�→ �Nj

p2

)� ≤
K∑

i=1

L(a)
r,∞

(
Dσ ◦ Πi : �Nj

p1
�→ �Nj

p2

)�

≤ c1

K−1∑
i=0

2−�ni
(

ξ
p1

− 2
rt

)
≤ c2 2�nK

(
2
rt− ξ

p1

)
and the constant c2 is independent of K. This implies (86).

Substep 2.2. Now let 0 < p2 < p1 ≤ ∞. We prove that

L(a)
r,∞

(
Dσ : �Nj

p1
�→ �Nj

p2

) ≤ C 2jn( 1
r + 1

p− ξ
p1

). (90)

We can deal with that case similar to Substep 2.1 using now part (iii) of Lemma 4.1.
We obtain

L(a)
r,∞

(
Dσ ◦ Πi : �Nj

p1
�→ �Nj

p2

) ≤ C 2n(i−1)( 1
r + 1

p− ξ
p1

)

if 0 < r < ∞. This leads to

L(a)
r,∞

(
Dσ : �Nj

p1
�→ �Nj

p2

)� ≤
K∑

i=1

L(a)
r,∞

(
Dσ ◦ Πi : �Nj

p1
�→ �Nj

p2

)�

≤ c1

K−1∑
i=0

2−�ni
(

ξ
p1

− 1
p− 1

r

)
≤ c2 2�nK

(
1
r + 1

p− ξ
p1

)
,

if 1
r > max

(
0, ξ

p1
− 1

p

)
. This implies (90).

Substep 2.3. First we regard the case 0 < p1 ≤ p2 ≤ 2 or 2 ≤ p1 ≤ p2 ≤ ∞. For
given M ∈ N0, let P and Q be given by (71). Then (83), (84), and (71) yield

L(a)
r,∞(P : B1 �→ B2)� ≤

M∑
j=0

L(a)
r,∞(Pj : B1 �→ B2)� ≤ c1

M∑
j=0

2−jn�( θ
n− 1

r + ξ
p1

)

≤ c2 2−Mn�( θ
n− 1

r + ξ
p1

), (91)

with a constant c2 independent of M , if 1
r > max

(
0, ξ

p1
+ θ

n

)
. Hence for every θ > 0

and any ξ we have
a2nM (P : B1 �→ B2) ≤ c3 2−nM( θ

n + ξ
p1

).
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Since ξ
p1

> − θ
n we can find a number r > 0 such that max

(
0, ξ

p1

)
< 1

r < θ
n + ξ

p1
. In a

similar way to (91) we obtain

L(a)
r,∞(Q : B1 �→ B2)� ≤ c1

∞∑
j=M+1

2−jn�( θ
n− 1

r + ξ
p1

) ≤ c22
−Mn�( θ

n− 1
r + ξ

p1
).

Consequently,
a2nM (Q : B1 �→ B2) ≤ c3 2−nM( θ

n + ξ
p1

).

This implies the estimate from above for 0 < p1 ≤ p2 ≤ 2 or 2 ≤ p1 ≤ p2 ≤ ∞.

Substep 2.4. Let 0 < p1 < 2 < p2 ≤ ∞, (p1, p2) �= (1,∞). Using (85) instead
of (84) we get

L(a)
r,∞(P : B1 �→ B2)� ≤

M∑
j=0

L(a)
r,∞(Pj : B1 �→ B2)� ≤ c32

−Mn�( θ
n− 1

r + ξ
p1

+ 1
2− 1

t ),

if 1
r > max

(
θ
n + ξ

p1
+ 1

2 − 1
t ,

1
2

)
, and consequently

a2nM (P : B1 �→ B2) ≤ c3 2−nM( θ
n + ξ

p1
+ 1

2− 1
t ) (92)

for 0 < p1 < 2 < p2 ≤ ∞, (p1, p2) �= (1,∞). In a parallel way we conclude

L(a)
r,∞(Q : B1 �→ B2)� ≤ c4 2−nM�( θ

n− 1
r + ξ

p1
+ 1

2− 1
t ) (93)

if max
(

1
2 , ξ

p1
+ 1

2 − 1
t

)
< 1

r < θ
n + ξ

p1
+ 1

2 − 1
t . Now, (92) and (93) imply the estimates

from above for θ
n + ξ

p1
> 1

t . On the other hand,

L(a)
r,∞(Q : B1 �→ B2)� ≤ c4 2−nM�( θ

n + ξ
p1

− 2
tr ) (94)

if max
(
0, tξ

2p1

)
< 1

r < min
(

1
2 , t

2

(
θ
n + ξ

p1

))
by (86).

For ξ
p1

> − θ
n satisfying θ

n + ξ
p1

< 1
t we take k =

[
2nM 2

t

]
. Then ξ

p1
< 1

t , and (94)
leads to

ak(Q : B1 �→ B2) ≤ c k− 1
r k− t

2 ( θ
n + ξ

p1
− 2

tr ) ≤ c k− t
2 ( θ

n + ξ
p1

). (95)

By standard arguments the above estimates hold for any positive integer k. Moreover,
(92) implies

ak(P : B1 �→ B2) ≤ C k−( θ
n + ξ

p1
+ 1

2− 1
t ) ≤ C k− t

2 ( θ
n + ξ

p1
) (96)

since θ
n + ξ

p1
< 1

t . Now (95) and (96) give us the estimates from above in the remaining
case.
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Substep 2.5. Let 0 < p2 < p1 ≤ ∞. Using (83) and (90) we get

L(a)
r,∞(P : B1 �→ B2)� ≤

M∑
j=0

L(a)
r,∞(Pj : B1 �→ B2)� ≤ c32

−Mn�( θ
n− 1

r − 1
p + ξ

p1
),

if 1
r > max

(
θ
n + ξ

p1
− 1

p , 0
)
, and consequently

a2nM (P : B1 �→ B2) ≤ c3 2−nM( θ
n + ξ

p1
− 1

p ).

In a similar way one obtains

L(a)
r,∞(Q)� ≤ c42

−nM�( θ
n− 1

r + ξ
p1

− 1
p ) if max

(
0,

ξ

p1
− 1

p

)
<

1
r

<
θ

n
+

ξ

p1
− 1

p
.

Consequently
ak(Q : B1 �→ B2) ≤ c k−( θ

n + ξ
p1

− 1
p ).

This finishes the proof of the estimates from above.

Step 3. We estimate the approximation numbers from below. We can regard the
following commutative diagram

�
Nj
p1

R ��

Id

��

�q1

(
2jθ�

Nj
p1 (wξ)

)
id

��

�
Nj
p2 �q2

(
�
Nj
p2

)P��

where the operator R : �
Nj
p1 �→ �q1

(
2jθ�

Nj
p1 (wξ)

)
is given by

(Rλ)u,i :=

{
λi if u = j,

0 otherwise,
with u ∈ N0, 0 ≤ i ≤ Nj ,

and P is a projection. Since ξ
p1

> − θ
n , we have ‖R‖ ≤ c 2jn( θ

n + ξ
p1

). Moreover, it
should be clear that ‖P‖ = 1. So, by Lemma 4.1:

(i) If 0 < p1 ≤ p2 ≤ 2 or 2 ≤ p1 ≤ p2 ≤ ∞, then taking k = γ2nj−2 we get

1 ≤ C ak

(
Id : �Nj

p1
�→ �Nj

p2

) ≤ C2nj( θ
n + ξ

p1
) ak

(
id : �q1

(
2jθ�Nj

p1
(wξ)

) �→ �q2

(
�Nj
p2

))
.

(ii) If 0 < p1 < 2 < p2 ≤ ∞ and θ
n + ξ

p1
> 1

t , then taking once more k = γ2nj−2 we
have

2−j( 1
2− 1

t ) ≤ Cak

(
Id : �Nj

p1
�→ �Nj

p2

)
≤ C2jn( θ

n + ξ
p1

) ak

(
id : �q1

(
2jθ�Nj

p1
(wξ)

) �→ �q2

(
�Nj
p2

))
.
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(iii) If 0 < p1 < 2 < p2 ≤ ∞ and θ
n + ξ

p1
< 1

t , then we take k =
[
2nj 2

t

]
. So,

1 ≤ C ak

(
Id : �Nj

p1
�→ �Nj

p2

) ≤ C2jn( θ
n + ξ

p1
)ak

(
id : �q1

(
2jθ�Nj

p1
(wξ)

) �→ �q2

(
�Nj
p2

))
.

(iv) If 0 < p2 < p1 ≤ ∞, then we take k = Nj

2 and get

N
1
p

j ≤ Cak

(
Id : �Nj

p1
�→ �Nj

p2

) ≤ C2jn( θ
n + ξ

p1
)ak

(
id : �q1

(
2jθ�Nj

p1
(wξ)

) �→ �q2

(
�Nj
p2

))
.

This finishes the proof.

Theorem 4.3. Let the parameters satisfy (26) and let the weight w ∈ A∞ be of
type (50) with (80). We assume that β

p1
�= δ. Then

ak

(
As1

p1,q1
(Rn, wα,β) ↪→ As2

p2,q2
(Rn)

) ∼ k−κ,

where

(i) κ = min(δ,β/p1)
n if 0 < p1 ≤ p2 ≤ 2 or 2 ≤ p1 ≤ p2 ≤ ∞,

(ii) κ = min(δ,β/p1)
n + 1

p2
− 1

p1
if p1

(
β
n + 1

)−1

< p2 < p1 < ∞,

(iii) κ = min(δ,β/p1)
n + 1

2 − 1
min(p′

1,p2)
if 0 < p1 < 2 < p2 ≤ ∞, (p1, p2) �= (1,∞) and

min
(

β
p1

, δ
)

> n
min(p′

1,p2)
,

(iv) κ = min(δ,β/p1)
n · min(p′

1,p2)
2 if 0 < p1 < 2 < p2 ≤ ∞, (p1, p2) �= (1,∞) and

min
(

β
p1

, δ
)

< n
min(p′

1,p2)
.

Remark 4.4. The proof is similar to the proof of Theorem 3.4. The approximation
numbers in double weighted situation can be treated in the same way as in Theo-
rem 3.6 related to entropy numbers.
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