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ABSTRACT

The disc multiplier may be seen as a vector valued operator when we consider
its projections in terms of the spherical harmonics. In this form, it represents
a vector valued Hankel transform. We know that, for radial functions, it is
bounded on the spaces Lp

lq (rn−1 dr) when 2n
n+1

< p, q < 2n
n−1

. Here we prove
that there exist weak-type estimates for this operator for the extremal exponents,
that is, it is bounded from Lpi,1

lq (rn−1 dr) to Lpi,∞
lq (rn−1 dr) for i = 0, 1 when

p0 = 2n
n+1

, p1 = 2n
n−1

, p0 < q < p1, and we consider radial functions.
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1. Introduction and statement of theorems

Let us call T the disc multiplier operator, given by

�(Tf)(ξ) = χ
B(0,1)(ξ)f̂(ξ),

where B(0, 1) = {x : |x| < 1} and χ
A

is the characteristic function of the set A.
This operator is related to the Hilbert transform. In particular, in one dimension, the
multiplier operator of the disc of radius R, which we denote by SR, is given by

SRf(x) = c
(
eiRxH(f(·)e−iR·)(x) − e−iRxH(f(·)eiR·)(x)

)
.
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Here H is the Hilbert transform, defined by

Hf(x) = p.v.
1
π

∫
R

f(y)
x − y

dy.

With this notation, T = S1, and the boundedness of T may be obtained from
the boundedness of H because the difference is only the conjugation with functions
of norm one. But we know much more about T , because in 1966 L. Carleson proved
(see [2]):

Theorem 1.1 (Carleson). The maximal operator defined by

sup
R∈R

|H(f(·)eiR·)| = sup
R∈R

∣∣∣p.v.
1
π

∫
R

f(y)eiRy

x − y
dy

∣∣∣
is bounded from the space L2(R) to L2(R).

Later on, in 1968, R. Hunt (see [6]) extended this theorem to the spaces Lp(R)
with 1 < p < ∞.

When we consider now dimension n, the analogous decomposition of T is obtained
from the expansion in spherical harmonics of a function of L2(Rn). The expression
we obtain for T is very useful because of the good behavior of these polynomials
with respect to the Fourier transform. This decomposition is obtained as follows.

Let {Y(k)
j }k≥0, 1≤j≤ak

be an orthonormal basis of spherical harmonics in L2(Sn−1).

Each one of the functions Y(k)
j is the restriction to the sphere of a homogeneous

harmonic polynomial of degree k and ak is the dimension of the space Ak of all the
homogeneous harmonic polynomials of degree k (see the reference [12]).

A function f in L2 has the following expansion in terms of that basis:

f(x) =
∑
k≥0

1≤j≤ak

fk,j(|x|)Y(k)
j

( x

|x|
)
,

where the functions fk,j are the coefficients. The Fourier transform of such a function
is then

f̂(ξ) =
∑
k,j

i−k

|ξ|n−2
2

∫ ∞

0

fk,j(t)Jn−2
2 +k(|ξ|t) t

n
2 dtY(k)

j

( ξ

|ξ|
)

=
∑
k,j

i−k

|ξ|n−2
2

Hn−2
2 +k

(
fk,j(s)s

n−2
2

)
(|ξ|)Y(k)

j

( ξ

|ξ|
)

where Jl is the Bessel function of order l and Hl is the Fourier-Hankel transform, also
of order l, which we define for functions g : (0,∞) → C by the formula

Hl g(r) =
∫ ∞

0

g(s)Jl(rs) s ds.
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[The definition of Fourier transform we are using here is

f̂(ξ) =
1

(2π)n/2

∫
Rn

e−ixξf(x) dx,

which makes the notation simpler.]
The corresponding formula for the disc multiplier in terms of the spherical har-

monics is
Tf(x) =

∑
k,j

1

|x|n−1
2

Tn−2
2 +k

(
fk,j(s)s

n−1
2

)
(|x|)Y(k)

j

( x

|x|
)
,

where Tl denotes the operator

Tl g(r) =
∫ ∞

0

g(s)(rs)1/2

∫ 1

0

Jl(tr)Jl(ts) t dt ds.

With this formula in mind we can see T as an operator acting on sequences of func-
tions. Those functions are the coefficients of f in terms of the spherical harmonics.

In general, given a sequence of positive numbers, a = {lk}k, each lk greater than
a fixed positive constant, we can define the vector valued operator �T ( = �Ta,n), acting
on a suitable sequence of functions {fk}k, defined in (0,∞), by the formula

�T ({fk}k)(r) =
{

1

r
n−1

2

Tlk

(
fk(s)s

n−1
2

)
(r)

}
k

, r > 0.

For this operator we already know that it is bounded when acting on some of the
spaces Lp

lq (r
n−1 dr) that we define as the spaces of sequences of radial functions {fk}k

in lq such that

‖{fk}k‖Lp
lq

(rn−1 dr) =:
(∫

(
∑

k

|fk|q)p/q rn−1 dr

)1/p

=
∥∥ |{fk}k|lq

∥∥
Lp(rn−1 dr)

< ∞.

First of all, we know that �T is bounded on the spaces Lp
l2(r

n−1 dr) for
2n

n+1 < p < 2n
n−1 . This estimate is equivalent to the boundedness of the disc multiplier

in the mixed norm spaces Lp
radL2

ang(R
n) for the same rank of p, where Lp

radL2
ang(R

n)
is the space of functions defined on R

n with radial part in Lp and angular part in L2.
This estimate for the disc multiplier was proved independently by A. Córdoba [3]

(in a paper of the year 1989) and G. Mockenhaupt [7] (in a paper of the year 1990).
A little bit later (in a paper of the year 1992) this result was also obtained as a corol-
lary of the main theorem on weighted inequalities in L2 for the disc multiplier by
A. Carbery, F. Soria, and the author [1], a problem suggested by E. Stein [11] and
solved there for the case of radial weights. Moreover, in [1] we also obtain extremal
bounds for the operator T̃ between the spaces

�T : Lpi,1
l2 (rn−1 dr) −→ Lpi,∞

l2 (rn−1 dr), i = 0, 1,
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where p0 = 2n
n+1 , p1 = 2n

n−1 , and n ≥ 2. These estimates also have an interpretation as
mixed norm estimates for the disc multiplier T , in particular, it is bounded between
the spaces

T : Lpi,1
rad L2

ang(R
n) −→ Lpi,∞

rad L2
ang(R

n), i = 0, 1.

These are weak type estimates but, nevertheless, they imply the previous bounds
using interpolation and so, they extend the previous result.

With different techniques from those used in the case of Lp
l2 , which involve weighted

estimates and interpolation, it is proved in [9] that the operator �T is bounded
on the spaces Lp

lq with p0 < p, q < p1 when acting on radial functions.

Let us consider also the operator Q obtained by eliminating in the expression of �T
the conjugation with s

n−1
2 :

Q({fk}k)(r) = {Tlkfk(r)}k, r > 0.

For this new operator we know that it is bounded in the space Lp
l2(dr) for 4

3 < p < 4.
This fact is the basic step of A. Córdoba in the proof of the mixed norm estimate
for the operator T (see [3]). This estimate was also obtained in [1] by different methods
which allowed the authors to obtain the following extremal estimate for Q:

Q : L
4/3,1
l2 (dr) −→ L

4/3,∞
l2 (dr).

In the reference [9] the author proves also that the operator Q is bounded from
Lp

lq (dr) to Lp
lq (dr) for every 4

3 < p, q < 4.
The estimates in the spaces Lp

lq with q �= 2 are related to some extent with the
vector valued inequalities for the Hardy-Littlewood maximal operator of C. Fefferman
and E. Stein (see [4]).

In this paper we extend the estimates for �T in Lp
lq to the extremal exponents

obtaining weak type bounds. Our theorem is the following:

Theorem 1.2. For n > 2, the operator �T is bounded between the spaces

�T : Lpi,1
lq (rn−1 dr) −→ Lpi,∞

lq (rn−1 dr), i = 0, 1,

for radial functions, where p0 = 2n
n+1 , p1 = 2n

n−1 , and p0 < q < p1.

This result extends the main theorem proved in [9], that now can be obtained
using interpolation.

Hint on notation: along the paper, the letter c denotes a constant, which may be
different from line to line.
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2. Proof of the main theorem

First of all, let us recall a few facts about Bessel functions. An estimate of von
Lommel (see [13, p. 134]) allows us to write the following expression for the kernel of
the operator Tk:

2(rs)1/2

∫ 1

0

Jk(tr)Jk(ts)t dt = −μk(s)σk(r)
r − s

+
μk(r)σk(s)

r − s

− μk(s)σk(r)
r + s

− μk(r)σk(s)
r + s

=
4∑

m=1

Km
k (r, s),

in terms of the functions

μk(t) = t1/2Jk(t), t > 0,

σk(t) = t1/2J ′
k(t), t > 0.

These functions μk and σk are bounded but not independently of k. Let’s define also

τk(t) = min
(

k1/6,

∣∣∣∣ t + k

t − k

∣∣∣∣
1/4)

for t > 0. Then, following G. Mockenhaupt [7] (see also [8]), we know there is a
constant c independent of k such that

|μk(t)| ≤ cτk(t), t > 0, (1)

|σk(t)| ≤ cτ−1
k (t) = c max

(
k−1/6,

∣∣∣∣ t − k

t + k

∣∣∣∣
1/4)

, t > 0,

and, moreover, we have the estimate

|τk(t)| ≤ c

(
k−1/6 +

∣∣∣∣ t − k

t + k

∣∣∣∣
1/4)−1

, t > 0. (2)

Let us define for m = 1, 2, 3, 4, the operators

Pm
k g(r) =

1
r(n−1)/2

∫ ∞

0

Km
k (r, s)g(s)s(n−1)/2 ds, r > 0.

The inequalities we want to prove are the following:

∥∥∥( ∞∑
k=1

|Pm
k gk|q

)1/q∥∥∥
Lp,∞(rn−1 dr)

≤ c
∥∥∥( ∞∑

k=1

|gk|q
)1/q∥∥∥

Lp,1(rn−1 dr)
, (3)
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for p = p0, p1, and m ∈ {1, 2, 3, 4}.
Let us observe that if we define the operator Pm by Pm({gk}k) = {Pm

k gk}k,
m ∈ {1, 2, 3, 4}, then, for m = 1, 3, Pm is the adjoint of Pm+1 with respect to the
pairing

〈{gk}k, {fk}k〉 =
∞∑

k=1

∫ ∞

0

gk(r)fk(r)rn−1 dr.

Therefore, the inequalities corresponding to m = 1, 3 in the equation (3) for p = p0

(and respectively for p = p1) are formally equivalent to the corresponding inequalities
for m = 2, 4 for p = p1 (respectively, for p = p0). We will only study the proof
corresponding to m = 1 for p = p0, p1 and will indicate what to do for the case m = 3.

Given j ∈ Z, we consider the intervals Ij = [2j , 2j+1) and I∗j = [2j−1, 2j+2). Then,
for a fixed k ≥ 1 we can write

P 1
k gk(r) =

∞∑
j=−∞

P 1
k (gk χ

I∗
j
)(r) χ

Ij
(r) +

∞∑
j=−∞

P 1
k (gk χ

(I∗
j
)c )(r) χ

Ij
(r)

= Ak + Bk,

and so P 1({fk}k) = {Ak}k + {Bk}k.

2.1. Estimate of {Ak}k for n > 2

For the weight w = rn−1 and the indices pi = p0, p1 we can write (from now on,
we omit the symbols { }k when calculating the norm of a sequence to simplify our
expressions)

w{ r : ‖Ak‖lq (r) > λ } ≤ c

λpi

∫ ∞

0

‖Ak‖pi

lq rn−1 dr

=
c

λpi

∫ ∞

0

∥∥∥
∞∑

j=−∞
P 1

k (gk χ
I∗
j
)(r) χ

Ij
(r)

∥∥∥pi

lq
rn−1 dr.

Since the intervals Ij are mutually disjoint, this is equal to

c

λpi

∞∑
j=−∞

∫
Ij

‖P 1
k (gk χ

I∗
j
)(r) χ

Ij
(r)‖pi

lq rn−1 dr

=
c

λpi

∞∑
j=−∞

∫
Ij

∥∥∥∥ 1
r(n−1)/2

∫ ∞

0

K1
k(r, s)gk(s)χ

I∗
j
(s)s(n−1)/2 ds χ

Ij
(r)

∥∥∥∥
pi

lq
rn−1 dr

=
c

λpi

∞∑
j=−∞

∫
Ij

∥∥∥∥
∫ ∞

0

K1
k(r, s)gk(s)χ

I∗
j
(s)s(n−1)/2 ds χ

Ij
(r)

∥∥∥∥
pi

lq
r(n−1)(1−pi/2) dr.
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Observe now that the weights R(r) = r(n−1)(1−pi/2), for i = 0 and i = 1, are
respectively r(n−1)/(n+1) and r−1. So, they are essentially constant on every Ij , let us
call that constant R(2j), and our estimate is bounded by

c

λpi

∞∑
j=−∞

R(2j)
∫

Ij

∥∥∥∥
∫ ∞

0

K1
k(r, s)gk(s)χ

I∗
j
(s)s(n−1)/2 ds χ

Ij
(r)

∥∥∥∥
pi

lq
dr

≤ c

λpi

∞∑
j=−∞

R(2j)
∫ ∞

0

∥∥∥∥
∫ ∞

0

K1
k(r, s)gk(s)χ

I∗
j
(s)s(n−1)/2ds χ

Ij
(r)

∥∥∥∥
pi

lq
dr.

We know by Theorem 1 in [9] that the operators defined by the kernels Km
k ,

m = 1, 2, 3, 4, are bounded on Lp
lq (dr) for 4/3 < p, q < 4. Since p1 ≥ 2 for n ≥ 2 and

also p0 ≥ 4/3 for n > 2, then, for n > 2, this is less than or equal to

c

λpi

∞∑
j=−∞

R(2j)
∫ ∞

0

‖gk(s)χ
I∗
j
(s)‖pi

lq rpi(n−1)/2 dr

≤ c

λpi

∞∑
j=−∞

∫
I∗

j

‖gk(s)χ
I∗
j
(s)‖pi

lq rpi(n−1)/2R(r) dr

≤ 3c

λpi

∫ ∞

0

‖gk(s)‖pi

lq rn−1 dr,

where we are using that the intervals I∗j may overlap at most three of them.

2.2. Estimate of {Bk}k for n ≥ 2

Let us observe that if r ∈ Ij and s /∈ I∗j , then |r − s| ∼ r + s. Then

|Bk| =
∣∣∣∣

∞∑
j=−∞

σk(r)χ
Ij

(r)

r(n−1)/2

∫
(I∗

j )C

gk(s)μk(s)
r − s

s(n−1)/2 ds

∣∣∣∣
≤ c

|σk(r)|
r(n−1)/2

∫ ∞

0

|gk(s)μk(s)|
r + s

s(n−1)/2 ds

≤ c

r(n−1)/2

∫ ∞

0

|gk(s)μk(s)|
r + s

s(n−1)/2 ds

≤ c

r(n−1)/2

{ ∫
(Ik)C

|gk(s)μk(s)|
r + s

s(n−1)/2 ds +
∫

Ik

|gk(s)μk(s)|
r + s

s(n−1)/2 ds

}

= B1
k + B2

k.

159
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2.2.1. Estimate of {B1
k}k

First, we observe that |μk(s)| is bounded outside Ik. Then, by the Minkowski integral
inequality we obtain

‖B1
k‖lq ≤ c

r(n−1)/2

∫ ∞

0

‖gk(s)‖lq

r + s
s(n−1)/2 ds.

The estimate in Lp0,∞(rn−1 dr) is obtained using that r−(n+1)/2 ∈ Lp0,∞(rn−1 dr) =
(Lp1,1(rn−1 dr))∗. We only need to prove that

∫ ∞

0

G(s)s(n−3)/2 ds ≤ c ‖G‖Lp1,1(rn−1 dr).

But this is easy, since we can estimate the left hand side as
∫ ∞

0

G(s)s(n−3)/2 ds ≤
∫ ∞

0

G(s)
1

s(n+1)/2
sn−1 ds

≤ c ‖G‖Lp1,1(rn−1 dr).

Also, we observe that r−(n−1)/2 ∈ Lp1,∞(rn−1 dr) = (Lp0,1(rn−1 dr))∗, so

1
r(n−1)/2

∫ ∞

0

G(s)s(n−3)/2 ds ≤ 1
r(n+1)/2

∫ ∞

0

G(s)
1

s(n−1)/2
sn−1 ds

≤ c

r(n+1)/2
‖G‖Lp0,1(rn−1 dr).

Thus, we have proved that

‖B1
k‖lq ≤ c

r(n−1)/2

∥∥‖gk(s)‖lq
∥∥

Lp1,1(rn−1 dr)
,

‖B1
k‖lq ≤ c

r(n+1)/2

∥∥‖gk(s)‖lq
∥∥

Lp0,1(rn−1 dr)
.

Since r−(n−1)/2 ∈ Lp1,∞(rn−1 dr) and r−(n+1)/2 ∈ Lp0,∞(rn−1 dr), we obtain

‖B1
k‖L

p1,∞
lq

(rn−1 dr) ≤ c ‖gk(s)‖
L

p1,1
lq

(rn−1 dr)
,

‖B1
k‖L

p0,∞
lq

(rn−1 dr) ≤ c ‖gk(s)‖
L

p0,1
lq

(rn−1 dr)
.

2.2.2. Estimate of {B2
k}k

By the Hölder inequality we obtain, for some α > 1,

B2
k ≤ c

r(n−1)/2

(∫
Ik

|gk(s)|α
|r + s|α sα(n−1)/2 ds

)1/α(∫
Ik

|μk(s)|α′
ds

)1/α′

,
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where α′ = α
α−1 is the conjugate exponent of α. Now, following the estimates (1)

and (2), for s > 0

μk(s) ≤ c

(
k−1/6 +

∣∣∣∣s − k

s + k

∣∣∣∣
1/4)−1

= w,

and notice that the weight wα′
is in the Muckenhoupt class A1 for α′ < 4, which

means α > 4
3 (see [5]). So, M(wα′

) ≤ cwα′
, where M is the Hardy-Littlewood

maximal operator. Then, for α > 4
3 we have

(∫
Ik

|μk(s)|α′
ds

)1/α′

≤ c

(∫
Ik

(
k−1/6 +

∣∣∣∣s − k

s + k

∣∣∣∣
1/4)−α′

ds

)1/α′

≤ c k1/α′
.

Let us observe now that we can introduce in the integral the constant k as the
variable s because we are integrating in the interval Ik, obtaining

B2
k ≤ c

r(n−1)/2

(∫
Ik

|gk(s)|α
|r + s|α sα(n−1)/2sα/α′

ds

)1/α

=
c

r(n−1)/2

(∫
Ik

|gk(s)|α
|r + s|α sα(n+1)/2 ds

s

)1/α

.

The lq-norm is then

‖B2
k‖lq ≤ c

r(n−1)/2

∥∥∥∥
∫

Ik

|gk(s)|α
|r + s|α sα(n+1)/2 ds

s

∥∥∥∥
1/α

lq/α

.

This expression only makes sense for q/α ≥ 1, that is, for α ≤ q. If now we use the
Minkowski inequality we obtain

‖B2
k‖lq ≤ c

r(n−1)/2

(∫
Ik

‖gk(s)‖α
lq

|r + s|α sα(n+1)/2 ds

s

)1/α

.

Let us call now G = ‖gk(s)‖lq and define the operators Dα by

Dα(G) =
1

r(n−1)/2

(∫
Ik

|G|α
|r + s|α sα(n+1)/2 ds

s

)1/α

.

We want to prove that Dα is bounded when acting between the spaces

Dα : Lpi,1(rn−1 dr) −→ Lpi,∞(rn−1 dr),

for i = 0, 1 and some exponent α ∈ (4/3, q].
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For the estimate corresponding to p0 we choose α = p0 and extract the |r + s| out
of the integral as a constant times r:

Dp0(G) =
1

r(n−1)/2

(∫
Ik

|G|p0

|r + s|p0
sp0(n+1)/2 ds

s

)1/p0

≤ c

r(n+1)/2

(∫
Ik

|G|p0sn−1 ds

)1/p0

≤ c

r(n+1)/2
‖G‖Lp0,1(rn−1 dr).

Since r−(n+1)/2 ∈ Lp0,∞(rn−1 dr), we have proved that Dp0 is bounded when acting
between the spaces

Dp0 : Lp0,1(rn−1 dr) −→ Lp0,∞(rn−1 dr).

We consider now the exponent p1. First of all, we change in the integral |r+s| by s,
so

Dα(G) ≤ c

r(n−1)/2

(∫
Ik

|G|αsα(n−1)/2 ds

s

)1/α

.

Then recall that r−(n−1)/2 ∈ Lp1,∞(rn−1 dr), so we only have to prove that
(∫

Ik

|G|αsα(n−1)/2 ds

s

)1/α

≤ c‖G‖Lp1,1(rn−1 dr).

We can’t choose α = p1, because for n = 2 it is outside the interval (4/3, q]. But for
2 ≤ q ≤ p1 we can consider α = 2, and to prove the corresponding inequality we only
observe that r−1 ∈ Ln,∞(rn−1 dr) and that (Ln/(n−1),1(rn−1 dr))∗ = Ln,∞(rn−1 dr)
because n and n

n−1 are conjugate exponents, so
(∫

Ik

|G|2sn−1 ds

s

)1/2

≤ c ‖G2‖1/2

Ln/(n−1),1(rn−1 dr)
= c ‖G‖Lp1,1(rn−1 dr).

For the case p0 < q < 2 we choose α = q and, since Ik = [2k, 2k+1) with k ≥ 1, we
can estimate (∫

Ik

|G|qsq(n−1)/2 ds

s

)1/q

≤
(∫

Ik

|G|qsn−1 ds

s

)1/q

.

Now, observe that r−1 ∈ (Lp1/q,1(rn−1 dr))∗ = L(p1/q)′,∞(rn−1 dr), and obtain
(∫

Ik

|G|qsn−1 ds

s

)1/q

≤ (‖Gq‖Lp1/q,1(rn−1 dr) ‖r−1‖L(p1/q)′,∞(rn−1 dr)

)1/q

≤ c ‖Gq‖1/q

Lp1/q,1(rn−1 dr)
= c ‖G‖Lp1,1(rn−1 dr).

This ends our proof.
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It is remarkable that the case n = 2 in this proof is the hardest, as happens in [1].
This seems to be in the philosophy of the article [10].
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