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Abstract 
This paper gives an overview of the main experimental methodologies usually applied to obtain diffusion parameters in compacted 

clays and of the analytical solutions that can be used according to the experimental configuration, initial and boundary conditions.
Each experimental method shows different advantages/limitations according to the type of element to be studied: neutral, anionic 

or cationic. Neutral species, such as tritium (HTO), do not interact with the solid and use all the porosity for diffusive transport; 
anionic elements, such as chloride, do not adsorb either but suffer anionic exclusion. Diffusion of cationic elements is retarded by 
sorption. 

In order to describe how determine the diffusion parameters (apparent, Da, and effective, De, diffusion coefficients and accessible 
porosity) examples of diffusion experiments of several radionuclides in the Spanish FEBEX bentonite will be used. 

Apparent diffusion coefficients were obtained for HTO, chloride, iodide, sulphate, caesium, uranium, strontium, selenium, rhe-
nium and europium. Effective diffusion coefficients were determined for HTO, chloride, iodide, sulphate, caesium, uranium, stron-
tium, selenium, technetium, sodium and calcium. The accessible porosity was determined for HTO, chloride, iodide and sulphate.

In particular, the diffusion behaviour of HTO and Cl- was studied at different bentonite dry densities. Both apparent and effective 
diffusion coefficient showed an exponential decrease when the dry density increased, more pronounced in the case of Cl-. The acce-
ssible porosity for HTO was found to be identical to the total porosity. For chloride (and other anions) only a very small fraction of 
the total porosity is accessible for diffusion transport at the density used for compacted clay in a repository. 

A summary of all the results obtained with this clay will be given in the paper.

Keywords: FEBEX bentonite, effective and apparent diffusion coefficient; accessible porosity; laboratory methods; radionuclides.

Resumen
Este trabajo describe las principales metodologías empleadas para obtener parámetros de difusión en arcillas compactadas, así 

como las soluciones analíticas que pueden usarse dependiendo de la configuración experimental y de las condiciones iniciales y de 
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tion results in a smaller volume of pore water available 
for anion transport, a phenomenon called anionic exclu-
sion (Muurinen and Lehikoinen, 1995). Thus, an addi-
tional important parameter for describing the transport of 
radionuclides is the accessible porosity, which is often 
difficult to determine, especially at high clay density, for 
anions. The term “accessible porosity” is used to denote 
the proportion of the total volume of a saturated porous 
material that is available for diffusion. 

The aim of this work is to describe different possible 
experimental methods to determine the main parameter 
controlling diffusive transport in bentonite and to discuss 
the main advantage and limitations of each one. A sum-
mary of the experimental diffusion data obtained with the 
Spanish bentonite clay, for many radionuclides, will be 
illustrated.

2. Diffusion theory

Diffusion is the process by which atomic and molecular 
size particles move from regions of high concentration to 
regions of lower concentration. Diffusion describes mass 
transport due to the random motion of molecules and at-
oms, known as Brownian motion. The mass or particle 
flux F [ML-2T-1] per unit cross-sectional area is directly 
proportional to the concentration gradient and, for one-
dimensional system, is expressed as:

    (1)

Equation (1) is known as Fick’s 1st law. The diffusion 
coefficient D [L2T-1] measures the rate at which the mol-
ecules spread and is the proportionality constant between 
concentration gradient and flux. C denotes, under water 

1. Introduction

Chemical transport by diffusion plays an important role 
in many geologic processes and diffusion coefficients 
can be used in practice for the design and evaluation of 
waste containment barriers (Shackelford, 1991). In many 
designs of high-level radioactive waste (HLRW) reposi-
tory, compacted bentonite is considered as an engineered 
barrier. Therefore, the determination and the understand-
ing of the diffusion transport in compacted bentonite is a 
very important issue for the analysis and consideration of 
the many processes that may affect safety of the under-
ground disposal of nuclear waste. For the performance 
assessment calculations of a repository, apparent and ef-
fective diffusion coefficients of relevant radionuclides in 
the bentonite are necessary. 

Bentonite is a swelling clay due to its content of the 
smectite clay mineral montmorillonite. This clay has a 
very low permeability and high sorption capability for 
many solutes. Since, at repository conditions, the hy-
draulic gradient will be very low, and repositories are de-
signed to be hosted by impermeable rock formations, the 
transport of radionuclides through the compacted ben-
tonite is a diffusion-controlled process retarded by sorp-
tion. Diffusive transport of radionuclides in porous media 
is a complex process affected by many parameters, such 
as the properties of the diffusing species, the properties 
of the solid itself (pore structure, degree of compaction, 
adsorption properties, dry density), the geochemistry of 
the system (mainly pore water chemistry) and the tem-
perature (Kozaki et al., 2001).

In compacted clays, electrostatic forces between the 
negatively charged clay surfaces and the anions affect 
transport of anionic species, and generally, this interac-

contorno.
Cada método tiene diferentes ventajas y limitaciones, en función del tipo de elemento estudiado: neutro, aniónico o catiónico. 

Las especies neutras, como el tritio (HTO), no interactúan con el sólido y usan toda la porosidad para el transporte difusivo; los 
elementos aniónicos, como el cloro, tampoco se adsorben, pero sufren exclusión aniónica. La difusión de los elementos catiónicos 
se ve retardada por la existencia de sorción.

Para describir como determinar los parámetros de difusión (coeficientes de difusión aparente, Da, efectivo, De, y porosidad acce-
sible) se utilizan numerosos ejemplos de ensayos de difusión realizados con la bentonita española FEBEX.

Se obtuvieron el coeficiente de difusión aparente del tritio, cloruro, yoduro, sulfato, cesio, uranio, estroncio, selenio, renio y euro-
pio. Se determinó el coeficiente de difusión efectivo del tritio, cloruro, yoduro, sulfato, cesio, uranio, estroncio, selenio, tecnecio, 
sodio y calcio. Asimismo, se obtuvo la porosidad accesible para el tritio, cloruro, yoduro y sulfato.

En particular, el comportamiento frente a la difusión del HTO y Cl-, se estudió en función de la densidad seca de la bentonita. 
Tanto el coeficiente de difusión efectivo como el aparente muestran un descenso exponencial al aumentar la densidad seca, más pro-
nunciado en el caso del Cl-. Se encontró, que la porosidad accesible para el HTO es igual a la porosidad total. En el caso del cloruro 
(y otros aniones) sólo una muy pequeña parte de la porosidad total, a la densidad de compactación utilizada para un almacenamiento, 
es accesible al transporte por difusión.

En este trabajo se presenta un resumen de todos los resultados experimentales obtenidos con la bentonita FEBEX.

Palabras clave: bentonita FEBEX, coeficiente de difusión efectivo y aparente, porosidad accesible, métodos de laboratorio, radio-
nucleidos
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saturation conditions, the solute concentration in the pore 
water [ML-3] that depends on time t and distance x. Con-
servation of mass leads to Fick’s 2nd law:

    (2)

Solute diffusion in porous media, such as compacted 
clay, differs from diffusion process in free water or ideal 
solutions. Diffusion is affected by the length of the diffu-
sion path, tortuosity (τ), the irregular form of the pores, 
constrictivity (δ), and possibly by the pore size. These 
terms are purely geometric, but satisfactory methods for 
determining them independently, do not exist. The defini-
tion of a pore diffusion coefficient partially overcomes 
this problem. The pore diffusion coefficient, Dp, is related 
to the diffusion coefficient in free water, Dw, by: 

     (3)

The simple pore diffusion model is equivalent to a 
model in which a channel through the porous media ex-
ists, the cross-sectional area of pipes per unit area being 
porosity. Actually the situation is more complex in po-
rous systems where dead-end and blind pores or different 
levels of porosity exist.

In porous media, the volume available for diffusion is 
given by the pores that are connected and contribute to 
the transport of the dissolved species, from one side to the 
other of the clay sample. 

The effective diffusion coefficient, De, takes account of 
the smaller cross-sectional area available for diffusion in 
porous media and is defined by:

     (4)

where ε is the porosity or water content in a water satu-
rated medium, which can be experimentally obtained, for 
instance, by means of saturation experiments.

Therefore, under steady state conditions the mass flux 
given by equation (1) in porous media is defined by:

      (5)

where F is expressed in units of mass or moles per total 
cross-section area of porous medium per time, De substi-
tutes D in the expression of second Fick’s law, equation 
(2):

    (6)

where ε is assumed not to change with time and the me-
dium is assumed to be homogeneous (constant De).

In the case of sorbing elements, the attainment of the 
steady state can be very time consuming. However, an 
apparent diffusion coefficient, Da, can be calculated from 
the transient diffusion through the sample. The mass of 
solute tracer, M, per a representative volume of saturated 
porous medium, (∆x)3, is given by the sum of the solute 
concentration in the pore water, C, and the sorbed con-
centration per mass of solid phase, S:

   (7)

where ρd is the bulk density of the dry material. When 
sorption is present, any change in solution concentration 
is accompanied by a change in the sorbed concentration. 
Therefore, taking into account the equation (7), the sec-
ond Fick´s law, equation (6), is written now as:

    (8)

where both ε and ρd are assumed not to change with 
time.

If instantaneous lineal sorption is considered, the sorp-
tion isotherm can be described by the simple relation 

, where S is the tracer concentration on the solid 
phase; C, the tracer concentration in the liquid phase; and 
Kd, the distribution coefficient. Equation (8) can be re-
written as:

   (9)

and the second Fick´s law in the case of sorbing species 
can be written similarly as equation (2) and (6) for the 
one-dimensional case as: 

     (10)

where the relation between De and Da is:

    (11)

The term ε + ρd 
. Kd is a dimensionless parameter also 

known as the capacity factor, α, of the porous medium or 
rock capacity factor. For conservative solutes, Kd = 0, so 
that the capacity factor is equal to the porosity. 

The retardation factor, Rf, is defined by:

     (12)

Equation (11) can be written as:

    (13)
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Thus, Da takes explicitly into account the retardation of 
the solute due to the interactions with the porous mate-
rial.

So far, it is assumed that porosity ε is totally available 
for diffusion and that ε is a material property independ-
ent of the species of the tracer being considered. Nor-
mally, this porosity is taken equal to the porosity of the 
media determined from the water content. However, the 
effective porosity available for diffusion transport can be 
smaller than the value determined from the water content, 
since some pores may not be accessible or not contribute 
to the solute transport such as dead end or blind pores. 
Furthermore, processes such as anion exclusion from the 
vicinity of the negatively charged clay surface may also 
reduce the effective porosity (Lever et al., 1985; Rowe et 
al., 1988).

The total porosity of the sample, ε, is the ratio of the 
pore volume to the total volume of a representative sam-
ple of the medium. For a medium with a dry density, ρd, 
and solid density, ρs, the total porosity can be obtained 
by:

     (14)

The accessible porosity represents the fraction of the 
total porosity available for solute transport. Therefore, for 
each ion an “accessible porosity” should be considered.

For conservative elements, the capacity factor is equal 
to the porosity, and equation (11) shows the relationship 
between De, Da, and the porosity. If two parameters are 
measured, the third one can be calculated, as has been 
done in this article for Cl-, I- and SO4

= (De and the ac-
cessible porosity were measured and Da was calculated). 
When all three parameters can be measured and they sat-
isfy equation (11), the consistency of the values obtained 
is proved, as has been done in this article for HTO.

3. Materials

FEBEX bentonite comes from the Cortijo de Archidona 
(Almería, Spain). This clay has a smectite content greater 
than 90% (93±2%), with quartz (2± 1%), plagioclase (3± 
1%), cristobalite (2±1%), potassic feldspar, calcite, and 
trydimite as accessory minerals. The specific weight of 
the FEBEX bentonite is 2.7 g/cm3. An exhaustive de-
scription of this clay can be found elsewhere (Huertas et 
al, 2000; Villar et al., this volume). Bentonite cylindrical 
plugs were compacted at different dry densities (from 1.0 
to 1.7 g/cm3) with special emphasis on the density of 1.65 
g/cm3, because this is the density considered in the Span-
ish reference concept for radioactive waste repositories 

in granite and clay. The plugs, with a diameter of 3.8 or 
5 cm, were located in a stainless steel high-pressure cell 
and sandwiched between sintered steel filters.

In all the experiments, the bentonite samples were satu-
rated with water. Complete water saturation of the sam-
ples was verified by a final, stable weight at the end of the 
experiment. 

Tritiated water (HTO) was used as conservative trac-
er because it is expected to be representative of all the 
chemical elements that do not show retention in the solid 
phase. Cl-, SO4

2- and I- were used as anionic species and a 
large number of radionuclides from low to highly sorbing 
were used.

The tracers were mainly radioactive, and were meas-
ured by liquid scintillation counting for beta or alfa-beta 
emitters (HTO, 36Cl-, 35SO4

=, 233U(VI), 99Tc(VII) and 
45Ca(II)) using a TR-2700 Packard apparatus, and for 
gamma emitters (137Cs(I), 152Eu(III), 22Na(I), 75Se(IV), 
85Sr(II)) using a Packard autogamma Cobra II apparatus. 
In the case of Re, and I, stable isotopes were used and 
measured by means ICP-MS or using a selective elec-
trode, respectively. When it was necessary to extract the 
tracer from the clay (e.g. in the case of 36Cl-), the plug 
was sliced and the solid of each slice was re-suspended 
in water and the tracer activity measured after centrifuga-
tion of the supernatant. 

4. Experimental methods and analytical approaches. 

4.1. Diffusion coefficients

In general, the methods used to measure the diffu-
sion coefficients (both effective and apparent) of chemi-
cal species can be classified into two categories, steady 
state and transient. Transient methods are experimentally 
easier to carry out whereas steady-state usually require a 
much larger experimental time (Flury and Gimmi, 2002; 
Shackelford, 1991). The description of each experimental 
method is accompanied by an example of experimental 
results obtained with the FEBEX clay.

4.1.1. Through-Diffusion with constant concentra-
tion in the reservoirs

A classical method for measuring diffusion coefficient 
is the Through-Diffusion technique, TD. In this method 
the sample is located in between two reservoirs, “in” 
and “out” reservoirs, where the solution is continuously 
stirred. After water saturation of the bentonite sample, the 
in-reservoir is spiked with the tracer. The concentrations 
in both reservoirs are kept constant such that steady-state 
diffusion across the sample is achieved. When steady 
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state is reached, the diffusive flux across the sample is 
constant. Different approximations can be used to main-
tain the constant concentration gradient: spiking addi-
tional tracer in the in-reservoir, if it is necessary, or using 
large volumes to minimise the concentration decrease; 
carrying out frequent sampling in the out-reservoir to 
maintain the concentration near to zero or to use small 
reservoir and changing them periodically. In our labora-
tory we usually use a configuration with a large (1 L) in-
reservoir and a very small (20 mL) out-reservoir, which 
is changed periodically.

The initial and boundary conditions for a bentonite 
plug of thickness d [L], which is initially tracer free, and 
where the in-reservoir has a constant concentration C0 
and the out is kept “quasi” zero, are:

C(x > 0, t = 0) = 0
C(x = 0, t > 0) = C0
C(x = d, t > 0) = 0
The concentration profile, at time t, in the plug is given 

by (Crank, 1975):

 (15)

Figure 1 shows the concentration profiles of a diffusing 
tracer with Da = 1·10-12 m2/s through a 2 cm-thick sam-
ple and unit cross-sectional area, at different times. After 
a certain time (5 years in the figure), when steady-state 
conditions are reached, the concentration profile becomes 
a straight line.

The expression of the cumulative mass of tracer (M), 
that has passed to out-reservoir, through a cross-sectional 
area A, as a function of the time is (Crank, 1975; Bourke 
et al., 1993):

  (16)

For long time periods, the series expansion in equation 
(16) vanishes because the exponential term tends to zero 
and a linear relationship is obtained between M and t. The 
equation, expressed in terms of Da and De (according with 
his relations) becomes:

 (17)

Figure 2a shows the normalized cumulative mass for 
equation (16), clearly showing a transient region, and the 
long-term approximation (dashed line) steady-state re-
gime, from equation (17). The figure for equations (16) 
and (17) correspond to Da = 1·10-12 m2/s through a sample 
of 1 cm of thickness and unit cross-sectional area.

The effective diffusion coefficient can be calculated 
from the slope of the straight line fitting the long-term 
behaviour of M. The intercept of equation (17) with the 
time axis is commonly denoted as time-lag (te):

     (18)

Figure 2b shows the cumulative mass vs. time of ex-
perimental points obtained in the FEBEX bentonite using 

Fig. 1.- Diffusion profile into the clay plug. 
When the steady-state condition is reached 
the concentration profile becomes a straight 
line. 

Fig. 1.- Perfil de difusión dentro de la pastilla de 
arcilla. El perfil se hace una línea recta cuando 
se alcanza el régimen estacionario. 

JIG32-1.indb   41 12/01/2006   19:59:11



42 García-Gutiérrez et al. / Journal of Iberian Geology 32 (1) 2006: 37-53

36Cl- as tracer. From the steady-state region we obtained 
the effective diffusion coefficient. The time-lag value is 
also shown.

The capacity factor (that for conservative elements is 
equal to accessible porosity), can be calculated from the 
time-lag value.

The advantage of the steady-state method is that De of 
reactive tracers can be measured without knowing the Rf 
value. But the time necessary to reach the steady-state 
regime can be very long if the porous medium retards the 
tracer. The time required to establish steady-state condi-
tions increases with sample thickness.

Keeping the concentration gradient constant is difficult, 
but small variations in the reservoirs concentrations can 

Fig. 2.- a) Normalized cumulative mass ob-
tained in the outlet reservoir. Continuous 
line: general case, equation (17). Dotted line: 
approximation for long times, equation (18). 
b) Experimental results obtained using 36Cl-.

Fig. 2.- a) Masa acumulada normalizada 
obtenida en el depósito de salida. La línea 
continua representa el caso general, ecuación 
(17); la línea de puntos la aproximación para 
tiempos largos, ecuación (18). b) resultados 
experimentales obtenidos utilizando 36Cl-. 

be permitted and the application of the analytical solu-
tion is still valid. From an experimental point of view, 
this condition is maintained if in the in-reservoir the con-
centration does not vary more than 5% from its nominal 
value during the experiment, and in the out-reservoir the 
concentration should not exceed 10% of the concentra-
tion of the in-reservoir.

4.1.2. Through-Diffusion with variable concentrations 
in the reservoirs

If the restrictions on the concentrations in both reservoirs 
could be eliminated, the diffusion experiments would be 
simplified. A different class of through-diffusion experi-
ments can be done, in which, after an initial spike of trac-
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er in one reservoir, concentrations are allowed to evolve 
in both reservoirs and are continuously monitored.

According to an evaluation of Fick’s second law, 
Wolfrum et al., (1988), proposed to estimate the effective 
diffusion coefficient, when the temporal evolution of the 
concentrations in both reservoir is allowed, from the fol-
lowing equation:

    (19)

where ∆C0 is the initial concentration difference be-
tween the two reservoirs; ∆C is the concentration differ-
ence at time t; β is A/d (1/Va + 1/Vi), where Va and Vi are 
the volumes of the reservoirs; A is the cross-sectional area 
of the clay plug, and d is the thickness of the clay plug. 
Wolfrum’s method is based on a non steady-state condi-
tion and the approximation is valid only for conservative 
tracers (Cormenzana et al., 2003).

The evaluation of the diffusion coefficients includes 
sampling of both sides of the clay plug. Effective diffu-
sion coefficient can be obtained by a linear regression of 
the experimental data representing ln[∆C0/∆C] vs. β·t. 

Moridis (1999), developed semi-analytical solutions 
under the condition of diffusion cell experiments, which 
involve finite liquid volumes and temporally variable 
concentrations in the inlet and outlet reservoirs.

Figure 3a shows typical concentration evolution of both 
reservoirs for three different diffusion coefficients (D, 2D 
and 5D). The upper curves correspond to the concentra-
tion evolution in the in-reservoir, and the lower curves 
correspond to concentration evolution in the out-reser-
voir. Figure 3b shows experimental results and the fits 
obtained with HTO in FEBEX bentonite compacted at 
two different dry densities.

4.1.3. In-Diffusion method

In-Diffusion experiments, ID, are the typical transient 
essays. In these experiments the cell with the bentonite 
plugs is immersed into a large volume of water. After wa-
ter saturation of the samples, which is verified by a final 
weight at the end of the experiment the tracer is added to 
the reservoir, and it can enter through one or both sides 
of the clay plug. After a given time, the diffusion cell is 
disassembled, the bentonite plug cut into slices, and the 
activity in each slice measured to obtain a concentration 
profile in the bentonite plug. Experiments are usually de-
signed so that the tracer cannot reach the closed extreme 
of the sample (or the middle point if both extremes are 
open) and the experiment could be treated as a one-
dimensional problem of diffusion into a semi-infinite 
medium.

If the concentration in the reservoir remains practically 
constant during the experiment and the bentonite plug is 
long enough to be considerer a semi-infinite medium, the 
following initial and boundary condition can be consid-
ered:

C(x > 0, t = 0) = 0
C(x = 0, t > 0) = C0
C(x = ∞, t > 0) = 0
The concentration profile within the plug can be fit by 

the following analytical solution (Crank, 1975):

    (20)

where C is the tracer concentration in the bentonite plug 
pore water, C0 the constant concentration in the reservoir, 
Da the apparent diffusion coefficient, x the distance, and 
t the diffusion time.

The mass of tracer per unit area which has diffused into 
the plug after a certain time is (Grathwohl, 1998):

    (21)

Figure 4a shows the theoretical concentration profiles 
in the plug for Da = 1·10-12 m2/s at different times. Figure 
4b shows experimental results from FEBEX clay samples 
at different densities and their simulations. Comparison 
of the experimental profile and the theoretical profiles, 
for different Da values, allows identifying the value of Da, 
for which the fitting is the best.

Both Through-Diffusion and In-Diffusion techniques 
are not appropriate for strongly sorbing tracers. In 
Through-Diffusion experiments, the tracer is not able to 
pass from a reservoir to another, (at least in reasonable 
time). Furthermore, in both methods, the tracer can be 
sorbed on the experimental cells and on the filters before 
reaching the clay. 

Thus, when the tracer is strongly sorbing, the best option 
is to introduce it directly in the compacted clay, avoid-
ing the contact with anything but the bentonite. There are 
several internal-source diffusion configurations for which 
analytical solutions to interpret diffusion data exist (see 
sections 4.1.4, 4.1.5 and 4.1.6).

4.1.4. Instantaneous planar source

If a filter paper tagged with a highly soluble tracer is lo-
cated between two saturated bentonite clay plugs, we can 
consider a thin source of tracer or a instantaneous planar 
diffusion source. In this configuration, the symmetrical 
diffusion profiles are determined at the end of the experi-
ment after slicing the bentonite sample. This is the easiest 
method, above all when a radioactive tracer is used. 
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Fig. 3.- a) Concentration evolution for in- (up-
per curves) and out- (lower curves) reservoirs, 
obtained for three different diffusion coeffi-
cients. b) Experimental results and theoretical 
lines obtained for HTO at two different dry 
densities.

Fig. 3.- a) Evolución de las concentraciones en 
el depósito de entrada (curvas de la parte su-
perior) y en el depósito de salida (curvas de la 
parte inferior), para tres coeficientes de difu-
sión diferentes. b) Resultados experimentales 
y teóricos obtenidos utilizando HTO para dos 
densidades de compactación. 

In this case, a mass of tracer M is injected uniformly 
across the cross-section of area A at point x = 0 at time t = 
0. The initial width of the tracer is infinitesimally small, 
therefore we use the Dirac delta function, δ(x).

The initial and boundary conditions for this case are:
C(x = 0, t = 0) = M/(δ(x)·A
C(-∞ < x < ∞, t = 0) = 0
The apparent diffusion coefficient for this arrangement 

is evaluated from the following analytical solution for 
unit cross-sectional area (Crank, 1975):

   (22)

By taking the logarithm of both sides of the previous 
equation, a linear expression is obtained, the slope of 
which gives the apparent diffusion coefficient. By the fit 
of the experimental concentration profile of C/M versus x 
is also possible to obtain the Da. If the filter paper is situ-
ated in an end of the clay plug, the factor 2 in equation 
(22) disappears. For no unit cross-sectional area, equa-
tion (22) needs to be divided by it. 

Figure 5a shows theoretical concentration profiles for 
Da = 1·10-12 m2/s at different times for an instantaneous 
planar source. Figure 5b shows the experimental results 
obtained in FEBEX bentonite using europium as tracer, 
after two years of diffusion.
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Fig. 4.- a) Concentration profiles into the clay 
plug at different times for a constant concen-
tration source. b) Experimental results and 
theoretical lines obtained with HTO at three 
different dry densities.

Fig. 4.- a) Perfiles de concentración en la pastilla 
de arcilla en función del tiempo, para un depó-
sito de concentración constante. b) Resultados 
experimentales y teóricos  obtenidos utilizan-
do HTO para tres densidades de compactación 
distintas.

4.1.5. Half-plugs method

Two half-plugs of clay, one tagged with tracer, are 
placed together to allow diffusion of tracer to occur from 
the tagged plug to the other one. The mass of solute in 
the tagged plug decreases as the solute diffuses into the 
untagged plug. As long as the concentration profile does 
not reach the ends of the plugs, the porous medium can 
be considered to be infinite and the following analytical 
solution is valid.

The initial and boundary conditions for this case are:
C(x ≤ 0, t = 0) = C0; C( x > 0, t = 0) = 0
C(x = - ∞, t > 0) = C0
C(x = ∞, t > 0) = 0

and the analytical solution is (Crank, 1975):

     (23)

After an elapsed time, the clay plugs are sliced and the 
experimental concentration profile can be fitted to the 
theoretical profiles to obtain the diffusion coefficient. 
Measuring the total amount of tracer transferred from 
one plug to the other plug at a specified time the diffusion 
coefficient can be determined also. Figure 6a shows the 
theoretical concentration profiles for Da = 1·10-12 m2/s at 
different times. Figure 6b shows experimental results ob-
tained in the FEBEX bentonite at 1.65 g/cm3 dry density 
with HTO as tracer.
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4.1.6. Thick source method

Another possible configuration is to introduce a ben-
tonite plug tagged with the tracer between two untagged 
plugs (thick source). The mass of solute in the tagged plug 
decreases as the solute diffuses into the untagged plugs. 
As long as the concentration profile does not reach the 
end of the plugs, the porous medium can be considered to 
be infinite and the following analytical solution is valid. 

The initial and boundary conditions for this new case are:
C(x < - h, t = 0) = 0; C( x > h, t = 0) = 0
C(-h ≤ x ≤ h, t = 0) = C0
C(x = ± ∞, t > 0) = 0

and the analytical solution is (Crank, 1975):

  (24)

Figure 7a shows theoretical concentration evolution for 
Da = 1·10-12 m2/s at different times for a thick plug of 1 cm 
(h = 0.5 cm). The peak position or maximum concentra-
tion decrease with time and can be calculated when x = 
0 in equation (24). Figure 7b shows HTO experimental 
results using a thick plug of 1 cm of FEBEX bentonite 
compacted at 1.7 g/cm3.

The thick source can result from the relatively short-
time disintegration of a waste container in long-term 

Fig. 5.- a) Theoretical concentration profile from 
a instantaneous planar source in a saturated 
one-dimensional porous medium at different 
times. b) Experimental results obtained us-
ing europium, after two years of experimental 
time.

Fig. 5.-a) Perfiles de concentración teóricos 
obtenidos para el caso de una fuente plana 
instantánea, situada en un medio poroso uni-
dimensional saturado, en función del tiempo. 
b) Resultados experimentales obtenidos con 
europio, después de dos años de experimen-
tación.
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storage, therefore it is a problem of practical importance, 
when we have a long-term leaching of a low solubility 
material.

Internal source diffusion experiments were designed 
for strongly sorbing elements, but it is worth mentioning 
that this configuration can be also successfully used for 
less sorbing or even conservative elements.

4.2. Accessible porosity

Accessible porosity can be measured by means of dif-
ferent methods. Saturation experiments allows determin-
ing directly the accessible porosity, but it is possible to 

estimate it, using indirect methods like the time-lag meth-
od, or comparing the values of the apparent and effective 
diffusion coefficients.

The methods explained in this section provide the ac-
cessible porosity for anionic and conservative species and 
the capacity factor for non-conservative species.

Saturation experiments are performed introducing the 
diffusion cell into a bath with tracer; in these experiments, 
a constant lineal concentration profile in the clay plug has 
to be obtained when tracer concentration equilibrium is 
reached. In order to ensure that the concentration profile 
into the plug is effectively constant, the concentration in 
the saturation solution is periodically monitored until a 

Fig. 6.- a) Concentration profiles in the spiked 
and unspiked half plugs for an infinite system 
at different times. b) Experimental results ob-
tained with HTO at 1.65 g/cm3 dry density.

Fig. 6.-a) Perfiles de concentración en función 
del tiempo, en la pastilla dopada y sin dopar, 
considerando un medio infinito. b) Resultados 
experimentales obtenidos utilizando HTO a 
1,65 g/cm3 de densidad.
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constant concentration is measured. After the experiment, 
the plug is sliced and each slice is weighed to determine 
its volume. Then, the clay is transferred to a centrifuge 
tube and a volume of water added. The tubes are kept in 
continuous stirring during three days and, after this peri-
od, the samples are centrifuged and the activity in the su-
pernatant is measured. Accessible porosity in each slice 
can be calculated using the following equation:

     (25)

where A is the activity in the bentonite slice, V the vol-
ume of the slice, CR the concentration in the reservoir and 
φ the accessible porosity (to distinguish of total porosity, ε). 

Each slice provides a value of the accessible porosity, 
which allows calculating a mean value and its error from 
a single experiment. Saturation techniques can provide 
very good results in the case of neutral species like HTO 
and anionic species (not with high density samples), but 
they are extremely time consuming for strongly sorbing 
cationic species or anionic species when using high dry-
density samples.

Through-Diffusion experiments at steady-state condi-
tions, using the time-lag method, have been shown to be 
very useful for the determination of effective diffusion 
coefficient, but they are less precise in the determination 
of the accessible porosity. Accessible porosity can be 

Fig. 7.- Concentration vs. distance curves for 
a extended source of limited thickness as 
a function of time. b) Experimental results 
obtained using HTO at dry density of 1.7 
g/cm3.

Fig. 7.- Curvas de concentración vs. distancia 
para una fuente de un cierto espesor, en fun-
ción del tiempo. b) Resultados experimen-
tales obtenidos utilizando HTO a una densi-
dad de compactación de 1,7 g/cm3.
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obtained using equation (18), for conservative elements, 
because the rock capacity factor is equal to the accessible 
porosity. But the error in determining rock capacity factor 
for samples with low sorption capacities or porosities (α 
close to zero) may be significant, resulting again in large 
errors in Da, (Grathwohl, 1998).

In Through-Diffusion experiment in which the concen-
trations in the reservoirs change with time, when the trac-
er concentration in the out-reservoir is significant, it can 
be ensured that the concentration profile within the clay 
pore water is linear. In this case, pore water concentration 
at any point in the sample can be calculated interpolating 
between concentrations at the extremes (in- and out-res-
ervoirs concentrations). As a consequence, for each slice 
the average tracer concentration in the pore water can be 
predicted, and using equation (25) the accessible porosity 
can be calculated.

5. Summary of experimental results and discussion

5.1. Conservative tracers

As previously mentioned, the main conservative tracer 
studied was HTO, representative of neutral species. A 
summary of the results obtained (De, Da and accessible 
porosity) with HTO is shown in Table 1. Figure 8 and 
figure 9 shows the comparison of the De (Fig. 8) and ac-

cessible porosity (Fig. 9) obtained with HTO and 36Cl- at 
different bentonite dry densities. 

The main methods used with HTO were through-dif-
fusion with variable concentration in the reservoirs and 
in-diffusion with constant concentration in the reservoir. 
Saturation experiments, to determine the accessible po-
rosity, were performed at several clay dry densities, and 
the results can be compared with the theoretical total po-
rosity value present in the last column of Table 1. The 
values represent an average value obtained from several 
experiments at the same conditions. The experimental re-
sults clearly show that for HTO the accessible porosity is 
always approximately equal to total porosity (Fig. 9).

On the other hand, it is of special interest the study of 
anions because performance assessment calculations of 
spent fuel repositories have shown that doses are mainly 
controlled by non-sorbing anionic species (129I- and 36Cl-). 
The behaviour of anionic species (Cl-, I- and SO4

=) was 
studied in FEBEX bentonite.

Table 2 shows the experimental results obtained with 
different anionic species. As in Table 1, the results repre-
sent the average value obtained in different experiments. 
For low-density samples through-diffusion experiments 
with variable concentration in the reservoirs were per-
formed to obtain the effective diffusion coefficient, and 
saturation experiments were done to obtain the accessi-
ble porosity. For density greater than 1.4 g/cm3 through-

Fig. 8.- Effective diffusion coefficients, and its error, obtained with different methods for HTO and Cl- as a func-
tion of clay density. The exponential fits are included as a continuous line. 

Fig. 8.- Coeficientes de difusión efectivo, y su barra de error, de HTO y Cl-, obtenido mediante diferentes métodos 
en función de la densidad seca de la arcilla. Las líneas continuas representan el ajuste exponencial obtenido. 
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diffusion experiments with constant concentration in the 
reservoirs were performed for De determination. The ac-
cessible porosity was obtained by time-lag methods or 
considering a linear profile into the clay plugs in TD ex-
periments at the end of the experiment, or both methods. 
The apparent diffusion coefficient presented in the last 
column was calculated taking into account the ratio be-
tween the effective diffusion coefficient and the accessi-
ble porosity, equation (11) for conservative tracers. For all 

the considered elements, accessible porosity in the case of 
anionic species is significantly smaller than for HTO. Fur-
thermore, figure 9 shows that the Cl- accessible porosity 
decreases significantly with increasing clay dry density. 

As mentioned before, the measured accessible porosity 
for HTO is roughly equal the total porosity of the FEBEX 
bentonite at different dry densities. Since total porosity 
is easy to calculate with equation (14), when one of the 
diffusion coefficients (effective or apparent) is measured 
the other coefficient can be calculated using equation 
(11) and giving to φ the value of the total porosity (ε). 
Therefore, a simple diffusion model in pore water fully 
explains experimental results for HTO.

Chloride ions have a very different behaviour com-
pared with HTO in FEBEX bentonite (García-Gutiérrez 
et al., 2004). In fact, even at low densities only a fraction 
of total porosity is accessible for chloride. If dry density 
increases, the accessible porosity for chloride decreases 
rapidly, and at the density of 1.65 g/cm3 its value is be-
tween 2% and 3%, while the total porosity is close to 
40%. Similar values are obtained for the other anions 
studied (Table 2). These results show that a significant 
anionic exclusion occurs. 

It is usually accepted that anionic exclusion decreases 
when the pore water ionic strength increases. The elec-
trostatic effect may be higher at lower clay density be-

Fig. 9.- Accessible porosity obtained with different methods for HTO and Cl- as a function of clay density. The 
continuous lines correspond to the exponential fits of the experimental values and the dotted line corresponds to 
the total porosity of the clay, equation (14). 

Fig. 9.- Porosidad accesible de HTO y Cl- obtenida mediante diferentes métodos y en función de la densidad seca 
de la arcilla. Las líneas continuas representan el ajuste exponencial de los valores experimentales, y la línea de 
puntos la porosidad total de acuerdo con la ecuación (14). 

Dry density 
(g/cm3) De(m

2/s) Da (m
2/s) φ (%) ε(%)

1.0 64.9±0.5 63.0
1.1 1.96±0.04E-10 3.3±0.1E-10 59.3
1.2 57.4±0.8 55.7
1.3 1.46±0.10E-10 3.1±0.1E-10 51.9
1.4 51.4±0.5 48.1
1.5 8.86±0.06E-11 2.6±0.1E-10 44.4
1.6 43.0±0.3 40.7
1.65 5.80±0.20E-11 1.6±0.5E-10 38.9
1.7 5.16±0.50E-11 2.6±0.1E-10 37.0

Table 1.- Summary of the experimental results for HTO at different 
bentonite clay density. The last column shows the theoretical poros-
ity at the given density.

Tabla 1.- Resumen de los resultados experimentales obtenidos con el 
HTO en función de la densidad seca de la bentonita. La última co-
lumna presenta la porosidad total para cada densidad considerada.
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cause the overlapping of the double layers of the pore 
surfaces does not occur, but at higher clay density the 
ionic strength effect is expected to be less significant. 
This point is under study.

As can be seen in the Table 1 and Table 2, and figure 
8 and figure 9, the effective diffusion coefficients (and 
similarly the apparent diffusion coefficient) and the ac-
cessible porosity show an exponential decrease when the 
clay density increases. The decrease is significantly more 
pronounced in the case of Cl-. Therefore for each param-
eter, the experimental values can be adjusted using expo-
nential functions of the form

 
where A and B are constants and ρd is the bentonite dry 
density. Continuous lines in figure 8 and figure 9 corre-
spond to the exponential fits of the experimental values 
and the dotted line in figure 9 corresponds to the total 
porosity of the clay according equation (14). HTO and 
Cl- accessible porosity, apparent and effective diffusion 
coefficients in FEBEX bentonite at any dry density can 
be therefore easily estimated by interpolation.

Table 3 present the fit values of A and B obtained with 
HTO and Cl- according the above exponential function. 

5.2. Sorbing tracers

Through-Diffusion experiment with variable concen-
trations in the reservoirs and internal source methods (in-
stantaneous planar source, thick source and half-plugs) 
were carried out with 85Sr, 90Sr, 75Se, 99Tc, and 233U. In-
Diffusion tests were performed with 137Cs, 99Tc, Re and 
75Se. Clay plugs with different thickness and compacted 
at different densities were used. Technetium and Rhe-
nium are considered conservative tracers when they 
occur as TcO4

- and ReO4
-, respectively, as is normal in 

oxidizing environments. The diffusion experiments were 
carried in oxic condition and we expected a conservative 

Mg bentonite, as the FEBEX bentonite, were found. The 
Tc diffusion values for Na-bentonite are one or two order 
of magnitude higher (Yu and Neretnieks, 1997). 

Instantaneous planar source tests were used to deter-
mine the diffusion coefficients of europium which is 
strongly-sorbing tracer.

Table 4 summarises the apparent/effective diffusion co-
efficients results obtained with compacted FEBEX ben-
tonite at 1.65 g/cm3, using nine different elements and 
different techniques. The intervals in the given values ac-
count for the variations observed in the different experi-
mental configurations. Good agreement was generally 
obtained. The attention was focused to this dry density 
because it is the density considered in the Spanish con-
cept of disposal, for the compacted bentonite. 

Effective diffusion coefficient values measured with Cs 
are in the same order of magnitude of the values meas-
ured with HTO. Therefore, there is no evidence of “sur-
face diffusion” for cesium in FEBEX bentonite.

The comparison of results obtained, following differ-
ent methodologies, is very important, because the prob-
lems related to each technique can be highlighted and the 
theoretical consistency among the determined parameters 
verified.

Finally, it is worth remarking that an effort was carried 
out to develop new methodologies to obtain simultane-
ously the apparent and effective diffusion coefficient in 
the same sample. This objective has been successfully 
reached for cesium (Cormenzana et al., 2003). Particular-
ly, in the study performed with cesium, the method allows 
determining simultaneously effective and apparent diffu-

Element
Dry density

(g/cm3)
De(m

2/s) φ (%)
Da (m

2/s)
(calculated)

36Cl- 1.0 3.2±0.5E-11 16.6±1.8 1.9E-10
36Cl- 1.2 1.8±0.8E-11 12.8±3.2 1.4E-10
36Cl- 1.4 2.3±0.6E-12 4.6±3.1 5.0E-11
36Cl- 1.6 8.7±0.6E-13 2.4±1.1 3.6E-11
36Cl- 1.65 9.3±1.8E-13 2.5±0.3 3.7E-11

I- 1.65 8.6±0.4E-13 2.5±0.3 3.4E-11
35SO4

= 1.65 1.1±0.7E-13 2.7±1.9 4.1E-12

Element Diff. Coef. A B
HTO De (2.00±0.40)·E-9 2.09±0.18
HTO Da (2.25±2.19)·E-9 1.65±0.75
36Cl- De (2.56±2.40)·E-9 4.35±0.89
36Cl- Da (2.80±1.36)·E-9 2.65±0.43

Table 2.- Summary of the experimental results for Cl-, at different clay 
density, I- and SO4

= at 1.65 g/cm3.
Tabla 2.- Resumen de los resultados experimentales obtenidos con el 

Cl-, en función de la densidad seca de la bentonita, y para I- y SO4
= 

a 1,65 g/cm3.

Table 3.- A and B values needed to adjust the HTO and Cl- effective 
and apparent diffusion coefficients to an exponential function as a 
function of bentonite dry density.

Tabla 3.- Valores de A y B necesarios para ajustar los coeficientes de 
difusión efectivo y aparente del HTO y Cl- a una función exponen-
cial que es función de la densidad seca de la bentonita.

behaviour, but the low diffusion coefficient obtained may 
be an indication that a reduction processes, for instance 
of Tc(VII) to Tc (IV) a less mobile form with sorption 
capacity, occurred during the experimental time. Also a 
very high anionic exclusion effect together with his large 
molecular sizes could be responsible of these very low 
diffusion coefficients. The iron contained in the cell can 
induce the reduction. In the literature not values for Ca-
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sion coefficients in compacted bentonite without reaching 
steady-state conditions. Basically, this method consists 
of an “In-Diffusion” experiment in which the concentra-
tion profile in the bentonite sample is used to estimate 
Da, and the temporal evolution of the solute concentration 
in the reservoir is used to estimate De. This method has 
several advantages over the typical “Through-Diffusion” 
experiments, in particular: a) experiment duration is sig-
nificantly shorter, b) Da values are measured with greater 
precision and c) it is not necessary to maintain a constant 
solute concentration in the reservoir.

One of the aims of future work is to obtain simulta-
neously apparent and diffusion coefficients in the same 
sample for other critical elements. 

6. Conclusions

Several methods for the determination of diffusion 
coefficients and accessible porosity for which there are 
analytical solutions can be easily used in laboratory with 
satisfactory results. Taking into account the properties of 
the tracer, the best method can be selected considering 
its advantages/disadvantages. The complementary use of 
different methods to obtain the same parameter is impor-
tant for the validation of the results and to minimise the 
uncertainties on parameter determination.

For what concerns the tests performed on the FEBEX 
clay, diffusion parameters have been obtained for con-
servative (HTO, chloride, iodide, sulphate, technetium 
and rhenium) and non-conservative (cesium, uranium, 
strontium, selenium, europium, sodium and calcium) ra-
dionuclides.

In particular, for HTO the values of Da, De and φ have 
been measured independently, and it has been found that 

the relation between effective and apparent diffusion co-
efficients for conservative tracers, i. e., 

is satisfied.
Effective/apparent diffusion coefficient and accessible 

porosity show, for HTO and Cl-, an exponential decrease 
when the clay dry density increase. Accessible porosities 
for HTO (for all clay densities) and Cl- (for clay densities 
up to 1.2 g/cm3) were directly obtained by means of satu-
ration experiments. Alternative estimations of accessible 
porosity were done in through-diffusion experiments with 
constant concentration and concentration profile experi-
ments, which provided redundant, although less precise, 
methods for its estimation. Similar values of accessible 
porosities were obtained with the three methods.

The accessible porosity for HTO agrees very well with 
total porosity, which implies that all the pores in com-
pacted bentonite are available for diffusion of neutral 
species. Different results were obtained in the case of Cl-, 
for which the accessible porosity is significantly smaller 
than total porosity, even at the lower densities. Results 
for chloride, and other anions, clearly show that FEBEX 
bentonite displays a significant anionic exclusion. The ef-
fect of pore water composition on anionic exclusion will 
be studied in the future. The consistency of the transport 
parameters measured using different methods confirms 
that these methods are appropriate and the values ob-
tained are correct.

Through-Diffusion tests have proven to be an excellent 
method for the determination of diffusion coefficients 
under simple experimental conditions, fundamentally 
for slightly sorbing species. In contrast, In-Diffusion 
tests seem more suitable for sorbing species, and internal 
source methods for strongly sorbing tracers.

Experimental methods that require that steady-state 
conditions be reached can be very time consuming with 
cationic elements, and are impossible to use with strongly 
sorbing elements. 
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Element Da (m
2/s) De (m

2/s)
Cesium (I) (0.9 – 3.3)·10-13 (0.1 – 3.0)·10-11

Uranium (VI) (0.1 – 4.0)·10-14 (0.6 – 2.2)·10-12

Strontium (II) (1.0 – 2.0)·10-11 (1.0 – 4.0)·10-10

Selenium (IV) (1.0 – 3.0)·10-13 (6.0 – 8.0)·10-12

Technetium (VII) (2.0 – 4.0)·10-13

Rhenium (VII) (2.0 – 6.0)·10-14

Europium (III) (6.0 – 9.0)·10-14

Sodium (I) (3.0 – 6.0)·10-10

Calcium (II) (4.0 – 7.0)·10-10

Table 4.- Summary of the experimental results using different radio-
nuclides. Clay dry density oft 1.65 g/cm3.

Tabla 4.- Resumen de los resultados experimentales obtenidos con 
diferentes radionucleidos. A 1,65 g/cm3 de densidad seca de la ben-
tonita.
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