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Abstract

We present two contributions in this work: i) a bivariate generalized Gaussian
distribution (BGGD) model for the joint distribution of luminance and dispar-
ity subband coefficients of natural stereoscopic scenes, and ii) a no-reference
(NR) stereo image quality assessment algorithm based on the BGGD model.
We first empirically show that a BGGD accurately models the joint distribu-
tion of luminance and disparity subband coefficients. We then show that the
model parameters form good discriminatory features for NR quality assessment.
Additionally, we rely on the previously established result that luminance and
disparity subband coefficients of natural stereo scenes are correlated, and show
that correlation also forms a good feature for NR quality assessment. These
features are computed for both the left and right luminance-disparity pairs in
the stereo image and consolidated into one feature vector per stereo pair. This
feature set and the stereo pair’s difference mean opinion score (DMOS) (la-
bels) are used for supervised learning with a support vector machine (SVM).
Support vector regression is used to estimate the perceptual quality of a test
stereo image pair. The performance of the algorithm is evaluated over popular
databases and shown to be competitive with the state-of-the-art no-reference
quality assessment algorithms. Further, the strength of the proposed algorithm
is demonstrated by its consistently good performance over both symmetric and
asymmetric distortion types. Our algorithm is called Stereo QUality Evaluator
(StereoQUE).

Keywords:
Natural scene statistics, stereoscopic images, no-reference image quality
assessment.

1. INTRODUCTION

The volume of commercial and personal 3D/stereoscopic content being gen-
erated and consumed has dramatically increased over the past decade. This
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trend could be attributed to a number of factors some of which include im-
proved imaging and rendering devices [1] both at the industrial and consumer
levels, increased commercial value for stereo content [2], the ever-increasing pop-
ularity of 3D gaming etc. Interestingly, the statistics gathered by the Motion
Picture Association of America (MPAA) [3] assigns an exclusive category to 3D
(stereo) movies. A variety of parameters such as viewer age, attendance, box
office numbers, 3D screens count are tracked in these reports. According to
these statistics, 3D movies have seen a consistent increase in revenue over the
past decade and are poised to continue the trend moving forward. A stand-out
number in this report is that 8 of the top 10 highest grossing movies in 2013
were released in 3D!

Given this upward trend, the role of a good objective measure of perceptual
stereoscopic quality cannot be overemphasized. A good objective quality mea-
sure can not only serve as a proxy for subjective evaluation but can also be used
as an objective function for the optimal design of stereoscopic image processing
systems. A natural or straightforward approach to stereoscopic quality assess-
ment would be to simply use existing 2D image quality metrics by applying them
to the left and right views of a stereo pair and averaging the scores. While such
an approach appears reasonable, it is not clear that it would be successful. As
noted by several authors [4, 5, 6, 7], the effects of distortion (especially asym-
metric distortion) on depth perception makes stereo quality assessment more
challenging than a simple extension of 2D approaches.

As with 2D image quality assessment (IQA) methods, stereoscopic image
quality assessment algorithms are also classified into three categories depending
on the usage of the pristine stereo image pair for quality assessment. Full ref-
erence (FR) algorithms make use of the reference stereo pair in their entirety,
while reduced reference (RR) approaches make use of partial reference informa-
tion for quality evaluation of the test stereo pair. No reference (NR) methods
on the other hand, do not use reference information in evaluating the perceptual
quality of a stereo image pair.

In this paper, we present a no-reference algorithm for the assessment of
stereoscopic image quality. Our approach is inspired by the success of applying
natural scene statistics (NSS) to all the classes of 2D IQA algorithms – FR, RR
[8], and NR [9, 10, 11, 12] methods. A recent statistically motivated approach
for NR stereo quality assessment by Su et al. [13] further inspired our work. We
first propose a bivariate generalized Gaussian density (BGGD) model [14] for the
joint statistics of luminance and disparity subband statistics of natural stereo
scenes. We then use this model in the design of a NR stereo IQA algorithm we
call Stereo QUality Evaluator (StereoQUE).

Our paper is organized as follows. We review relevant literature in Section
2, followed by a description of our algorithm in Section 3. We first describe
the proposed statistical model in Section 3.1 and then present the proposed NR
stereo IQA algorithm in Section 3.2. We discuss our results in Section 4 and
present concluding remarks in Section 5.
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2. BACKGROUND

Stereoscopic image quality assessment in all its flavors (FR, RR and NR) has
received relatively less attention compared to 2D image quality assessment. This
could be attributed to several factors including but not limited to the smaller
fraction of stereo content compared to 2D content, an inclination to apply 2D
metrics to each of the left and right stereo images, and paradoxically, the visual
annoyance resulting from poorly designed stereo imaging systems. NR stereo
quality assessment has received even lesser attention than FR and RR methods.
We first review significant human visual system (HVS) inspired FR, RR and NR
stereo image quality assessment algorithms. To place our proposed algorithm
in perspective, we briefly review NSS-based 2D and stereo NR-IQA algorithms,
followed by a review of natural stereoscopic scene statistical models.

2.1. HVS-inspired Stereoscopic IQA Algorithms

Campisi et al. [15] were among the first researchers to carry out a system-
atic study of stereoscopic image quality assessment. Their study involved both
subjective and FR objective quality evaluation. Objective evaluation was car-
ried out by applying existing 2D FR-IQA algorithms separately to the left and
right image reference-test pairs. Perceptually inspired approaches were used to
combine the left and right scores. They concluded that 2D FR-IQA algorithms
do not necessarily perform well on stereo images, and that further investigation
was required. Stereo Band Limited Contrast (SBLC) [16] is a HVS-inspired
FR stereo IQA algorithm where the ratio of contrast to relative luminance at
edge and corner image locations was found to give a good perceptual quality
estimate. Neither of these early FR methods explicitly used depth information.

Benoit et al. [17] proposed an important FR algorithm that explicitly con-
sidered disparity information in its analysis. They applied the 2D FR-IQA
algorithms to the spatial information of stereoscopic reference and distorted
images. In their approach, they considered the disparity information as an ex-
tra feature and included it both locally and globally in their algorithm. The
performance of this algorithm was shown to be competitive over commonly oc-
curring distortions [18]. You et al. [19] proposed a similar methodology to
measure local and global similarity of luminance and disparity images that per-
forms well on both a custom database and the LIVE database [18]. Chen et
al. [20] studied the effect of binocular depth variation on the perceptual qual-
ity of stereoscopic images. They showed that the overall quality of experience
decreases with increasing depth. Further, they showed that for 2D images, the
quality of experience (QoE) is not affected by depth variation. Didyk et al. [7]
studied the effect of compression artifacts on the binocular disparity estimation.
They concluded that depth perception in a stereoscopic image decreases with
increase in compression artifacts. Wang et al. [4] conducted a systematic study
on the effects of symmetric and asymmetric distortions on stereo images. They
found that for symmetrically distorted images, the overall quality score of an
image is equal to the average of the left and right views. However, they found
that simple averaging did not work in the case of asymmetric distortion of views.
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Bensalma and Larabi proposed a series of HVS-inspired FR approaches based
on binocular energy modeling [21, 22, 23]. They rely on explicitly modeling
simple and complex cells in the visual cortex as a series of multiscale oriented
band pass filters (implemented using a combination of complex wavelet and
bandelet transforms). The difference in the subband energies of the reference
and distorted images is used to compute a perceptual quality score. Though
they explored the binocular energy modeling, they did not consider the effect
of binocular suppression [24] on perception.

Ryu et al. [25] proposed a FR-IQA metric for stereoscopic images based on
the perceptual binocular model and structural similarity (SSIM) parameters (i.e.
luminance, contrast, structural similarity). These parameters are computed for
each image of the stereo pair and pooled together with different weighting com-
binations to come up with a single quality score. Depth or disparity information
was not used in this work. Hachicha et al. [26] proposed a FRQA metric for
stereoscopic images based on modeling of HVS and its properties. They con-
sidered the concepts of contrast masking effect and Binocular Just Noticeable
Difference (BJND) to propose metric and performed their evaluation on the
LIVE phase I dataset. Zhang et al. [27] proposed a FR stereoscopic IQA metric
based on 3D MAD estimation algorithm. To proposed this algorithm, they ap-
plied the conventional MAD estimation on left and right images of stereoscopic
view and they combined these scores with the block based contrast measured
scores. Li et al. [28] proposed a stereoscopic FR-IQA metric based on structure
and texture decomposition but without taking depth/disparity information into
account. They measured gradient magnitude similarity, luminance and contrast
similarity from the structure and texture decompositions. They compute these
values for each view and finally combine these scores to come up with a single
score for a stereo pair. Shen et al. [29] proposed a stereo FR-IQA metric based
on a segmentation of the disparity map using SSIM values. First, they com-
pute the disparity maps for original and distorted stereo pairs. These disparity
maps are then segmented, and the SSIM scores are computed on the segmented
maps. Lin et al. [30] proposed a setereoscopic FR-IQA metric based on a com-
bination of 2D metrics and binocular frequency integration. In addition, they
evaluated their method on synthesized color-plus-depth 3D images. Hu et al.
[31] proposed a FR-IQA method based on a distortion separation method. They
compare reference and distorted images individually i.e., left and right images
separately but again did not use depth information. To find the structural sim-
ilarity between these images, they rely on singular value decomposition (SVD)
and phase-amplitude description (PAD) methods. These scores are pooled to
compute a quality score for the stereo image pair. C et al. [32] proposed a
stereoscopic full reference IQA metric based on modeling the mechanisms of
HVS 3D perception. They used the modeling of simple and complex cells based
on the behavior of binocular supression theory. Cardoso et al. [33] proposed a
stereoscopic FR & NR IQA metric based on disparity weighting method. They
showed the effect of utilizing the disparity information in stereoscopic metrics.
Zhou et al. [34] proposed a RR-IQA metric based on the degradation level of
water marking on symmetric distorted images. They embedded water mark-
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ing on the extracted features and estimate distortion based on the amount of
degradation experienced by the watermark.

The cyclopean image paradigm has proven to be a successful approach for
integrating depth information into a 2D image and subsequently relying on
2D IQA algorithms for quality assessment. Maalouf and Larabi [35] proposed
a RR-IQA stereoscopic metric based on the cyclopean model of stereoscopic
image and color disparity maps. They construct individual cyclopean images
and color disparity maps for the reference and distorted set and find the HVS-
based thresholds. Later, they compare the sensitivity coefficients of reference
and distorted images to predict the quality score. Chetouani [36] proposed a
stereoscopic FR-IQA metric that is also based on the cyclopean image paradigm
and 2D image quality metric (IQM) fusion. In their approach they applied the
2D IQA metrics on the cyclopean image. They extracted 2D features from the
cyclopean image and used an artificial neural network to predict the quality
score. Chen et al. [18] proposed a FR-IQA metric for stereoscopic images based
on the cyclopean paradigm. They considered the effect of binocular rivalry on
stereoscopic images that are asymmetrically distorted. They showed the effect
of disparity information usage on the overall quality score, and concluded that
disparity information is indeed useful.

Akhter and Sazzad [37, 38] present a NR stereo IQA algorithm inspired by
the HVS. Local edge-based and non-edge based disparity estimates, along with
blur and blockiness estimates are used as distortion discriminating features.
However, the effect of binocular rivalry was not explicitly considered in their
work. The authors demonstrate the efficacy of their method on a database
comprised exclusively of JPEG artifacts. Ryu et al. [39] proposed a stereo-
scopic NR-IQA algorithm based on high and low frequency components of left
and right luminance images. They extracted the blurriness, saliency, blockiness
map from each stereoscopic image. They model these maps and used as quality
predictor of the stereoscopic image. Shao et al. [40] proposed a NR-IQA metric
based on distortion specific features of luminance information. However, they
did not include disparity information in their metric. They used these features
to characterize the type of the distortion. Support vector regression (SVR) is
used to estimate the quality of a test stereo pair from its features. Fezza et al.
[41] proposed a NR-IQA metric for stereoscopic images based on local blurri-
ness maps and local entropy values computed with the help of a threshold. Two
blurriness maps are computed for each stereo pair of images and a threshold
value is chosen based on the occluded regions to compute the blurriness scores.
The left and right image scores are pooled with the help of local spatial en-
tropy values. The average of the occluded and non-occluded region scores is
assigned to be the quality of the stereo image pair. Shao et al. [42] proposed a
NRQA metric for stereoscopic images using a binocular guided quality lookup
and visual codebook. Their metric involves the construction of phase-tuned
quality lookup (PTQL) and phase-tuned visual codebook (PTVC). They find
the gradient similarities and centroid clustering of binocular energy responses to
construct PTQL and PTVC. Gu et al. [43][44] proposed a stereoscopic NRQA
metric based on ocular dominance theory and parallax effect between left and
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right views of a stereoscopic pair. The ocular dominance was calculated based
on the distress function and degree of parallax was calculated based on central
region of left and right images of the stereoscopic view. Jiang et al. [45] pro-
posed a stereo NR-IQA method based on the cyclopean model and used a 2D
saliency model to predict the perceptual quality. Solh et al. [46] proposed a
stereoscopic NR video quality metric based on temporal outliers (TO), tempo-
ral inconsistencies(TI), spatial outliers(SO). They used depth based rendering
(DIBR) to generate stereoscopic videos. Further, they used the TO, TI and SO
to evaluate the ideal depth estimation.

2.2. NSS-inspired NR-IQA Algorithms

While deterministic (HVS-inspired) approaches to FR, NR, and RR IQA
have been quite popular and successful, statistical approaches have also proven
to be very successful. Our proposed algorithm is motivated by the success of
these statistical approaches. We now review a small but significant subset of
NSS-inspired 2D and stereo NR-IQA methods.

The generalized Gaussian density (GGD) and the Gaussian scale mixture
(GSM) density are two models for 2D natural scene statistics [47, 48] that are
very popular and have been widely employed in 2D IQA. Moorthy et al. [49]
studied NSS feature (GSM and GGD model parameter) variations over natural
and unnatural scenes. They proposed a NR-IQA metric for 2D images based on
a two-stage frame work. With the help of NSS features they classified distorted
image into different distortion classes and used these statistical features to pre-
dict the quality score of the distorted image. Mittal et al. [50, 51] proposed
a 2D NR-IQA metric based on statistical modeling of natural scenes in the
pixel domain. They considered mean subtracted contrast normalized (MSCN)
luminance coefficients in the spatial domain and computed pairwise product of
adjacent normalized luminance coefficients to get the distortion specific infor-
mation. Asymmetric GGD fitting model was used to fit the MSCN coefficients
in their method to discriminate the type of distortion. Saad et al. [11] proposed
a 2D image NR-IQA metric based on NSS modeling of DCT coefficients, again
using a univariate GGD model. Their method does not use any distortion spe-
cific features. They applied the sample Bayesian inference model to predict the
quality score of an image. Sheikh et al. [52] proposed a 2D image NR-IQA met-
ric based on the NSS modeling of JPEG compressed images. They showed that
the deviation or variation of expected natural statistics of respective image is
related to the perceptual quality. Mittal et al. [53] proposed a NR stereoscopic
quality of experience assessment metric based on the statistics of luminance
images and disparity maps. A slew of statistics including mean, variance, skew-
ness, kurtosis, differential disparity etc. are computed on the disparity maps.
The mean, variance and kurtosis of spatial activity maps of the left and right
images are also computed. These statistics compose the feature vector for the
stereo pair. Dimensionality reduction techniques such as principal components
analysis (PCA) and forward feature selection (FFS)are employed on a training
images to reduce feature vector dimension. Finally, linear regression is used to
estimate the perceived quality of experience. For video quality assessment, the
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same method is applied on a frame-by-frame basis. However, it is important
to note that this approach, though based on statistical features, does not at-
tempt to model and exploit the rich and unique signature of natural stereo scene
statistics. In the following, we review statistical models of natural stereoscopic
scenes.

2.3. Stereoscopic NSS Models

The statistical characteristics of natural stereoscopic scenes have been stud-
ied by a number of researchers. For stereoscopic images, the modeling is typi-
cally done on subband luminance and range/disparity coefficients – either jointly
or marginally. Huang et al. [54] model the range statistics of the natural en-
vironment. To construct these statistics they used a laser range finder [55] to
acquire the range maps of the natural environment. To describe the proper-
ties of range maps they consider the single-pixel and derivative statistics. The
discontinuities of range maps are explored using Haar wavelets. Liu et al. [56]
construct the disparity information from the depth map which is created by the
range finder with a fixed point described. To construct these maps, a spherical
model of the eye structure is employed. Finally, they correlate the disparity
distribution with the stereopsis of the HVS.

Potetz and Lee [57] and Liu et al. [58, 59] explored the statistical rela-
tionship between the luminance and disparity maps in the spatial domain and
in a multiscale subband domain respectively. They modeled conditional his-
tograms of luminance and disparity/range using a univariate GGD [60, 61]
model. They also demonstrated considerable correlation between the luminance
and range/disparity subband coefficients. Khan et al. [62] proposed a FR-IQA
metric for stereoscopic images based on the statistical modeling of luminance
and disparity. They modeled marginal statistics of luminance and disparity us-
ing a univariate GGD model. In their approach, they considered the disparity
maps only for reference stereoscopic images. Chen et al. [63] also proposed a
NR-IQA metric for stereoscopic images based on the cyclopean model and NSS
features. In this method, they again considered the effect of binocular rivalry
on perceptual quality. In their approach, they used a combination of 2D fea-
tures extracted from the cyclopean image and 3D features extracted from the
uncertainty map produced by the stereo matching algorithm.

Su et al. [64] conducted a study on the relationship between the chrominance
and range components. They showed that the distribution of the range gradients
conditioned on the Gabor responses of chrominance images can be modeled with
a Weibull distribution. Su et al. [13] proposed a stereoscopic NR-IQA metric
based on the bivariate statistical correlation model [14] (a bivariate GGD model)
for spatially adjacent luminance subband coefficients. This model is applied to
capture the joint statistics of subband coefficients of a converged cyclopean
image (CCI). In addition to the bivariate statistics, they also rely on univariate
NSS features extracted from the CCI to form their feature vector. Support
vector machine training is performed using these features and DMOS scores
as labels. Support vector regression is used to predict the quality of a test
stereo image pair. This algorithm is the current state-of-the-art NR stereo IQA
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technique and outperforms state-of-the-art FR stereo IQA algorithms as well.
We present a detailed comparison of the proposed algorithm with the methods
by Chen et al. [63] and Su et al. [13] in Section 4.

3. PROPOSED ALGORITHM

Our proposed algorithm is closest in philosophy to the work by Su et al.
[13]. As noted previously, an important feature in their method is the BGGD
modeling of adjacent luminance subband coefficients of the CCI. In this section
and in Section 4, we describe the proposed methodology and demonstrate how
it is different from previous NSS-inspired NR stereo IQA algorithms.

Earlier works by Potetz and Lee [57] and Liu et al. [58] only consider the
marginal statistics of luminance and disparity maps or their subband coeffi-
cients. We strongly believe that the joint statistics capture crucial information
about the relation between luminance and depth/disparity subband coefficients.
As we show in the following sections, this information could be useful in quan-
tifying the effects of distortion on perceptual quality. We propose a model to
capture the joint luminance and disparity/depth subband statistics of natural
stereoscopic scenes. We empirically show that a bivariate GGD is an excellent
model for the joint statistics. We present this model first followed by a descrip-
tion of the proposed NR stereo IQA algorithm dubbed Stereo QUality Evaluator
(StereoQUE).

(a) Left Stereo image. (b) Left corresponding disparity map.

(c) Joint histogram. (d) Bivariate GGD fit.

Figure 1: BGGD modeling. α = 9 × 10−16, β = 0.11, χ = 5 × 10−8.
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At the outset we would like to note that our analysis is carried out on a
multi-scale/multi-orientation subband decomposition of the stereo images and
their disparity maps. This is motivated by the multiscale modeling of the human
visual system [58]. Specifically, we work with a steerable pyramid decomposition
[65, 66] due to the advantages of translation-invariance and rotation-invariance
compared to wavelet decompositions [67] [68]. In our work we used 3 spatial
scales and six orientations (0◦, 30◦, 60◦, 90◦, 120◦, 150◦) in the decomposition.
The subband decomposition is performed on the logarithm of the luminance
and disparity images. The logarithm of the images is taken to mimic the visual
system as demonstrated by several authors [69] [58] [57].

(a) Reference left image. (b) BGGD fit for reference image.

(c) Distorted left image. (d) BGGD fit for distorted image.

Figure 2: Illustration of BGGD variation over reference and distorted image.

3.1. Bivariate GGD Modeling

The multivariate GGD distribution of a random vector x ∈ RN is given by
[14]

p(x|M, α, β) =
1

|M| 12
gα,β(xTM−1x), (1)

gα,β(y) =
βΓ(N2 )

(2
1
β Πα)

N
2 Γ(N2 )

e−
1
2 (
y
α )β , (2)

where M is an N × N symmetric scatter matrix, α is the scale parameter,
β the shape parameter and gα,β(·) is the density generator. Its heavy-tailed
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and completely parameterized form makes it particularly attractive in modeling
natural scenes.

Fig. 1a shows the left image of a pristine stereo pair chosen from the LIVE
Phase-II [18] database. Fig. 1b show the disparity map computed using an
SSIM-based algorithm [18]. Fig. 1c shows the joint histogram between the
log luminance and log disparity subband coefficients at the first scale and 0◦

orientation of a steerable pyramid decomposition. From the joint histogram we
can observe a clear sharp peak and heavy tails. We have observed a similar
trend across a wide range of images across various stereo image databases at
various scales and orientations. Based on these observations, we propose that a
bivariate GGD (N = 2) can accurately model the joint distribution of luminance
and disparity subband coefficients.

(a) Symmetrically distorted image
joint histogram.

(b) BGGD fit for symmetrically
distorted image.

(c) Asymmetrically distorted joint
histogram.

(d) BGGD fit for asymmetrically
distorted image.

Figure 3: Illustration of BGGD variation over symmetric and asymmetric distortions.

In our evaluation of the proposed BGGD model over the LIVE Phase-I,
Phase-II, and the MICT [38] databases, the highest value for χ (indicating the
worst fit) was found to be of the order of 10−7. The low values of χ present
excellent statistical support for our hypothesis. We also found that the shape
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parameter β lies in the interval [0.0014, 0.45], corresponding to heavy tailed
distributions (β = 1 corresponds to the Gaussian distribution).

(a) Reference
(α = 9.3 × 10−16, β = 0.11).

(b) AWGN
(α = 1.1 × 10−4, β = 0.34).

(c) JPEG2000
(α = 1.38 × 10−10, β = 0.15).

(d) JPEG
(α = 4 × 10−19, β = 0.01).

(e) Gaussian blur
(α = 1.5 × 10−8, β = 0.21) .

(f) Fast fading
(α = 2.23 × 10−8, β = 0.2).

Figure 4: Joint histogram contours for commonly occurring distortions.
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This observation provides corroborative evidence for the findings of Liu et
al. [58], and clearly highlights the non-Gaussian nature of the joint statistics.

We now present several examples to demonstrate that the proposed BGGD
model is effective even in the presence of distortions. Figs. 2a and 2b shows an
undistorted image and its BGGD model fit. Fig. 2c shows a distorted version of
2a where white Gaussian noise (AWGN) been added. Due to AWGN, the tails
are heavier and the peak is shorter. We see from Fig. 2d that the BGGD fit is
able to capture this effect. Fig. 3 shows the variation of the joint statistics of the
same stereo image (as in Fig. 1) when subjected to symmetric and asymmetric
distortion. These are also shown for the first scale and 0◦ orientation.

We now present the effect of commonly occurring distortions on the joint
distribution of luminance and disparity subband coefficients. Fig. 4 shows the
contour plots of the joint histogram of an undistorted image and several dis-
torted versions of it (from the LIVE Phase-II database). These histograms have
been computed at the first scale and 0◦ orientation subband. From the plots,
it is clear that distortions affect the joint distribution and therefore the best-
fitting BGGD model parameters. Further, the change in the model parameter
values relative to the reference is proportional to the amount of distortion. This
observation is fundamental to our premise that the BGGD model parameters
form good discriminatory features for the quality assessment task. In addition
to the BGGD model parameters, we rely on the result by Liu et al. [58] that
there exists significant correlation between luminance and disparity subband
coefficients.

Fig. 5 shows the variation of correlation across the six orientations at the
first scale for the same set of reference and distorted images used for the joint
histogram computation. As with the joint histogram, Fig. 5 shows that cor-
relation is also affected due to distortion in a manner that is proportional to
the amount of distortion. Therefore, correlation also serves as a good feature
for no-reference quality assessment. Our proposed NR stereo IQA algorithm is
built on this NSS-inspired foundation and is presented in the following.

Figure 5: Correlation scores for LIVE Phase-II database.
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3.2. Stereo QUality Estimator (StereoQUE) Algorithm

The flowchart of the proposed algorithm is shown in Fig. 6 and is described
in the following subsections.

Test

Stereo Pair

Stereo

Algorithm

Disparity

Map

Steerable Pyramid Decomposition

Correlation

Parameters
RMS Values

BGGD

Parameters

Correlation

Feature vector

BGGD Fea-

ture vector

Supervised Learning, Regression

Figure 6: Flowchart of proposed algorithm.

3.3. Feature Extraction

Given a stereo image pair, disparity maps are first estimated using an SSIM-
based disparity algorithm [18] and we limited the pixel variation in disparity
map upto 15 pixels. We chose the SSIM based stereo matching algorithm since
it provides a good trade-off between accuracy and time complexity [70]. Two
sets of disparity maps are computed per stereo pair – one with the left image
treated as reference and the other with the right image treated as reference.
As mentioned in Section 3, our analysis is carried out on oriented subbands of
the luminance and disparity images. Specifically, we operate at 3 scales and
6 orientations resulting in 18 subbands. At each subband, the BGGD model
parameters (α, β) and the correlation coefficient γ are computed. The features
corresponding to the left and right images are subscripted by l and r respec-
tively. This results in two feature vectors fl = [α1

l . . . α
18
l ;β1

l . . . β
18
l ; γ1l . . . γ

18
l ]T ,

fr = [α1
r . . . α

18
r ;β1

r . . . β
18
r ; γ1r . . . γ

18
r ]T , where the superscript corresponds to the

subband index. Thus we end up with a pair of feature vectors (fl, fr) containing
a total of 108 elements per stereo image pair.

3.4. Feature Consolidation

Once the feature vectors are extracted, the next step in our algorithm is
supervised learning using DMOS scores as labels. While a supervised learning
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algorithm could be trained with the feature vector pair (fl, fr), it is worthwhile
exploring a reduction of the feature space dimensionality. Dimensionality re-
duction is further motivated by the fact that stereo images typically contain
redundant information, and by implication, so would the pair (fl, fr). One way
to reduce dimensionality would be to consolidate the vector pair into a single
vector. To achieve this goal, we propose the following consolidation strategy
that is motivated by the fact that binocular strength is a convex sum of monoc-
ular strengths [71]. The convex weights depends on relative eye dominance that
is particularly visible in the case of asymmetric distortion. Khan et al. [62]
considered that stimulus strength directly relates with band strength of each
subband and use root-mean-square (RMS) of subband of as its band strength.
Also, [62] considered only band strengths of luminance subbands because they
relied only on luminance statistics. Here, we find statistical parameters from
both luminance and disparity subbands. Therefore, to effectively consolidate the
feature vectors we consider the RMS of both luminance and disparity subbands.
The convex weights are obtained as follows:

wil =
RilR

i
dl

RilR
i
dl +RirR

i
dr

, (3)

wir =
RirR

i
dr

RilR
i
dl +RirR

i
dr

, (4)

f = wl � fl + wr � fr, (5)

where wil , w
i
r are the weights assigned to the ith left and right subbands respec-

tively, Ril , R
i
r are the RMS values of the ith left and right luminance subbands

respectively, Ridl, R
i
dr are the RMS values of the ith left and right disparity sub-

bands respectively. The vectors wl = [w1
l , . . . , w

18
l ]T ,wr = [w1

r , . . . , w
18
r ]T and

� denotes element-wise product. The weights are chosen to be proportional to
the stimulus strength to the respective eye and is inspired by binocular rivalry
where the dominant stimulus strongly influences overall perception. The RMS
values of the luminance and disparity subbands are chosen to be representatives
of the respective subband strengths. The final feature vector f is a convex com-
bination of fl and fr. It is worthwhile recalling that the cyclopean image is also
a convex combination of the left and right luminance images of a stereo pair.

3.5. Supervised Learning and Regression

The final stage of our algorithm is supervised learning using the feature
vector f of a stereo pair (constructed using (5)) and its DMOS score as the
feature label. We use a support vector machine for regression (SVR) estimating
the score of a test input (after training with labeled data). SVMs can offer
good performance even when the number of training points available are small
in addition to advantages like being more accurate in one-versus-rest schemes
[72], finding the global minimum [73], sparseness of the solution [74] etc. In
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our experiments with kernel choices, a radial basis function (RBF) kernel was
found to give the best performance. We report our results for this kernel choice.
For each database, 80% of the images were used to train the SVM and the
rest were used for regression. The open-source SVM package LIBSVM [75],
citewebsite:libsvmpack was used in our experiments. For statistical consistency,
we perform the training and testing 5000 times. For each run, we perform a
random image assignment to the train and test sets and also ensure that the
train and test sets do not overlap. We report results that are averaged over
these 5000 trials.

4. RESULTS AND DISCUSSION

The performance of our algorithm was evaluated on the LIVE Phase-I [76],
Phase-II [18, 63] and the MICT [38] stereo image databases. Both the LIVE
databases consist of five distortion categories: Additive White Gaussian Noise
(AWGN), JPEG2000 (JP2K), JPEG, Gaussian Blur (BLUR), and Fast Fading
(FF). LIVE Phase-I contains 20 pristine stereo pairs and 365 distorted stereo
pairs. Each distortion type has 4 levels of distortion strengths. LIVE Phase-II
contains 8 reference stereo pairs and 360 distorted stereo pairs. Each distortion
type has 9 levels of distortion strengths. The LIVE Phase-II database are also
classified into symmetric (120 stereo pairs) and asymmetric (240 stereo pairs)
distortions. The MICT database is composed of 13 reference stereo pairs and
JPEG distorted versions. The database contains 546 asymmetrically distorted
stereo pairs and 78 symmetrically distorted ones. The DMOS scores reported
in the databases were used in the training process and for the performance
evaluation of the algorithm on the test stereo pairs. We would like to note that
in the case of the MICT database, only MOS scores have been published. The
DMOS scores for the distorted images were computed using the appropriate
reference stereo pair MOS values. A performance comparison of StereoQUE
with the state-of-the-art FR, RR and NR stereo IQA algorithms is presented in
the following tables.

Following the standard procedure suggested by the Video Quality Experts
Group (VQEG) [77], we applied a nonlinear regression with a 4-parameter logis-
tic transform to the output of the algorithm before evaluating its performance.
Specifically, we used the logistic transform recommended by VQEG

f(x) =
τ1 − τ2

1 + exp(x−τ3|τ4| )
+ τ2,

where x denotes the raw objective score, and τ1, τ2, τ3 and τ4 are the free pa-
rameters selected to provide the best fit of the predicted scores to the DMOS
values. Fig. 7 shows the scatter plots for LIVE phase-I, LIVE phase-II and
MICT databases.

Tables 1, 2, 4, 5 and 8 show the LCC and SROCC scores of StereoQUE on
LIVE Phase-I, LIVE Phase-II and MICT database. The results reported on the
MICT dataset are over the same set of images as in Chen et al. [18]. It is clear
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(a) LIVE PHASE-I. (b) LIVE PHASE-II. (c) MICT.

Figure 7: Scatter plots of StereoQUE versus DMOS for various stereo image
databases.

that the proposed metric’s scores are able to mimic the human subjective scores
well. Also, we highlight the performance evaluation on asymmetric distortions
in Table 7. Additionally, we compared the results of LCC and SROCC with
different state-of-the-art stereoscopic IQA metrics. The FR and RR methods
are in normal font while the NR methods are italicised. From these results it is
clear that StereoQUE performs competitively not just with NR algorithms but
also with FR and RR algorithms. The tables 3 and 6 shows the performance
results of RMSE on LIVE Phase-I and LIVE Phase-II dataset. It is clear that,
the proposed metric StereoQUE shows good performance with DMOS scores.
The consistent performance of StereoQUE as measured using LCC, SROCC,
and RMSE show that is possesses good linear correlation with DMOS, good
ranking based monotonicity with DMOS, and finally good accuracy relative to
DMOS and thereby showcasing its overall strength.

We now present a qualitative discussion of our results. Firstly, we explain
the performance of our algorithm vis-a-vis the choice of our NSS features. Ta-
bles 1 - 8 show that StereoQUE performs competitively with the state-of-the-art
methods over all the databases considered. The performance of StereoQUE is
consistently high on asymmetric distortions and does better than the state-of-
the-art FR, RR, and NR stereo IQA methods. As shown in Figs. 1, 2 the
proposed BGGD model is able to accurately model the joint statistics of the
luminance and disparity subband coefficients. Importantly, as shown in Fig.
4, variation in the model parameters is proportional to the amount of distor-
tion in the stereo pairs, thereby making it effective for measuring stereo image
quality. Further, the state-of-the-art performance over asymmetric distortions
can be explained by our feature consolidation strategy that effectively weights
the left and right views in proportion to their overall contribution to distortion
perception.

We now compare our approach with the two state-of-the-art NR stereo IQA
algorithms proposed by Chen et al. [63] and Su et al. [13] in terms of the
underlying principles, and computational complexity. At a high level, all the
approaches rely on NSS-based features that are used to train a support vector
machine (SVM). The objective score of a test stereo pair is estimated using
support vector regression (SVR). The difference in the approaches is in the
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details that we bring out in the following. Both Chen et al. and Su et al.
extract 2D and 3D NSS features from the stereo pair. They rely on the cyclopean
paradigm for 2D NSS feature extraction. The 2D features are the GGD model
parameters of the MSCN coefficients of the cyclopean image. This is inspired by
the work of Mittal et al. [50]. Su et al. extract GGD features from the steerable
pyramid decomposition of the cyclopean image as well. The two methods differ
in their approach for extracting 3D NSS features. Chen et al. [63] model the
locally-normalized disparity maps using a GGD and use the model parameters
as features. Additionally, they also apply a log-normal model to the SSIM map
computed between the left view and disparity compensated right view. This
SSIM map is termed an uncertainty map. The parameters of this GGD model
also constitute their 3D features. Su et al. [13] extract 3D features from the
parameters of a BGGD model of luminance wavelet coefficients and from the
parameters of an exponential model used to capture the correlation between
subband coefficients. Our method does not use 2D features explicitly. Instead,
its features are extracted from the parameters of the proposed BGGD model
of the joint histogram of the luminance and disparity subband coefficients, and
the correlation between these coefficients.

The choice of our features results in computational complexity that is compa-
rable to the two state-of-the-art methods. We present a qualitative comparison
since the code for neither of the two state-of-the-art methods is freely available.
We compare the computational complexity of the multiscale decomposition and
feature extraction stages since these are most expensive stages in all the algo-
rithms. We do not include the complexity involved in finding disparity maps or
support vector training and regression since these stages are common to all the
methods.

In Chen et al. [63], the most computationally expensive stage is the forma-
tion of the cyclopean image as it involves performing a multiscale Gabor decom-
position followed by the computation of weights. The next most expensive stage
is the estimation of model parameters (from UGGD/log-normal models) for the
construction of the feature vectors. The computation of MSCN coefficients and
uncertainty maps incurs some computational expense as well. We believe that
Chen et al. [63]’s method is the computationally least expensive of the three
methods being compared.

In Su et al. [13], the two most computationally expensive stages are the
formation of the CCI and the extraction of BGGD features from the steer-
able pyramid decomposition of the CCI. We would like to note that the CCI
formation is more expensive than the cyclopean image formation in Chen et
al. [63] since both the left and right disparity maps are considered. The next
most expensive stages are the formation of MSCN coefficients, estimation of the
asymmetric GGD and UGGD model parameters in the spatial and multiscale
domains respectively, and the estimation of the model parameters of the expo-
nential model for the correlation between subband coefficients. Based on our
estimation, we believe that this method is computationally the most expensive
of the three.

Finally, in our proposed method, the most computationally intensive stage
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is the estimation of the BGGD model parameters at 3 scales and 6 orientations.
The other stages including correlation computation and feature consolidation
are of significantly lower computational complexity compared to the model fit-
ting stage. We thus conclude that our method is placed in between the two
state-of-the-art NR stereo IQA algorithms.

Table 1: SROCC ON LIVE PHASE-I DATASET.

Algorithm WN JP2K JPEGBLUR FF ALL

Benoit [17] 0.930 0.910 0.603 0.931 0.699 0.899
You [19] 0.940 0.860 0.439 0.882 0.588 0.878

Gorley [16] 0.741 0.015 0.569 0.750 0.366 0.142
Chen [18] 0.948 0.888 0.530 0.925 0.707 0.916

Hewage [78] 0.940 0.856 0.500 0.690 0.545 0.814
Akther [38] 0.914 0.866 0.675 0.555 0.640 0.383
Chen [63] 0.919 0.863 0.617 0.878 0.652 0.891

StereoQUE 0.910 0.917 0.782 0.865 0.666 0.911

Table 2: LCC ON LIVE PHASE-I DATASET.

Algorithm WN JP2K JPEGBLUR FF ALL

Benoit [17] 0.925 0.939 0.640 0.948 0.747 0.902
You [19] 0.941 0.877 0.487 0.919 0.730 0.881

Gorley [16] 0.796 0.485 0.312 0.852 0.364 0.451
Chen [18] 0.942 0.912 0.603 0.942 0.776 0.917

Hewage [78] 0.895 0.904 0.530 0.798 0.669 0.830
Akther [38] 0.904 0.905 0.729 0.617 0.503 0.626
Chen [63] 0.917 0.907 0.695 0.917 0.735 0.895

StereoQUE 0.919 0.938 0.806 0.881 0.758 0.917

Table 3: RMSE ON LIVE PHASE-I DATASET.

Algorithm WN JP2K JPEGBLUR FF ALL

Benoit [17] 6.307 4.426 5.022 4.571 8.257 7.061
You [19] 5.621 6.206 5.709 5.679 8.492 7.746

Gorley [16] 10.197 11.323 6.211 7.562 11.569 14.635
Chen [18] 5.581 5.320 5.216 4.822 7.387 6.533

Hewage [78] 7.405 5.530 5.543 8.748 9.226 9.139
Akther [38] 7.092 5.483 4.273 11.387 9.332 14.827
Chen [63] 6.433 5.402 4.523 5.898 8.322 7.247

StereoQUE 6.664 4.943 4.391 6.938 9.317 6.598
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Table 4: SROCC ON LIVE PHASE-II DATASET.

Algorithm WN JP2K JPEGBLUR FF ALL

Benoit [17] 0.923 0.751 0.867 0.455 0.773 0.728
You [19] 0.909 0.894 0.795 0.813 0.891 0.786

Gorley [16] 0.875 0.110 0.027 0.770 0.601 0.146
Chen [18] 0.940 0.814 0.843 0.908 0.884 0.889

Hewage [78] 0.880 0.598 0.736 0.028 0.684 0.501
Akther [38] 0.714 0.724 0.649 0.682 0.559 0.543
Chen [63] 0.950 0.867 0.867 0.900 0.933 0.880

S3DBLINQ Index [13] 0.946 0.845 0.818 0.903 0.899 0.905

StereoQUE 0.932 0.864 0.839 0.846 0.860 0.888

Table 5: LCC ON LIVE PHASE-II DATASET.

Algorithm WN JP2K JPEGBLUR FF ALL

Benoit [17] 0.926 0.784 0.853 0.535 0.807 0.748
You [19] 0.912 0.905 0.830 0.784 0.915 0.800

Gorley [16] 0.874 0.372 0.322 0.934 0.706 0.515
Chen [18] 0.957 0.834 0.862 0.963 0.901 0.900

Hewage [78] 0.891 0.664 0.734 0.450 0.746 0.558
Akther [38] 0.722 0.776 0.786 0.795 0.674 0.568
Chen [63] 0.947 0.899 0.901 0.941 0.932 0.895

S3DBLINQ Index [13] 0.953 0.847 0.888 0.968 0.944 0.913

StereoQUE 0.920 0.867 0.829 0.878 0.836 0.845

Table 6: RMSE ON LIVE PHASE-II DATASET.

Algorithm WN JP2K JPEGBLUR FF ALL

Benoit [17] 4.028 6.096 3.787 11.763 6.894 7.490
You [19] 4.396 4.186 4.086 8.649 4.649 6.772

Gorley [16] 5.202 9.113 6.940 4.988 8.155 9.675
Chen [18] 3.368 5.562 3.865 3.747 4.966 4.987

Hewage [78] 10.713 7.343 4.976 12.436 7.667 9.364
Akther [38] 7.416 6.189 4.535 8.450 8.505 9.294
Chen [63] 3.513 4.298 3.342 4.725 4.180 5.102

S3DBLINQ Index [13] 3.547 5.482 4.169 4.453 4.199 4.657

StereoQUE 4.325 5.087 4.756 6.662 6.519 7.279
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Table 7: SROCC ON SYMMETRIC AND ASYMMETRIC DISTORTIONS IN LIVE
PHASE-II DATASET.

Algorithm SYMMASYMM

Benoit [17] 0.860 0.671
You [19] 0.914 0.701

Gorley [16] 0.383 0.056
Chen [18] 0.923 0.842

Hewage [78] 0.656 0.496
Akther [38] 0.420 0.517
Chen [63] 0.918 0.834

S3D-BLINQ Index [13] 0.937 0.849

StereoQUE 0.857 0.872

Table 8: SROCC, LCC ON MICT DATABASE.

Algorithm LCC SROCC

Benoit [17] 0.910 0.902
You [19] 0.864 0.857

Chen [18] 0.864 0.862
Akther [38] 0.765 0.785
Chen [63] 0.913 0.904

S3D-BLINQ Index [13] 0.933 0.917

StereoQUE 0.935 0.936

All the aforementioned results were obtained using a three scale and six
orientation pyramid decomposition. This choice of scales and orientations were
determined empirically as it gave the best performance over all the databases
used for evaluation. We studied the effect of varying the number of scales and
orientations on performance and present it next. The LIVE Phase II database
is chosen as a representative database for this study. Fig. 8 shows the variation
in performance (LCC, SROCC) as the number of scales are varied at a fixed
number of orientations. As the number of scales of decomposition exceed 3, the
performance drops. This could be explained by the fewer samples available for
parameter estimation at coarser scales. This in turn is related to the image size.
Based on this observation, the number of scales was chosen to be 3. Similarly,
Fig. 9 shows performance variation as a function of the number of orientations
used (at 3 scales). We see that performance variation is very small for 4 or more
orientations with the best performance occurring with 6 orientations. We thus
chose 6 orientations in our work.
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Figure 8: Performance of StereoQUE as a function of the number of scales.

Figure 9: Performance of StereoQUE as a function of the number of orientations.

5. CONCLUSIONS AND FUTURE WORK

We presented a BGGD model for natural stereo scene statistics and an NR
stereo IQA algorithm based on the model. The proposed BGGD model accu-
rately captures the joint statistics of luminance and disparity subband coeffi-
cients. We believe that this model could be useful in several applications like
stereo correspondence, denoising, quality assessment etc.

The utility of the BGGD model was demonstrated in a NR stereo IQA appli-
cation dubbed StereoQUE. StereoQUE was evaluated on popular stereo image
databases and shown to perform competitively with state-of-the-art methods.
Further, it delivers consistently high performance on asymmetric distortions
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thereby demonstrating the effectiveness of the approach. In future, we intend
to demonstrate the utility of the proposed BGGD model in some of the other
applications mentioned above.
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