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Many-objective robust decision making for managing an ecosystem with a
deeply uncertain threshold response
Riddhi Singh 1,2, Patrick M. Reed 3 and Klaus Keller 2,4,5

ABSTRACT. Managing ecosystems with deeply uncertain threshold responses and multiple decision makers poses nontrivial decision
analytical challenges. The problem is imbued with deep uncertainties because decision makers do not know or cannot converge on a
single probability density function for each key parameter, a perfect model structure, or a single adequate objective. The existing
literature on managing multistate ecosystems has generally followed a normative decision-making approach based on expected utility
maximization (MEU). This approach has simple and intuitive axiomatic foundations, but faces at least two limitations. First, a
prespecified utility function is often unable to capture the preferences of diverse decision makers. Second, decision makers’ preferences
depart from MEU in the presence of deep uncertainty. Here, we introduce a framework that allows decision makers to pose multiple
objectives, explore the trade-offs between potentially conflicting preferences of diverse decision makers, and to identify strategies that
are robust to deep uncertainties. The framework, referred to as many-objective robust decision making (MORDM), employs
multiobjective evolutionary search to identify trade-offs between strategies, re-evaluates their performance under deep uncertainty, and
uses interactive visual analytics to support the selection of robust management strategies. We demonstrate MORDM on a stylized
decision problem posed by the management of a lake in which surpassing a pollution threshold causes eutrophication. Our results
illustrate how framing the lake problem in terms of MEU can fail to represent key trade-offs between phosphorus levels in the lake
and expected economic benefits. Moreover, the MEU strategy deteriorates severely in performance for all objectives under deep
uncertainties. Alternatively, the MORDM framework enables the discovery of strategies that balance multiple preferences and perform
well under deep uncertainty. This decision analytic framework allows the decision makers to select strategies with a better understanding
of their expected trade-offs (traditional uncertainty) as well as their robustness (deep uncertainty).
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INTRODUCTION
Managing ecosystems poses challenging decision analysis
problems because of (1) the presence of several stakeholders with
conflicting objectives, (2) the potential for highly nonlinear
threshold responses, and (3) the underlying deep uncertainties.
Deep uncertainties emerge when planners are unable to agree on
or identify the full scope of possible future events, including their
associated probability distributions (Knight 1921, Lempert et al.
2006). In cases of conflicting objectives of stakeholders, explicit
trade-offs between alternative management actions exist.
Mapping these trade-offs poses nontrivial conceptual and
computational challenges when defining ecosystem management
problems, e.g., choosing objectives, management decisions,
planning horizons, etc., as well as predicting the impacts of
actions, e.g., imperfect knowledge of system dynamics, external
forcings, or environmental thresholds (Clark 2005, Lempert and
Collins 2007, Keller and McInerney 2008, McInerney et al. 2012).
Representing the potential for highly nonlinear threshold
responses, or tipping points, can be crucial because surpassing
such thresholds can lead to regime shifts that significantly degrade
the objectives of some or all stakeholders (Bennett et al. 2008).
Current decision support tools for ecosystem management are
limited in their ability to address these interacting challenges
(Lempert and Collins 2007). Throughout this study, we use the
term “stakeholder” to refer to the diverse set of stakeholders in
a decision-making process.  

Figure 1 classifies two main challenges that emerge when defining
ecosystem management problems: (1) appropriately accounting
for uncertainty, and (2) accounting for diverse stakeholder
objectives. Approaches for representing uncertainty are arranged
on the x-axis with increasing conceptual and computational
complexity: beginning from deterministic, i.e., perfect foresight,
assumptions, moving toward well-characterized uncertainty
captured using a single probability distribution function (PDF),
next transitioning to deep uncertainties represented with multiple
PDFs, and finally, learning based on new observations to actively
reduce uncertainties. The y-axis arranges methods for
incorporating stakeholders’ objectives in increasing complexity:
starting from the evaluation of management actions using a single
a priori abstraction of preferences in a utility function (Ramsey
1928, von Neumann and Morgenstern 1944), moving toward
weighting schemes aggregating multiple objectives into a single
measure as typified by traditional multicriteria decision analysis
(Brink 1994, Ralph 2012, Köksalan et al. 2013), and finally, many-
objective analysis in which stakeholders’ objectives are elicited
after an explicit mapping of trade-offs between alternatives.  

Prior decision analytical frameworks have been mapped onto the
uncertainty and objective axes based on their underlying
approaches when addressing the lake problem as illustrated in
Figure 1. The lake problem has a long history and represents a
hypothetical lake with a nonlinear uncertain threshold response.
The lake problem seeks to proxy a broad class of environmental
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Fig. 1. The decision analytic approaches used in literature to
identify management strategies for a multistate lake with deeply
uncertain variables. Studies are classified on the basis of the
number of objectives in their problem formulation (y-axis) and
characterization of uncertainty (x-axis). The star represents the
ideal location of a management strategy. PDF = probability
distribution function.

management problems, such as fishery collapse and abrupt
climate change (Carpenter et al. 1999, Brozovic and Schlenker
2011). The problem’s narrative describes a lake near a town. The
citizens have to identify a pollution strategy that meets conflicting
objectives, such as maximizing economic gain while maintaining
a healthy lake. Here, we build on the lake problem’s legacy as a
test bed for comparing and contrasting decision-making
frameworks for environmental management. Through this
example, we first show how standard approaches limit the
stakeholders’ ability to navigate the objective-uncertainty
landscape. We then discuss avenues to overcome these limitations.
Finally, we propose a decision-analysis framework that enables
the stakeholders to tackle these challenges while contrasting it
with the more traditional approaches.

Limitations of expected utility maximization framework in
analyzing ecosystem management strategies
The ecosystem management literature in general, and analyses of
the lake problem in particular, focus on the economic value
represented through the maximization of expected utility (MEU)
as the sole objective to evaluate alternative strategies (Carpenter
et al. 1999, Maler et al. 2003, Bond 2010, Brozovic and Schlenker
2011, Horan et al. 2011, Johnson et al. 2013). These standard
approaches position themselves in the lower left side of Figure 1.
Despite its long legacy of applications, MEU faces at least two
limitations when applied to ecosystem management problems.
First, MEU evaluates alternative actions with an a priori
aggregate utility function. This limits the ability to provide
insights into the trade-offs between the often-divergent objectives
of different stakeholders, e.g., maximizing net economic benefits
versus ensuring sustainability, (Common and Perrings 1992,
Ludwig 2000, Morse-Jones et al. 2011, Admiraal et al. 2013).
Value functions are also insensitive to ecosystem attributes that
do not affect them directly, e.g., loss of species, and can suggest
strategies resulting in ecosystem collapse for nonlinear, threshold-
based systems (Admiraal et al. 2013).  

Secondly, the standard implementation of the MEU approach
assumes that all uncertainties can be represented with a single
joint probability density function, and stakeholders choose
alternatives that maximize the expected value of the merit
function across this PDF (Carpenter et al. 1999, Peterson et al.
2003, Bond and Loomis 2009). This is a poor assumption in the
presence of deep uncertainties, which emerge when unique
distributions of system parameters or forcings cannot be specified
(Knight 1921, Lempert et al. 2006). Also, it has been shown that
stakeholders are ambiguity averse. They prefer a profit of known
probability instead of a profit of unknown probability (Ellsberg
1961). Hence, stakeholders do not always choose alternatives that
maximize their expected utility. Aversion to ambiguity exists in
many application areas, including health, environment,
negotiation, and more (Becker and Brownson 1964, Curley and
Yates 1985, Hogarth and Kunreuther 1989, Kuhn and Budescu
1996, Budescu et al. 2002).

Potential solutions to limitations of expected utility
maximization framework
Moving from the single-objective formulation in the MEU
framework to a multiobjective framework can provide insights
about tensions and tradeoffs (Brill et al. 1990). If  two or more
objectives are in conflict, optimization for multiple objectives
yields many nondominated solutions that comprise the Pareto
front, or a trade-off  curve. Nondomination implies that solution
performance in any given objective cannot be improved without
a performance loss in at least one other objective. This provides
stakeholders with several alternatives instead of a single optimal
strategy (Pareto 1896, Cohon and Marks 1975). An explicit
understanding of the trade-offs across alternatives can
significantly change stakeholders’ preference of alternatives and
broaden the scope of values encompassed in the planning process
(Brill et al. 1990, Fleming et al. 2005, Kasprzyk et al. 2009, 2012,
Woodruff et al. 2013, Zeff  et al. 2014).  

Identifying Pareto-optimal strategies poses significant computational
challenges, which have severely limited the number of studies that
move beyond the MEU approach to explore a richer set of
objectives (McInerney et al. 2012, White et al. 2012). White et al.
(2012) presented such a trade-off  analysis for management of
shared marine resources between sectors, such as offshore wind
energy, commercial fishing, and whale watching. They showed
that including several objectives in the analysis prevents
significant losses (> $1 million), generates extra value (> $10
billion), provides managers with a means to incorporate sectors
that cannot be measured in monetary units (conservation),
increases transparency in the decision-making process, and helps
avoid unnecessary conflicts caused by perceived but weak trade-
offs. McInerney et al. (2012) illustrated an approach to mapping
the trade-off  curve defined by a transition of preferences between
two values that enables stakeholders to choose their desired level
of compromise a posteriori. Both studies generate trade-off
curves by varying the weights on various objectives to identify
one point on the Pareto front with each optimization (Chankong
and Haimes 1983). However, this becomes computationally
expensive, and arguably computationally infeasible, for three or
more objectives because of the factorial growth in the number of
subproblems solved when increasing objective counts (Teytaud
2007).  
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Beyond the challenge of quantifying key trade-offs, it is also
critical to evaluate the solution’s robustness to deep uncertainties
(Lempert et al. 2003, Dixon et al. 2007, Lempert and Collins
2007). When selecting a preferred trade-off  solution, stakeholders
may prefer a strategy with reduced but consistent multiobjective
performance across deeply uncertain states-of-the-world (SOWs)
versus a strategy that is optimal in the expected SOW attained by
assuming well-characterized uncertainty (Lempert and Collins
2007). Robustness analysis often employs minimization of
average loss of utility (regret) under different SOWs representing
deep uncertainty (Lempert et al. 2003, Dixon et al. 2007, Lempert
and Collins 2007). The above cited robustness studies all adopt a
univariate objective function and consistently show that single
objective performance degrades in the presence of deep
uncertainty. However, these studies are typically silent on the
implicit degradation of other potential objectives, e.g.,
multiobjective regrets. Robustness analysis based on a single
objective allows stakeholders to progress along the uncertainty
axis on Figure 1 but limits movement along the objective axis.
Defining robustness in a multiobjective context allows
stakeholders to identify solutions that perform well across
multiple objectives as well as under deep uncertainties, thus
allowing them to traverse Figure 1 along both axes and reach the
ideal location represented by the star.

MANY-OBJECTIVE ROBUST DECISION MAKING
(MORDM): A FRAMEWORK FOR CONSTRUCTIVE
DECISION AIDING
There is a growing recognition that decision analysis frameworks
need to move toward a more flexible process of problem
formulation wherein the stakeholders can add/remove objectives
as needed, explore the consequences of each formulation, and
identify novel alternatives that were not visible before (Brill et al.
1990, Tsoukias 2008, Kasprzyk et al. 2013, Woodruff et al. 2013).
We demonstrate many-objective robust decision making
(MORDM) as a potential framework to facilitate such a
constructive decision to aid in the lake problem. Many-objective
robust decision making combines the strengths of many-objective
evolutionary search and robust decision making (Lempert and
Collins 2007, Kasprzyk et al. 2013, Reed et al. 2013).
Multiobjective evolutionary algorithm searches help the
stakeholders to search the space of feasible strategies and discover
alternatives that compose optimal trade-offs whereas robust
decision making helps to test the performance of strategies under
changing assumptions of uncertainty. Many-objective robust
decision making also exploits recent technological advances in
high-dimensional visual analytics (Thomas and Cook 2005,
Kollat and Reed 2007, Keim et al. 2010) and multiobjective
optimization. The framework employs the BORG multiobjective
evolutionary algorithm (MOEA), which can provide high quality
approximations of the trade-offs for problems with nonlinear,
threshold-based dynamics across a range of objectives and
representations of uncertainty (Coello et al. 2005, Fleming et al.
2005, Hadka and Reed 2012, Reed et al. 2013, Woodruff et al.
2013).  

If  uncertainties are well characterized, a posteriori trade-off
analysis can be used to elicit which management action
stakeholders prefer based on its expected performance under
baseline uncertainty. However, when uncertainties are deep,

stakeholders might change their preferred management strategies
if  it is necessary to trade-off  high performance under the baseline
well-characterized uncertainty with satisficing multiobjective
performance across broader ensemble of SOWs representing deep
uncertainties (Simon 1959). We refer to Pareto satisficing
strategies that perform acceptably across their component
objectives as well as under deep uncertainties as robust. There is
a third possibility that none of the strategies identified using the
particular problem framing perform well under deep uncertainty,
which may indicate the need to fundamentally alter the problem
formulation. In this way, MORDM facilitates well-informed a
posteriori trade-off  decisions under well-characterized uncertainties,
minimization of multiobjective performance losses under deep
uncertainties, and problem falsification when no robust strategies
can be identified. Other robustness approaches, such as info gap
(Ben-Haim 2001) and decision scaling (Brown et al. 2012)
represent local sensitivity analyses around a small set of user
specified actions. They lack global multiobjective exploration of
alternatives and have limited ability to quantify deeply uncertain
trade-offs.  

In engineering applications, MORDM has been found to be
successful. For example, Kasprzyk et al. (2013) found that
including robustness in a multiobjective context as a decision
criterion dramatically altered the choice of an urban water supply
planning problem’s formulation, as well as its trade-off
alternatives. Woodruff et al. (2013) discovered two families of
aircraft designs using a ten-objective problem formulation that
were not evident by using prior highly aggregated goal
programming formulations. In a real multistakeholder
application, Herman et al. (2014) identified key trade-offs and
demand-based failure modes for four cities seeking to coordinate
the mitigation of their water supply risks to drought. The recent
growth in availability of open source software and comprehensive
testing of MORDM in a range of engineering applications sets
the stage for its use in a wider array of environmental problems
(Haasnoot et al. 2013, 2014, Kwakkel et al. 2014). For example,
it could be used for analyzing highly challenging environmental
management problems, such as geoengineering, climate change
adaptation, etc.

Summary of the framework
Many-objective robust decision making (MORDM) is typically
implemented in an iterative approach (Fig. 2). The first step is to
elicit stakeholders’ objectives, potential management decisions,
constraints, uncertainties, and system-planning models through
surveys or interviews. The second step is to generate alternative
problem formulations by experimenting with different objectives
or their combinations, the decisions, and system uncertainty
characterizations. Once alternative problem formulations are
identified and baseline well-characterized uncertainties are
specified, the potential trade-offs between different objectives can
be assessed in step 3. At this step, the results are presented to the
stakeholders. On viewing the trade-offs between objectives and
understanding the compromise required in one objective to
maintain a satisfactory performance in another, stakeholders can
choose one or more alternatives. If  none of the alternatives are
acceptable, stakeholders may choose to alter the problem
formulations as represented by the gray arrows between step 3
and step 2.
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Fig. 2. Flowchart for implementing many-objective robust
decision making (MORDM). Each box represents a step in the
analysis. Solid arrows show the direction of the decision-making
process. Gray arrows connect steps with the potential to alter
the problem formulations with step 2. Dashed black arrows
connect steps with the potential to alter stakeholders’
performance requirements with step 4.

Following this, the robustness component of the framework
requires an elicitation step in which the stakeholders identify the
minimum levels of system performance that they are willing to
accept. These measures can be related to modeled objectives or
constraints as well as to other measures that were not included in
the optimization process, e.g., new constraints or measures that
emerge after viewing the trade-offs. Because performance
requirements are elicited after the trade-off  analysis, stakeholders
have an understanding of the consequences of their preferred
management strategies, i.e., a posteriori decision making. Building
on this, robustness of the solutions with respect to stakeholders’
performance requirements can be assessed in step 5. Carefully
elicited measures of robustness provide stakeholders with an
understanding of the fragility of management actions under well-
characterized uncertainties. At this stage, if  very few or none of
the solutions are found to be robust, the stakeholders can be asked
to either alter their performance thresholds, e.g., reduce their risk
aversion and go back to step 4, or the problem formulations by
adding/removing objectives/decision variables, i.e., go back to step
2.  

Once robust solutions are identified under well-characterized
uncertainty, they are tested under deep uncertainty scenarios, and
their robustness is reassessed in step 6. At this stage, stakeholders
can again go back to step 2 or step 4 if  they are not satisfied with

the solution’s performance and robustness under deep
uncertainty. At the end of this process, the stakeholders should
have identified a problem formulation and associated solution
strategies that satisfy various objectives and are robust under both
well-characterized and deep uncertainty. Finally, the strategy is
implemented and the ecosystem is monitored for the impact of
the selected strategy. In case of unexpected changes in
stakeholders’ objectives, the entire process can be repeated, i.e.,
the constructive decision aiding as discussed by Tsoukias (2008).  

It is important to stress that visual analytics are a key component
of the MORDM process, without which the goal of enabling
stakeholders to explore diverse alternatives and consequences of
their different choices would not be feasible (Stump et al. 2003,
Kollat and Reed 2007, Castelletti et al. 2010, Reed et al. 2013,
Woodruff et al. 2013). In the beginning of the decision-making
process, stakeholders may only have a limited understanding of
the complex interactions between their objectives. They may also
have limited insights in the ranges of performance that are
possible across different measures. Selecting candidate strategies
after visualizing the trade-off  curve avoids the biases associated
with a priori weighting methods, which can hide key insights.

APPLICATION OF MANY-OBJECTIVE ROBUST
DECISION MAKING (MORDM) TO THE LAKE
PROBLEM
In this study, we used MORDM to address four main questions
for the lake problem:  

1. Does the incorporation of more planning objectives help to
avoid eutrophic collapse of the lake? 

2. What are the main conflicts in stakeholders’ objectives
across time and impacts on water quality? 

3. How do the strategies attained under well-characterized
uncertainty perform when re-evaluated for their robustness? 

4. What are the implications of alternative stakeholders’
preferences and definitions of robustness for managing the
lake? 

Our methods and results descriptions follow the MORDM steps
illustrated in Figure 2. In the method description, we define the
system model, associated uncertainties, etc. (step 1). Following
this, three problem formulations, P1, P2, and P3, are defined (step
2). Optimal strategies for these multiple problem formulations are
identified using the optimization framework described in the
supplementary text “Evolutionary multiobjective optimization”
(step 3; Appendix 1). We discuss the methods of estimating
robustness in the subsection on assessing robustness (step 4).  

In the results, we first present the baseline expected trade-offs in
the result subsection “Trade-off  analysis under well-characterized
uncertainty” (step 3). Next, the subsection “Navigating trade-offs
to explore diverse alternatives” illustrates how stakeholders can
visually navigate the trade-off  space and select solutions that
represent competing preferences. We then use the simulated
stakeholders’ performance requirements to assess the robustness
of solutions under well-characterized uncertainty (step 5), and
then under deep uncertainty (step 6). The various choices made
for each step in the lake problem are summarized in Appendix 2
(Table A2.1).
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Step 1. Elicit system model, decisions, uncertainties, objectives,
and constraints

The lake model
The lake problem is a hypothetical decision problem faced by a
town located near a lake (Fig. 3). The model was developed by
Carpenter et al. (1999) by analyzing the behavior of lakes. The
inhabitants of the town have to decide on the amount of allowable
pollution that can be emitted into the town’s lake for a given
planning horizon, i.e., they have to formulate a pollution control
strategy. At each time step, the town releases a certain amount of
anthropogenic pollution into the lake in the form of phosphorus.
There is also some amount of uncontrolled natural inflow to the
lake. The lake is able to remove a part of this pollution
(phosphorus) based on its properties represented by parameters
b and q. The phosphorus dynamics in the lake is approximated by:

Fig. 3. Schematic of the lake problem with variables highlighted
in bold italic letters, see text for equations and variable
descriptions.

(1)

  

where, Xt represents the (dimensionless) phosphorus in the lake
at time t (in years); at (dimensionless) represents the allowed
anthropogenic pollution in the lake at time t; b and q are
parameters of the lake model. Together, they represent the lake’s
ability to remove phosphorus through sedimentation, outflow,
and sequestration in biomass of consumers or benthic plants, and
recycle phosphorus, primarily from sediments. The last term
represents natural inflows into the lake, which are outside the
stakeholder’s control. They are represented in this study by
lognormal distributions with specified mean and standard
deviation. The allowed anthropogenic pollution flow at is the only
decision variable that can be altered to achieve various pollution
strategies.  

The lake problem formulation of Carpenter et al. (1999) is simple,
yet conceptually rich. It has the ability to represent tipping points,
nonlinearity, and deep uncertainties (Carpenter et al. 1999,
Lempert and Collins 2007). Carpenter et al. (1999) demonstrated
the impact of uncertainty, lags, etc. on the optimal strategy. In a
groundbreaking study, Peterson et al. (2003) showed that
stakeholders maximizing their expected utility can cause periodic
collapses of the lake ecosystem if  there is uncertainty about the
lake’s eutrophication thresholds. Lempert and Collins (2007)
analyzed the decision problem to identify robust solutions that
compromise optimality for acceptable performance under a

Table 1. Parameters related to the lake model, uncertainty
characterization, reliability estimation, and stochastic sampling
in BORG.
 
Category Name Parameter Value Dimensions

Lake model Phosphorus removal
rate

b 0.42 dimensionless

Steepness factor q 2 dimensionless
Number of years T 100 years
Cost multiplier α 0.4 dimensionless
Damages multiplier β 0.08 dimensionless

Utility
estimation

Discount factor δ 0.98 dimensionless
Uncertainty
estimation

Number of
stochastic samples
per distribution

N 10000 dimensionless

Reliability
estimation

Critical
phosphorous level

X
crit

0.5 dimensionless

BORG
algorithm

Stochastic
optimization
sampling frequency

- 100 dimensionless

Discretization of
decision

- 5 years

Significant precision
of decision

- 10-2 dimensionless
#%160;

broader envelope of uncertainty assumptions. Refer to Appendix
3 for details on the dynamics of the lake model. Table 1 lists the
parameter values related to the lake problem set up.

Representing key uncertainties
Uncertainty may arise in the lake model because of several
sources, e.g., parameters governing the lake dynamics and
economics, stochastic random inflows, identifying objective
functions, etc. For our study, we focused on the uncertainty in the
inflow of natural pollution into the lake. We analyzed the impact
of two types of uncertainties on the selected strategy, well-
characterized uncertainty and deep uncertainty. Uncertainty in
random inflows to the lake is modeled stochastically using
lognormal distributions (Equation 1). When the parameters of
the lognormal distribution are prespecified, it represents the case
of well-characterized uncertainty. On the other hand, if  the
stakeholders are uncertain about the characterization of the
uncertainty, in this case the parameters of the lognormal
distribution, they face a simple case of deep uncertainty.  

Deep uncertainty is incorporated into the analysis to demonstrate
the impact of a classic risk-based analysis vs. a multiple scenarios-
based robustness analysis. The use of multiple probability
distribution functions (PDFs) is similar to the approaches used
by previous studies for characterizing deep uncertainty (Epstein
and Wang 1994, Krishnamurti et al. 1999, Lempert and Collins
2007). We chose nine distributions for representing deep
uncertainty using a standard sampling technique: by moving in
increments above and below the baseline uncertainty distribution.
The mean of the baseline uncertainty distribution was chosen
such that it is half  of the mean pollution inflow under the strategy
obtained from single objective optimization. The variance of the
baseline distribution was chosen such that the variance values that
produced estimates of pollution between the next higher/lower
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Fig. 4. (a) Parameters of the lognormal distribution used for
generating deep-uncertainty scenarios. (b) Associated
lognormal distributions. The lognormal curves in (b) are
colored based on the associated circle in (a), which locates their
mean and variance. The distribution shown by the black circle
and the black dashed line in (a) and (b), respectively, is used to
represent well-characterized uncertainty. Each lognormal
distribution is used to generate time series of natural inflows to
the lake. 10,000 such random time series are generated per
lognormal distribution resulting in 10,000 states-of-the-world
(SOWs) for well-characterized uncertainty, and 90,000 SOWs
for deep uncertainty.

mean were selected. The lognormal distributions, which represent
well-characterized uncertainty, or the baseline risk scenario, and
deep uncertainty are illustrated in Figure 4. Corresponding
parameters are listed in Table 2. Each PDF is used to generate
10,000 random SOWs resulting in the 90,000 total SOWs used in
our study.

Objectives and constraints
A sole focus on economic valuation when identifying
environmental management strategies can lead to a restrictive
problem framing, which can limit the types of alternatives that
stakeholders’ explore (Brill et al. 1990). This concern has been
termed cognitive myopia in the literature exploring biases in
decision making (Hogarth and Kunreuther 1989, Brill et al. 1990).
Recent examples of how cognitive myopia can negatively
influence decisions have been published for water management as
well as for the design of complex engineered systems (Kasprzyk
et al. 2012, Woodruff et al. 2013). Many-objective robust decision
making provides a broader trade-off  context, as well as the
potential to discover a more diverse suite of management policies
to overcome cognitive myopia as suggested by Brill et al. (1990).

Table 2. Mean and standard deviation of the lognormal
distributions used in the analysis of deep uncertainty.
 
Color Mean Standard deviation

Dark blue 0.01 10-6

Blue 0.01 10-5.5

Light blue 0.01 10-5

Dark green 0.02 10-6

Green 0.02 10-5.5

Light green 0.02 10-5

Yellow 0.03 10-6

Orange 0.03 10-5.5

Red 0.03 10-5

Given its widespread use in the analysis of the lake problem, we
selected the expectation of the net present value of utility as the
first objective. We identified four additional objectives, which
represent different stakeholders in the imaginary town. Some of
these objectives are a proxy for ecosystem services, i.e., phosphorus
levels in the lake, whereas others serve as proxies for temporal
distribution of economic services, i.e., present vs. future utility.
This approach can be interpreted as representing five hypothetical
stakeholder groups whose preferences are mapped to an objective.
Thus, the following objectives were considered in the analysis:
discounted net present value of expected utility (maximize),
average levels of phosphorus in the lake (minimize), expected
utility of the present stakeholder (maximize), expected utility of
the future stakeholders (maximize), and reliability of keeping the
lake below the eutrophication threshold (maximize). These
objectives are labelled O1 to O5, respectively. A constraint was set
on the reliability objective because it captures the strong aversion
to irreversible losses of key economic and ecosystem services from
the lake that will result on eutrophication. Refer to Appendix 3 for
a detailed definition of each objective and constraint.

Step 2. Alternative problem formulations
These five objectives are used to generate three different problem
formulations that represent three potential frameworks to identify
a suitable pollution strategy for the lake.  

. Deterministic single objective (P1): this formulation
maximizes the net present value of utility (O1) ignoring all
uncertainties and identifies a single optimal management
strategy with the assumption of perfect foresight. 

. Stochastic single objective (P2): this formulation maximizes
the net present value of expected utility (O1) assuming well-
characterized uncertainties in natural inflows and identifies
a single optimal management strategy. The formulations P1
and P2 are summarized as follows: 

(2)
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In these equations, F(x) is the objective function vector to be
optimized, x is the decision vector, and N is the number of SOWs
over which O1 is optimized.  

. Stochastic five objectives (P3): this formulation identifies a
Pareto approximate front that is obtained after considering
all the objectives (O1, O2, O3, O4, and O5) simultaneously.
The Pareto approximate front consists of all strategies that
are nondominated, i.e., it is not possible to maximize one
objective without degrading the value of another across
these strategies. The formulation is as follows: 

(3)

  

Here, crel is the constraint on the reliability metric that allows only
those solutions to be feasible that perform above 0.9 in the
reliability objective.

Step 4. Define robustness based on stakeholders’ performance
requirements
Several robustness metrics have been proposed to evaluate if  a
management action remains viable across alternative SOWs
sampled for deeply uncertain factors (Starr 1963, Schneller and
Sphicas 1983, Lempert et al. 2003, Dixon et al. 2007, Lempert
and Collins 2007, Kasprzyk et al. 2013, Herman et al. 2015).
Lempert et al. (2003:52) define robustness as one that “performs
reasonably well compared to the alternatives across a wide range
of plausible futures.” They propose metrics such as regret, defined
as the difference between performance of a selected strategy in
an uncertain scenario and the optimal strategy for that scenario.
Strategies that have small average regrets are then categorized as
robust. Lempert and Collins (2007:1009) further compared
various alternatives to assess robustness: “trading some optimal
performance for less sensitivity to assumptions, satisficing over a
wide range of plausible futures, and keeping options open.”
Herman et al. (2015) provide a comprehensive assessment of
robustness measures. Although most studies agree that robustness
is related to the performance of a strategy across uncertain states
of the world, to our knowledge only a few studies cast robustness
as multicriterion regrets whereas others focus on a single objective
measure (Kasprzyk et al. 2013, Herman et al. 2014).  

In our analysis, the presence of multiple objectives necessitates
that robustness be linked with the performance across
stakeholder-defined variables as well as multiple SOWs. This
forms the basis of our robustness metric, which estimates
robustness as the percentage of total SOWs in which a strategy
satisfies performance requirements. The estimation of robustness
index requires the specification of two criteria:  

1. Performance thresholds: stakeholders identify the minimum
acceptable performance for variables of interest, a
deterioration of performance below this threshold is

considered unacceptable. These variables can be the same as
or different from objectives based on stakeholders’
requirements. 

2. Uncertainty represented through a set of states-of-the-world
(SOWs): we consider two types of uncertainty
representations: well-characterized and deep uncertainty.
Both representations of uncertainty are quantified through
a set of scenarios or SOWs sampled from lognormal
distributions of fixed (variable) parameters for well-
characterized (deep) uncertainty. 

A strategy that satisfies performance thresholds for all variables
in a given SOW scores 1 for that SOW, otherwise it scores 0.
Strategies that achieve acceptable performance across a range of
variables instead of being acceptable or high achieving in one
variable, while being suboptimal in others, are termed
“satisficing” Robustness is then defined as the fraction of the
SOWs in which a strategy achieves satisficing performance. Based
on this framing, strategies that perform reasonably well across all
variables will achieve higher robustness than those that achieve
optimal performance in one or more (but not all) variables or
those that deteriorate heavily in any variable under changing
scenarios. The detailed mathematical description of the
robustness index is provided in Appendix 3. Table 3 lists the
objective functions and problem formulations used in the study.

Table 3. The five objective functions and the three problem
formulations used in the study.
 
Objectives Uncertainty Problem

formulations

Expected utility Deterministic P1
Stochastic P2

Expected utility of present
stakeholders

Stochastic

Expected utility of future
stakeholders

Stochastic

Average levels of
phosphorous in the lake

Stochastic

Reliability Stochastic
All of the above Stochastic P3

RESULTS

Step 3. Trade-offs under well-characterized uncertainty
The decision myopia inherent in the single objective problem
formulations as well as the consequences of not including
uncertainty in the decision analysis is illustrated in Figure 5. We
obtained single optimal pollution control strategy for P1 and P2,
whereas 399 Pareto-approximate strategies were obtained for P3.
Thus, we assessed 401 strategies under well-characterized
uncertainties and across all objectives in Figure 5. The red star
represents the ideal point that shows the best possible values that
can be attained across all the objectives simultaneously. Although
the ideal solution is not actually feasible for the problem
formulations considered because of conflicting objectives, it
provides a visual reference to assess potential compromises. The
larger box in the right-hand side cube represents the range of
objective function values spanning P1, P2, and P3. The smaller
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box spans the range of objective function values spanning P2 and
P3 only. For clarity, the left-hand side cube shows a zoomed view
of the performance trade-offs for P2 and P3. Comparison between
the left and right-hand side panels indicates that the entire Pareto-
approximate front along with the green solution falls within a
much smaller region when viewed with respect to the performance
of the deterministic solution.

Fig. 5. Visualizing the alternative solution strategies for the lake
problem obtained by using the three problem formulations (P1,
P2, and P3). The formulations are: (1) maximization of utility
with no uncertainty (P1), (2) maximization of expected utility
under stochastic uncertainty (P2), and (3) simultaneous
maximization of five objectives under stochastic uncertainty
(P3). The deterministic strategy from P1 is plotted in the right
panel and the stochastic strategies from P2 and P3 are plotted
in the left panel. All solutions have been re-evaluated under
10,000 states-of-the-world (SOWs), which represent well-
characterized baseline uncertainty. Each cube represents a
three-dimensional space with each dimension mapping
performance of an objective function. Color represents the
fourth dimension, the performance of the fourth objective
function. The five objectives are maximization of the expected
utility (x-axis), maximization of expected utility of the future
stakeholders (y-axis), minimization of average phosphorus in
the lake (z-axis), maximization of expected utility of current
stakeholders (SH; color), and maximization of reliability (not
shown here since all solutions achieved reliability > 98%). The
total number of alternative strategies plotted is 401 (one for P1
and P2 and 399 for P3). The arrows indicate direction of
increasing preference for each objective and the red star shows
the ideal solution.

The strategy based on P1, i.e., deterministic utility, deteriorates
drastically in performance across all objectives when re-evaluated
under the broader scope of the uncertainty and additional
objectives. This is of potential concern because it is quite common
to assume a deterministic problem formulation in environmental
planning studies (Maler et al. 2003, Chen et al. 2012). Both P2
and P3 perform relatively well across objectives because they are
optimized over the baseline uncertainty. The deterministic P1

formulation yielded an extremely poor performance of 11% for
the reliability objective. Alternatively, the MEU solution from P2
is able to maintain high reliability (98%) under all 10,000 SOWs
representing well-characterized uncertainty. P3 strategies have the
highest performance in the reliability objective, maintaining a
reliability of 99%-100% across all solutions.  

The trade-offs between different stakeholders’ objectives are well
evident in the P3 strategies plotted under the stochastic case in
Figure 5 (left panel). Recall that each strategy in the Pareto set
represents a nondominated solution, i.e., it is not possible to
improve one objective without degrading another objective.
Hence, they encapsulate many potential objective combinations
for managing the lake that are mathematically noninferior, i.e.,
optimal trade-offs. For example, the trade-off  between expected
utility and phosphorus in the lake can be visualized by the sloping
surface of the Pareto-approximate set. Increasing expected utility
simultaneously increases the levels of phosphorus in the lake,
causing the Pareto front to move away from the ideal red star.
This is anticipated because the utility function requires some
pollution emissions to obtain economic gains.  

Simultaneous maximization of expected utility and the expected
utility of future stakeholders is only feasible in our analysis if
phosphorous levels are not actively reduced. This is indicated by
the presence of solutions near the maximum of both objectives
only on the bottom right of the plot. The intertemporal tension
between expected utility of the present stakeholders and expected
utility is also highlighted by the change of color from red to
yellow/green shades (high to low values of expected utility of
current stakeholder) along the increasing direction of the
expected utility axis. Thus, the strategy maximizing the expected
utility of the present stakeholders aims to pollute the lake at its
maximal capacity in the first time period so as to maximize near
term economic gains. Consequently, this leads to a reduction in
the expected utility, which is estimated across the entire planning
horizon. Readers are directed to Appendix 4, which illustrates the
trade-offs between each pair of objectives for P3 explicitly.  

The potential for cognitive myopia to influence stakeholders
focused solely on the utility-based formulations is evident in
Figure 5. The strategy based on P2 (termed MEU) places the
stakeholders in an extreme region of the available trade-off  space,
which can only be comprehended by contrasting it with the
multiobjective formulations. Despite a range of possible
compromises between expected utility and phosphorus in the lake,
the P2 strategy focuses solely on expected utility maximization in
exclusion of understanding environmental or explicit
intertemporal trade-offs. The P3 formulation permits exploration
of trade-offs and evaluation of the broader consequences of the
single objective P1 and P2 formulations. Had we used only P1 or
P2 to perform the optimization, their highly restrictive definitions
of optimality would severely reduce stakeholders understanding
of lake management alternatives.

Navigating trade-offs to explore diverse alternatives
We illustrate a posteriori constructive decision aiding in which
stakeholders with different problem conceptions and preferences
can falsify formulations while selecting candidate strategies of
interest. The identification of compromise solutions will
invariably involve negotiations between stakeholders with
different objectives and can also involve potentially multiple
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iterations on the problem formulations considered. Because it is
not possible to mimic the exact process of arriving at potential
compromises without a set of real stakeholders, we used a
conceptual abstraction of hypothetical stakeholders. The strategy
obtained using the deterministic utility maximization (P1) has
severe multiobjective regrets even under well-characterized
uncertainty (Fig. 5), thus this formulation has been falsified and
we do not assess it any further. The MEU strategy obtained using
P2 performed relatively well in the utility-based objectives and is
retained in further analysis as representative of stakeholders
focused solely on this objective. The 5 objective P3 formulation
yields a total of 30 subproblems (5 single objective, 10 2 objective,
10 3 objective, and 5 4 objective) whose solutions are plotted in
Figure 6. These solutions capture the trade-offs in all the
subproblems, and the projection plots show how these
multidimensional trade-offs can be projected back to reduced
dimensions to assess individual tensions between each pair of
objectives. Three solutions are selected from the 399 solutions
obtained using P3 to represent diverse stakeholders’ preferences.

Fig. 6. Illustrating the process of selecting solution strategies
from the set of 401 obtained in Figure 5. The central plot is
identical to the left panel plot in Figure 5 with identical axis
and color. Highlighted solutions are MEU (green), low
phosphorus (light blue), compromise (yellow), and utility
(orange). Marginal projections showing pair-wise relationships
between objectives are shown on three sides of the cube. The
projection plots highlight three pair-wise trade-offs between
expected utility, average phosphorus in the lake, and the
expected utility of the future stakeholders (SH).

The highlighted light blue lake management strategy, termed low
phosphorus, represents stakeholders whose sole emphasis is on
maintaining low phosphorus levels in the lake (Fig. 6). The
highlighted orange lake management strategy, termed the utility
solution, represents stakeholders that seek high values of expected
utility, expected utility of the present generation, and expected

utility of future generations. To represent a balance between the
opposing preferences captured by the low phosphorous and the
utility management strategies, we highlighted a compromise
strategy (marked in yellow) that lies at the center of the trade-off
region and represents midrange performance in all objectives.
This strategy is termed the compromise lake management
strategy. The compromise strategy was selected by maximizing
the worst performance across all objectives and attempts to ensure
that the performance across all objectives is well represented.
Although this is a simplified abstraction of the negotiation
process, the broader conceptual contribution is that Figure 6
encapsulates a suite of potential objective combinations that can
be explored explicitly, i.e., stakeholders can choose what they
prefer with the knowledge of what is possible. In real decision
contexts, stakeholders are likely to have a far more nuanced
evaluation of their objectives while seeking to facilitate
compromises (Basdekas 2014). Table 4 lists the expected objective
function values obtained for the four selected strategies under
well-characterized uncertainties.

Table 4. Performance of four distinct types of solutions from the
approximate Pareto set for the five-objective problem (P3) and
the single-objective stochastic formulation (P2) under well-
characterized uncertainty. The compromise strategy is obtained
by using the max-min approach discussed in the text. The utility
solution is identified as the one for which performance around
95% can be achieved for the expected utility (phosphorous)
objectives. The low phosphorus solution has the lowest average
concentration of phosphorus in the lake. MEU = maximization
of expected utility.
 
Objective Performance (% of range)

Average levels of
phosphorus

11.9 59.0 100.0 0.8

Expected utility 92.6 62.1 5.1 103.7
Expected utility of
present stakeholders

86.1 72.1 22.1 52.6

Expected utility of
future stakeholders

93.6 78.1 4.5 98.2

Reliability 98.6 100.0 100.0 0.0
Assigned code Utility Compromise Low

phosphorus
MEU

Step 5. Robustness analysis under well-characterized uncertainty
As a consequence of the a posteriori trade-off  analysis on P1, P2,
and P3, we selected four strategies (MEU, low phosphorus,
compromise, and utility) to represent diverse stakeholders in the
lake problem. In particular, the compromise strategy was selected
as an abstraction of the negotiation process using a simple, but
ad hoc best-worst heuristic rule. The difficulty with this rule and
other commonly employed simple multicriterion weighting
strategies, e.g., minimizing the distance from the ideal solution,
is that they assume every stakeholder would be willing to make
substantial sacrifices across all performance objectives equally
(Keeney and Raiffa 1993, Brink 1994, Köksalan et al. 2013). This
is a strongly questionable assumption for many resource-
management applications that show high levels of risk aversion
and a strong emphasis on the reliability of services (Brown et al.
2012, Admiraal et al. 2013, Kasprzyk et al. 2013, Giuliani et al.
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2014, Zeff  et al. 2014). In this study, we present a robustness
analysis that assesses strategies with respect to diverse
performance requirements under well-characterized and deep
uncertainty.  

We assessed the robustness of strategies under baseline
uncertainty using the performance requirements discussed in
Appendix 3. Note that in a real decision-support application, this
process of setting performance requirements can be repeated
several times as new insights are gained through the MORDM
analysis. Visualizing the performance of strategies with respect
to their robustness revealed that the strategies can be classified
into two disparate groups, one with very high and another with
very low robustness (Fig. 7). We found that both low phosphorus
and MEU have 0% robustness even under baseline uncertainty.
The low phosphorus solution is not robust because it fails to
satisfy the performance requirements on economic activity
whereas the MEU solution fails to satisfy the 99% reliability
requirement for avoiding the eutrophic threshold in the lake. Both
the utility and compromise solutions have 100% robustness under
baseline well-characterized uncertainty. In reference to the
broader set of trade-off  solutions, two families of solutions are
identified, distinguished by the red vs. blue colors. We found that

Fig. 7. Parallel coordinate plots showing the baseline expected
performance of solutions from P2 and P3 across five objectives
averaged across 10,000 states-of-the-world (SOWs) under well-
characterized uncertainty. The horizontal axis represents the
five objectives and the vertical axis represents the objective
function values (normalized across the range of the objective).
Solutions are colored based on their robustness, which is
defined using the performance thresholds. The best (worst)
strategy would be represented by a horizontal line running
through the top (bottom) of the plot. Note that the vertical
scale is reversed for the phosphorus objective, as minimization
is preferred. Diagonal lines represent explicit trade-offs between
objective pairs. The expected utility maximization (MEU; single
objective), low phosphorus, compromise, and utility strategies
from Figure 6 are highlighted through markers. The ranges of
objectives shown as (minb, maxb) are (0.06, 0.21), (0.03, 0.36),
(0.00, 0.04), (0.00, 0.01), and (0.98, 1.00), rounded to two
decimal places, for average phosphorus in the lake, expected
utility, expected utility of current stakeholders (SH), expected
utility of future stakeholders, and reliability, respectively.

all solutions were able to satisfy the phosphorus and reliability
performance requirements, except MEU. It is the requirement on
economic activity that mainly distinguishes the two families of
solutions.

Step 6. Robustness analysis under deep uncertainty
Once the robustness of solutions is assessed for baseline well-
characterized uncertainty, stakeholders can either go back to step
2 or step 4 (of Fig. 2) in case they do not find solutions with
satisfactory robustness. However, in this case, we are able to
identify a significant number of solutions with high robustness.
Following this, we re-evaluated the performance of all solutions
across eight varying assumptions of uncertainty that characterize
our representation of deep uncertainty (Fig. 4a). We explored the
impact of these varying distributions on the Pareto-approximate
front in Figure 8. We found that the baseline Pareto-approximate
front transitions significantly for alternative distributions
representing uncertain pollution inflow changes. The front moves
closer to the ideal point as the mean of the uncertain pollution
inflow decreases (distributions i, ii, and iii), and the impact of
altering the variance is negligible as seen from the overlapping
fronts from these distributions. When the mean of the pollution
inflow increases (distributions vii, viii, and ix), we observed severe
degradation in all objectives, not just the levels of phosphorus in
the lake, accompanied by an increased variation across alternative
assumptions of variance. This implies that there are
multiobjective opportunity costs if  the mean of the uncertain
phosphorous inflows is over-estimated and multiobjective regrets
otherwise. This information can be helpful in providing
stakeholders with an understanding of the effects of their
assumptions and inform their risk attitudes.  

The significant shift in the Pareto front across varying
assumptions of uncertainty motivates the need for assessing
robustness of solution under deep uncertainty, i.e., across 90,000

Fig. 8. Re-evaluating 399 solutions from P3 under deep
uncertainty. The color of the Pareto-approximate fronts
corresponds to the color of the lognormal distributions in
Figure 4 that the solutions are re-evaluated against. Expected
utility, expected utility of future stakeholders (SH), and average
phosphorus in the lake are plotted on x-axis, y-axis, and z-axis,
respectively. The red star shows the location of the ideal
solution and arrows indicate direction of increasing preference.
Solutions with severe performance degradation under changing
assumptions of uncertainty are indicated by an arrow.
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SOWs. The robustness analysis is carried out using the same
performance requirements as before, except for the expected levels
of phosphorus in the lake. While assessing robustness under well-
characterized uncertainty, we found that all solutions were able
to satisfy the phosphorus requirements, indicating that the chosen
performance level was too relaxed. It is possible that under deep
uncertainty, solutions remain robust despite a significant
deterioration in performance of phosphorus when compared to
the performance under well-characterized uncertainty. Because
stakeholders are likely to prefer solutions that maintain
phosphorus levels better than the worse performing solution in
the baseline uncertainty, a stricter requirement for phosphorus
was fixed at the maximum level of phosphorus obtained across
the solutions under the baseline uncertainty. This is one example
of how stakeholders can go back to step 4 from step 5 in Figure 2.  

By assessing the robustness of strategies under deep uncertainty,
we discovered that there were three families of solutions with very
low, moderate, and high robustness, respectively (Fig. 9a). For
four out of five objectives, there is a significant change in the
objective function ranges when compared to the solution

Fig. 9. (a) Parallel coordinate plots showing the performance of
solutions from P2 and P3 across five objectives averaged across
90,000 states-of-the-worlds (SOWs) under deep uncertainty.
The horizontal axis represents the five objectives and the
vertical axis represents the objective function values
(normalized across the range of the objective). Solutions are
colored based on their robustness, which is defined using the
performance thresholds. Expected utility maximization (MEU;
single objective), low phosphorus, compromise and utility
strategies from Figure 6 are highlighted through markers. The
ranges for objectives are shown as deviation from the (minb,
maxb) ranges in Figure 7. (b) The amount of allowed
anthropogenic pollution in the lake as a function of time for
selected solution strategies.

performance in the baseline case (Fig. 7). There is an overall
deterioration in the best and worst objective function values when
assessing performance under deep uncertainty. Only a small set
of solutions with high robustness (blue color) remain under deep
uncertainty, indicating that it is much harder to identify solutions
that can preserve performance under changing assumptions of
uncertainty. While under baseline uncertainty, only the economic-
activity requirement distinguished robust solutions, under deep
uncertainty it was hard to satisfy performance requirements for
all three variables. Many solutions failed to satisfy the
performance requirements for phosphorus and reliability under
deep uncertainty, therefore these requirements are now shown as
crosses on the vertical axis associated with the respective objective.
Solutions that were nearly 100% robust under baseline
uncertainty now deteriorated to reduced levels of robustness
(approx. 67%). Under deep uncertainty, three out of four selected
strategies failed to maintain high levels of robustness, whereas
only the compromise strategy remained highly robust (approx.
100%). We also find that the compromise solution is surrounded
by medium to low robust solutions. Therefore, it would be
incorrect to assume that the solutions near the robust solutions
are likely to be robust. The pollution strategies associated with
selected solutions are shown in Figure 9b.  

Finally, we show the performance of selected strategies under
deep uncertainty in terms of the water quality dynamics for the
lake, i.e., the amount of phosphorus in the lake as a function of
time (Fig. 10). This shows whether or not selected strategies
prevent eutrophication of the lake under various parameterizations
of the lognormal distributions representing deep uncertainty. We
found (no) considerable impact of altering variance of the
lognormal distribution at (low to medium) high mean values of
random pollution inflow. The compromise strategy outperforms
utility and MEU as the mean and variance of the random
pollution inflow increase. Eutrophication occurs for only 2 out of
90,000 SOWs for the compromise strategy. These cases occur
when the mean and variance of the lognormal distribution
describing random inflows are highest. These two strategies also
fail much farther into the planning period, after year 40. On the
other hand, the MEU and utility strategies fail under all SOWs
very early into the planning horizon, i.e., before year 20, when the
mean of the lognormal distribution is the highest (30,000 out of
90,000 SOWs considered), irrespective of the variance.

DISCUSSION
Many-objective robust decision making was successful in
identifying the compromise strategy, which had high robustness
in preventing eutrophic collapse of the lake in almost all cases
(Figs. 9 and 10). The multiobjective (MO) aspect of MORDM
provides a richer context for evaluating alternative problem
formulations, revealing the myopic location of P1 and P2 when
compared to P3 (Fig. 5). The trade-offs evident in Figure 6 clarify
key conflicts while providing a diverse suite of solutions to aid
stakeholders when selecting a strategy for implementation. The
trade-offs can also facilitate negotiated compromise across
conflicting objectives.  

Then using robust decision making (RDM), we were able to test
the strategies further and demonstrate additional weaknesses in
the P1 and P2 problem framings. The re-evaluation of strategies
under deep uncertainties highlighted the multiobjective regrets
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Fig. 10. (i-ix) Phosphorus in the lake for the expected utility maximization (MEU; single objective), low phosphorus, compromise,
and utility strategies under different assumptions of uncertainty in natural inflows. Main plots show the levels of phosphorus in the
lake as a function of time in years. The strategies are colored based on their robustness in Figure 9. A dashed line is used to
represent the single objective (MEU) whereas solid lines represent the three multiobjective solutions. The side plots on the right of
each main plot show the lognormal distribution of natural inflows used for estimating the phosphorus in the lake (black) against the
baseline well-characterized distribution used for optimization (gray). The plots are numbered according to the distributions in
Figure 4. Also note that the y-axis contains an axis break in the main plot for distributions i-vi.

that are likely to occur if  utility-based frameworks are used for
managing ecosystems. The utility-based strategies (utility and
MEU) not only lead to eutrophic collapse of the lake in a
significant number of cases (Fig. 10), they also failed to maintain
high levels of robustness (Fig. 9). Because economic activity is
also included in the performance requirements for robustness, this
implies that the utility-based strategies ultimately lead to a loss
of both environmental and economic goals of the stakeholders.
This is expected because the eutrophic lake will also have low
utility.  

Thus, MORDM allowed the falsification of the utility-based
problem framing in this study by exposing its failure to maintain
performance across objectives and under deep uncertainty. Only
a small set of initially available strategies were identified as robust
across a range of stakeholders’ objectives and deep uncertainties.
This shows how MORDM provides a means for the stakeholders’
to not only falsify problem formulations but also to identify new
strategies that will satisfy their diverse objectives and risk
attitudes. This has advantages over approaches that rely on single
objective functions, or focus on simplified representation of the
ecosystem to be analytically tractable (Crépin 2007, Webster et
al. 2012). Many-objective robust decision making also enhances
the robust decision-making approach by Lempert and Collins
(2007) by providing a systematic approach to generate strategy

alternatives based on multiple criteria. To summarize, MORDM
can do the following:  

. employ a large number of objective functions (up to 10)
without the need to aggregate them, thereby presenting
stakeholders with the trade-off  curve, instead of an optimal
strategy. It was not possible to visualize the trade-off
surfaces shown in the current study using any other existing
methods. 

.  be independent of the choice of ecosystem models, more
complicated models with multiple processes can be easily
substituted for simpler ones. 

. allow stakeholders to define multiobjective robustness
measures according to the level of compromises they are
willing to accept. Other approaches either do not have any
provision to account for robustness, or employ single-
objective robustness measures. 

Visual analytics form a crucial aspect of MORDM because it
would not have been possible to identify the myopia of the P1 and
P2 formulations without the high dimensional visualization in
Figure 5. The figure presents a range of Pareto-optimal solutions
that comprise solutions maximizing each individual objective
along with solutions spanning the entire range of possible trade-
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offs between these optimal values. This is in stark contrast with
the a priori weighting of different objectives, which results in a
single a solution, thus, predetermining the location of the
compromise in the multidimensional objective space (Woodruff
et al. 2013). A typical weighting-based solution would form just
one point among the large number of strategies shown in Figure
5. Similarly, a closer inspection of the Pareto front in Figure 6
allowed the selection of strategies representing a broad range of
stakeholder objectives. The transition of the Pareto front under
varying assumptions of uncertainty set the stage for a
comprehensive robustness analysis (Fig. 8). The identification of
solution groups, two for baseline uncertainty and three for deep
uncertainty, would not have been feasible without the parallel
coordinate plots (Figs. 7 and 9a). Finally, visualizing the lake
dynamics for selected strategies across all 90,000 SOWs allowed
us to understand the potential for eutrophication under various
assumptions of uncertainty.

CAVEATS AND FUTURE RESEARCH NEEDS
Many-objective robust decision making can provide several
additional insights compared to the classic expected utility
maximization approach. However, the MORDM approach in
general, and our approach in this study in particular, still face
several limitations. First, the analyzed Pareto set is approximate.
Even though this can be categorized as a weakness of this
approach, it is well-known that most real-world problems are
“wicked” and ill defined (Rittel and Webber 1973). Consequently,
small refinements of optimality are likely less important than
substantial structural changes in alternative problem framings.
Second, the strategy obtained through our analysis is not
adaptive, i.e., there does not exist a way to incorporate new
knowledge about the system within this framework yet. This
forms the basis of ongoing work, which aims to incorporate
learning within the MORDM framework. Third, our problem
framings still do not explore the full suite of uncertainties relevant
for the lake problem and rely heavily on the utility function. For
example, we do not consider the uncertainties in the lake model
itself  (structural as well as parametric), the parameters of the
utility function, etc. Although we did not perform an extensive
uncertainty analysis to incorporate all possible sources of
uncertainties, our proposed framework is well-equipped to tackle
a wide array of uncertainties as had been demonstrated elsewhere
(Kasprzyk et al. 2013, Woodruff et al. 2013).  

Finally, communicating the high dimensional Pareto fronts as
well as deep uncertainty are key challenges for the MORDM
approach. There have been many real application successes that
have used high-dimensional a posteriori trade-off  analysis in
complex environmental and engineering design contexts, which
is encouraging (Fleming et al. 2005, Ferringer et al. 2009, Reed
et al. 2013, Basdekas 2014). We hypothesize that MORDM can
change the decision making process and outcomes when
stakeholders have varied objectives, do not know a priori the levels
of compromise they can accept, and when there are deep
uncertainties about the system’s future. To be clear, we are not
aware of any formal, i.e., academic, peer reviewed, or laboratory
based, study in the field of judgment and decision making that
assesses the effect of confronting stakeholders with the kind of
multiobjective trade-off  displays shown here and that tests this
hypothesis.

CONCLUSIONS
Our results revealed the failure of utility-based frameworks in
satisfying multiple objectives of diverse stakeholders. We showed
that the strategies that aim only to maximize the utility function
will place stakeholders in an extreme region of the trade-off  space.
We term this failure as myopia and visualize this effect. We also
found that the utility strategy degrades severely in robustness
under deep uncertainty by causing eutrophication in the lake for
33% of the deep uncertainty SOWs. Our results are also in
agreement with the recent findings by Admiraal et al. (2013) that
show how traditional problem framings can fail to identify
sustainable management policies for environmental systems.
Admiraal et al. (2013) attributed this to the inability of the utility
function to capture the key features of a natural system that make
it sustainable. Our framework allows environmental planners to
move beyond utility-based approaches to methods that
incorporate (potentially multiple) indicators of sustainability into
the problem framing.  

We also demonstrated the crucial role visual analytics can play in
the decision-making process. Each high dimensional visual
allowed us to communicate the insights gained from the a
posteriori decision-making process. They allowed the exploration
of multiple formulations and the understanding of key trade-offs
under well-characterized uncertainties (Fig. 5). This also enabled
the communication of the myopia inherent in the MEU
formulation. The set of feasible alternatives were examined to
identify candidate solutions from different regions of the trade-
off  space (Fig. 6). Visualizing the robustness of strategies under
well-characterized and deep uncertainties provided a broader
understanding of strategy performance (Figs. 7 and 9). In
addition, a re-evaluation of trade-offs under deep uncertainty
motivated the need for exploring the assumptions of well-
characterized uncertainty (Fig. 8).  

We implement a constructive decision-aiding approach to identify
a robust strategy for the management of an irreversible lake. We
present a systematic procedure to implement constructive
decision aiding through MORDM. Many-objective robust
decision making discovers the compromise strategy that balances
various environmental, economic, and intertemporal objectives
not only under well-characterized uncertainty, but also under
deep uncertainty. This was made possible by employing a
comprehensive definition of robustness that assesses strategies
against minimum acceptable performance requirements under
various assumptions of uncertainty. Thus, MORDM allows
stakeholders to explore the entire trade-off  space and select a
posteriori the level of compromises they wish to attain. It was
impossible for stakeholders to discover these implicit choices
without the facility of a flexible problem framing provided by
MORDM. Embedding the requirements of sustainability within
the definition of robustness, and then applying MORDM to
search for robust (hence, sustainable) strategies, provides a
promising avenue for environmental management problems.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/7687
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Appendix 1 

The appendix includes: 

1.1 A detailed description of the multi-objective optimization procedure. 

1.2 The impact of random seeds on the results. 

1.3 Runtime dynamics of the multi-objective evolutionary algorithm. 

1.1 Evolutionary Multiobjective Optimization 

We use MOEAs to optimize the three problem formulations (P1, P2, and P3).  The 

optimization finds the optimal strategies for single objective formulations (P1 and P2) and the 

Pareto approximate front that captures the trade-offs between all objectives for P3.  Here, we use 

the recently developed and benchmarked MOEA, the BORG MOEA (Hadka and Reed 2013).  

While the advantage of using MOEAs lies in their ability to identify Pareto approximate fronts 

for multi-objective problems, the BORG MOEA can also be used to solve the single objective 

formulations such as P1 and P2.  Solving the single objective formulations (P1 and P2) yields a 

single approximately optimal pollution strategy per formulation while solving the multi-objective 

formulation (P3) yields a wide range of strategies that span the trade-off between various 

objectives.  If np3 solutions form the Pareto approximate set for P3, optimizing P1, P2, and P3 

together present the stakeholders with a total of np3+2 potential management strategies to choose 

from.  This process of generation of alternative strategies for stakeholders to compare and 

contrast forms the first part of MORDM. 

MOEAs are being used to solve many-objective problems in a rapidly growing body of 

literature as their population-based search enables the direct approximation of problems’ Pareto 

frontiers in a single optimization run (Purshouse and Fleming 2003, Fleming et al. 2005, Aguirre 

et al. 2013, Lygoe et al. 2013, Morino and Obayashi 2013, Reed et al. 2013, Woodruff et al. 

2013).  For example, while solving a five-objective problem, the MOEAs simultaneously solve 

the five single-objective problems, ten two-objective problems, ten three-objective problems, and 

five four-objective problems.  This has significant computational advantages over weight-based 

approaches to solve multi-objective problems that assign different weights to each objective and 

solve a single objective problem by maximizing the aggregated weighted objective.  In order to 

capture the entire trade-off space, such approaches need to perform the optimization many times 

by varying the weights, which becomes intractable as the number of objectives goes beyond 

three (Teytaud 2007).   

The BORG MOEA is able to solve high dimensional problems for non-linear threshold 

based models by adaptively using multiple (in this case six) search strategies.  Search strategies 

refer to the operators that the algorithm uses to search the space of feasible solutions.  Most 

multi-objective optimization algorithms employ a single search operator.  But the BORG MOEA 

simultaneously uses six search strategies and assigns higher probability of use to a search 

strategy based on its ability to identify solutions on or close to the Pareto approximate front.  

Other features include random re-start of the search when no significant progress is observed (or 

the algorithm is trapped in a local optima), epsilon-dominance archiving (Laumanns et al. 2002), 

adaptive population sizing (Kollat and Reed 2007), and a steady state algorithm structure (Deb et 

al. 2005).  Comparative analysis has demonstrated the efficacy of the BORG MOEA on a range 



of test problems as well as real world problems many of which require optimization under 

uncertainty (Hadka and Reed 2012, Reed et al. 2013).  The BORG MOEA is also relatively easy-

to-use, has an underlying theoretical proof of convergence, and is highly scalable on parallel 

computing systems, thus increasing its potential usage across a wide variety of disciplines.   

The framework used for performing multi-objective optimization of the lake problem is 

shown in Figure A1.1.  In order to optimize under stochastic uncertainty, we randomly sample 

100 SOWs out of 10000 SOWs for each evaluation of the lake problem in a function call of the 

BORG MOEA.  In any given evaluation of a lake’s pollution strategy (parameter ‘a’ in Equation 

1), the relatively small number of SOWs (100) sampled is likely to yield ‘noisy’ objective 

function values.  However, the small sample size drastically reduces computational demands.  

Evolutionary heuristics of the Borg MOEA underlying the Darwinian selection reward those 

solutions whose performance minimally varies across these small number of samples and have 

been demonstrated to be capable of maintaining high quality search in uncertain spaces (Miller 

and Goldberg 1996, Smalley et al. 2000, Reed et al. 2013).  In other words, even if the BORG 

MOEA optimizes the objective function values across only 100 randomly sampled SOWs from 

the total space of 10000 SOWs at every function call, its underlying structure enables it to 

identify strategies that perform well across the entire ensemble of uncertain futures.   

This framework therefore allows for multi-objective optimization under uncertainty (i.e., 

identifies a strategy that performs well over many SOWs drawn from the baseline well-

characterized uncertainty distribution).  The robustness analysis under well-characterized 

uncertainty tests each solution against all 10000 SOWs, serving as a validation of this 

computational savings using small number of samples.  Moreover, all results presented in the 

study are objective performance re-evaluated against all 10000 SOWs.  We employ a parallelized 

multi-master version of the BORG MOEA that runs on a cluster with 8 islands (different 

evolving populations that search the space) across 64 nodes to speed up the optimization 

procedure.  The algorithm’s search operator parameters were set at default values based on 

recommendations discussed in (Hadka and Reed 2013).  



Figure A1.1 The robust optimization framework implemented using the BORG MOEA.  This 

framework is used to optimize the various formulations of the lake model.  The procedure within 

the solid black rectangle is repeated until a stopping criterion is met.  Gray components show 

how the BORG MOEA implements optimization in the presence of stochastic uncertainty. 



1.2 Impact of Random Seeds on Resulting Compromise Strategy 

This analysis was carried out in order to establish the reliability of the results, i.e., to ensure that 

the conclusions of the study are independent of a random start of the algorithm. 

Figure A1.2 Analyzing the impact of random seeds on the results.  Using ten random seeds to start the 

BORG MOEA, ten different Pareto approximate fronts are obtained for the stochastic multi-objective 

formulation (P3).  Each Pareto approximate front is evaluated to arrive at the compromise strategy using 

the minimum tolerable windows approach.  Each strategy is associated with five objectives - expected 

utility, utility of current generation, utility of future generation, phosphorus in the lake, reliability.  The 

strategy that maximizes the minimum objective among the across all strategies is identified as the 

compromise strategy.  Figure shows the identified compromise strategies across ten random seeds, and the 

envelope bounding their lower and upper limits. 
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1.3 Runtime Dynamics of the BORG MOEA  

The appendix presents the runtime dynamics of the algorithm.  Runtime dynamics show that the 

algorithm converged to the Pareto approximate set within one million function evaluations.  

Figure A1.3 Runtime dynamics for the BORG MOEA - The figure shows the evolution of the Pareto 

approximate front with number of function evaluations (NFE) as the BORG MOEA explores the 

objective space.  Each plot shows expected utility on the x-axis, utility of future generations on the y-axis, 



amount of phosphorus in the lake on the z-axis.  The color represents the utility of the first generation.  

Reliability objective is not shown here.  The ideal point is shown as the red point on the bottom right 

corner.  Snapshots of the algorithm’s search are plotted at the following NFEs – one hundred, hundred 

thousand, one million, hundred million, and 180 million.  The figure shows that the algorithm converges 

to the Pareto approximate front within 1 million function evaluations.  For the results presented in this 

study, we ran the parallel version of the algorithm on eight nodes, each node running approximately 180 

million evaluations.  
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Appendix 2 

The appendix includes: 

1. Table summarizing the different choices made for each step in the lake problem (Table

A2.1) 

2. Table listing the various objectives analyzed before arriving at the five objective problem 
formulation (Table A2.2)

Table A2.1 Comparing various approaches towards managing a threshold-based ecosystem 

SNo. Steps in Figure 2 Choice(s) made for the lake problem 

1. Elicit system model, decisions, 

uncertainties, objectives, and 

constraints 

Model: Lake model by Carpenter et al. 

(1999) 

Decision: time series of anthropogenic 

phosphorus input to the lake 

Uncertainties: standard (10000 SOWs) and 

deep (90000 SOWs)  

uncertainty  

Objectives: five objectives described in 

Appendix 3 

Constraints: single constraint on reliability 

2. Test alternative problem 

formulations 

Three alternative problem formulations 

selected for testing 

3. Identify tradeoffs under well 

characterized uncertainty 

Tradeoffs identified by using the BORG 

MOEA described in Appendix 1 

4. Define robustness based on 

stakeholders’ performance 

requirements 

Definition adapted to satisfy multiple 

performance requirements under two 

assumptions definitions of uncertainty 

(Appendix 3) 
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Table A2.2  Various objectives analyzed before arriving at the five-objective formulation 

SNo. Objective Rationale for 

including/excluding 

References/ motivations 

1. Bentham’s 

formulation of 

utility 

(expectation 

based approach) 

Used in most analysis of the 

lake problem in literature 

Carpenter et al. (1999), 

Brozovic and Schlenker (2011) 

2. Rawl’s 

formulation of 

utility (max-min 

approach) 

An alternative definition of 

utility used in some studies, 

removed due to mathematical 

challenges in optimizing this 

objective as it tends to solely 

focus on the worst case causing 

it to depend upon the chosen 

uncertainty representation  

Rawls (1971), Tol (2000) 

3. Discounted 

financial benefits 

An attempt to break up the 

utility function into its 

components, later discarded as: 

a. discounted losses are heavily

correlated with objective (7), 

b. the standard MEU approach

is lost 

4. Discounted 

losses 

5. Undiscounted 

expected utility 

of present 

stakeholders 

Represent stakeholders 

separated in time without any 

discounting 

Brundtland and Development 

(1987), Holling (1973) 

6. Undiscounted 

expected utility 

of future 

stakeholder 

7. Average levels 

of phosphorus in 

the lake 

Represents the preference to 

solely focus on the ecosystem 

under analysis 

Admiraal et al. (2013) 

8. Reliability Represents the preference to 

prevent irreversible changes 

in multistate ecosystems 

Bennett et al. (2008), Carpenter 

and Lathrop (2008) 
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Appendix 3 

The appendix includes: 

3.1 The lake model dynamics: A detailed description of the lake model dynamics. 

3.2 Objective functions for the lake problem: A detailed description of the objective 

functions used to evaluate candidate strategies.  

3.3 Robustness metric description: A mathematical description of the robustness metric. 

3.1 The lake model dynamics 

The lake can exist in two states: oligotrophic or eutrophic.  In the oligotrophic state, the 

lake has low concentrations of phosphorus with clear water.  In the eutrophic states, the 

phosphorus concentration is high and algae can bloom.  In the eutrophic state, the lake is 

assumed to be unable to support fisheries, or tourism, and also to be severely degraded in 

aesthetic value.  It is also much harder to revert the lake from the eutrophic to the oligotrophic 

state in a short time by reducing pollution alone.  Therefore, the transition to eutrophic state has 

multiple disadvantages, besides loss of economic activity.   

Depending upon the ease with which a lake in eutrophic state can be brought back to its 

oligotrophic state, lakes can be classified as reversible, hysteretic, or irreversible.  Irreversible 

lakes are most vulnerable since it is impossible to bring them back to an oligotrophic stage by 

reducing phosphorus concentrations alone once they exceed a threshold.  In this study, the 

parameters of the lake model are such that the lake is irreversible and therefore represents an 

ecosystem with two possible states.  Once the lake turns eutrophic, it is not possible to return it to 

an oligotrophic state by reducing phosphorus inputs alone.  In reality, these conditions are most 

likely to occur in shallow lakes, lakes in phosphorus rich regions, or lakes that have received 

extreme phosphorus inputs for an extended period of time. 

In the simple model, the parameter b determines whether the lake is reversible, hysteretic 

or irreversible for a given value of the recycling parameter q.  Higher values of b suggest a lake 

that has a high capacity to remove pollution and vice-versa.  If recycling occurs, the 

concentration of phosphorus in the lake increases suddenly over a period of time, the rate of this 

change is governed by the recycling parameter q.  Higher values of q correspond to fast 

transitions and vice-versa.  We adopt this formulation from the pioneering study by Carpenter et 

al. (1999).  Carpenter et al. (1999) also provides a very careful and much more detailed 

description for the lake (model) system.  Table 1 lists the parameter values for the lake model 

used in our study.  

3.2 Objective functions for the lake problem 

We begin with a widely used objective in the analysis of the lake problem - the 

expectation of discounted net present value of utility (O1) given by,   
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In these equations, Vi (to be maximized) is the discounted net present value of utility for 

the ith SOW, ut,i is the utility, at,i is the allowed anthropogenic pollution and Xt,i is the level of 

phosphorus in the lake at time step t and ith SOW.  The economic parameters α and β capture the 

willingness to pay for pollution and the compensation lake users are willing to accept to tolerate 

a given state of the lake respectively.  α and β are fixed at 0.4 and 0.08 respectively following the 

analysis in Carpenter et al. (1999).  For simplicity, we neglect the considerable uncertainty about 

the values for the discount rate and the economic parameters (Chichilnisky 1996, Dasgupta 

2008).  Note that the case for uncertain discounting was analyzed for the lake model by Ludwig 

et al. (2005).  The discount factor, δ translates future to present utilities.  The shortened term 

‘expected utility’ is used to refer to this objective in the text and figures. 

The time index, t, varies from 1 to T years (T = 100 years), and there are N SOWs.  The 

SOWs are sampled from the lognormal distribution in Equation (1) and their total number (N) 

varies from 0 to 90000 based on the type of uncertainty being considered as described in the 

section on ‘Uncertainty’.  N is 0 for the deterministic case, 10000 for well-characterized 

uncertainty and 90000 for deep uncertainty.  The allowed anthropogenic pollution flow at is only 

decision variable that controls the objective function.  The stakeholder can change at only every 

5 years.  As a result, there are 20 planning periods across a planning horizon of 100 years and the 

optimization framework needs to identify the 20 values of at that satisfy selected stakeholders’ 

objectives.  

To contrast the strategy that maximizes the expected utility (O1), we introduce additional 

objectives that represent stakeholders that more strongly focus on the long term environmental 

quality of the lake or are varied in their inter-temporal presence.  Stakeholders often assess 

outcomes using a diverse set of objectives (Kasprzyk et al. 2009, McInerney et al. 2012, White et 

al. 2012, Herman et al. 2014).  Farber et al. (2006) for example, argue that the linking of ecology 

and economics requires identification of ecosystem services that are likely to be in conflict.  Our 

objective formulation is to a large part motivated by this assessment.   

Identifying key objectives that represent diverse stakeholders is challenging and a 

potentially iterative process.  Some of these objectives are a proxy for ecosystem services 

(recreation, fishery), while others serve as proxies for alternative perspectives with regard to 

valuing economic services (utility).  This approach can be interpreted as representing the 

perspectives of five hypothetical stakeholder groups in the fictitious town.  This resulted in the 

following objectives considered in our analysis: 

1. Minimize the average level of phosphorus in the lake (O2) – Admiraal et al. (2013) point

out that the utility function is strongly biased towards anthropogenic services which is a

key limitation in identifying ecosystem management strategies that adequately protect

environmental values.  Here, we introduce this objective to represent a regulatory



perspective related to an indicator of the health of the lake.  This objective can be 

interpreted as one key concern of individuals that aim to preserve the lake as it is and 

therefore their sole goal is to reduce the levels of phosphorus in the lake.  The objective 

function is,  
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where, Xt,i is the phosphorus in the lake at time step, t and ith SOW.  This objective aims 

to minimize the average levels of phosphorus in the lake. 

2. Maximize the expected utility of the present stakeholders (O3) – This objective represents

utility of the current stakeholders.  The objective function is
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where, U1,i is the utility of the first year in the 100 year planning horizon for the ith SOW 

and is to be maximized.   

3. Maximize the expected utility of the future stakeholders (O4) – The objective was

motivated by the definition of sustainability adopted by past studies (Holling 1973,

United Nations 1987, Cato 2009).  These definitions represent the interest of present and

future generations quite differently than the discounted expected utility framework.

While discounting has been the classic approach to analyze inter-temporal trade-offs,

several reports, even governmental decisions have been based on objectives that are not

subject to discounting.  One simple example is the design of flood defenses in the

Netherlands that are subject to an acceptable level of risk (Jonkman 2013).  Therefore, we

explicitly model inter-temporal stakeholders in separate objective functions.  To

approximate this perspective, we choose two example stakeholder groups (i) current

generation and (ii) generations in the far future.  (Far here is represented as the second

half of the planning horizon of the problem).  This objective represents the utility of

future stakeholders who exist in the last 50 years of the 100-year planning horizon.  The

objective function is
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where, U50-100,i  is the sum of undiscounted utilities for the generations spanning years 50 

to 100 in the 100-year planning horizon for the ith SOW.  This objective function is to be 

maximized. 

4. Maximize reliability (O5) – One of the goals of this study is to capture the behavior of

multi-state ecosystems when some states are far less preferable to the stakeholder.  The

reliability objective seeks to ensure that the lake remains below critical pollution levels to

avoid eutrophication.  This objective also represents key concerns of stakeholders who

either depend directly on the ecosystem services provided by the lake, or those who aim

to maintain the ecosystem itself while being able to accept some levels of pollution.  In



addition, this formulation approximates a common risk-based engineering metric that has 

been widely employed across many contexts (Hashimoto et al. 1982).  Maximizing the 

reliability of avoiding a tipping point response captures the strong aversion to irreversible 

losses of key economic and ecosystem services.  The objective is,  
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In these equations, θt,i is the reliability index which is 1 if the level of phosphorus in the 

lake (Xt,i) is below the specified critical threshold (Xcrit) and 0 otherwise.  The critical 

threshold is set at 0.5 based on the parameters of the lake model.  Xcrit is the minimum 

steady state pollution value at which the lake transitions from an oligotrophic to eutrophic 

state.  A reliability of 1 represents a pollution strategy that successfully keeps the 

phosphorus levels in the lake below the specified critical thresholds across the entire 

planning horizon and across all SOWs.  Table 3 lists the objectives used in this study. 

3.3 Robustness metric description 

We define performance requirements for key variables and a strategy that equal or 

exceeds these requirements across a range of uncertain scenarios is considered to be robust.  An 

overall measure of robustness is thus defined as – 
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Here, ri is 1 if the strategy performs above all requirements otherwise 0, Po,i is the value 

of the oth variable of interest under the ith SOW, requiremento is the performance requirement for 

the oth variable, and N is the total number of SOWs (10000 for well-characterized uncertainty and 

90000 for deep uncertainty).   

The performance requirements represent criteria that actual stakeholders may consider as 

performance levels that could not be compromised further.  For example, stakeholders are likely 

to have a factor of safety associated with the critical phosphorus levels.  Here, we fix that factor 

of safety at 0.75.  Similarly, a high reliability of keeping the lake in the oligotrophic state is 

binding due to obvious economic and environmental consequences.  Thus, the performance 

requirement on reliability was fixed at 99%.  While maintaining the lake in an oligotrophic state 

is important, a minimum level of economic activity is also required.  This level was set at 50% of 

the value of expected utility obtained in the optimal strategy for expected utility maximization 

(P2).  Our proposed definition of robustness is illustrative and the MORDM framework is highly 

flexible in accommodating alternative definitions.  The primary intent of our example is to 

emphasize that system performance requirements are themselves likely to be multi-objective, 



complex in their effects on filtering solutions, and should be carefully elicited in any real 

application of MORDM.   

Note that our proposed definition of robustness spans multiple objectives and hence, 

prevents a stakeholder heavily biased towards one objective (say utility) from selecting strategies 

that favor their preferred objective.  For the robustness index of a strategy to be high, all 

performance criteria need to be simultaneously satisfied across multiple SOWs.  So, if a high 

performance requirement is selected for the utility function, strategies satisfying it may not 

satisfy the reliability or phosphorus requirements.  Thus, it is likely that none of the strategies 

emerges as robust forcing stakeholders to revise their threshold specifications. 
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Appendix 4 

The appendix illustrates the trade-off between each pair of objectives in the P3 problem formulation. 



Figure A4.1 Trade-offs between each pair of objectives for the five-objective formulation P3. The objectives are –

phosphorus in the lake (minimize), expected utility (maximize), expected utility of the present generation (maximize), 

expected utility of the future generations (maximize), and reliability (maximize). The 399 solutions from the five 

objective optimization are plotted as gray points.  Nondominated sorting is carried out for each pair of objectives across 

the 399 points to identify the Pareto approximate front for each pair of objectives. The red diamond represents the ideal 

point.  If there is tension between the two objectives, a front is identified and plotted as the black line.  If there is no 

tension between two objectives, it implies that both can be simultaneously optimized and the ideal point is attainable, 

shown by the black circle around the red diamond. Gray shading represents the dominated region; solutions in this region 

are inferior to those at the Pareto approximate front. Note that all 399 solutions are nondominated w.r.t. each other in the 

five-dimensional objective space, but when the space is collapsed to two dimensions, the nondominated sorting is carried 

out again to identify the new Pareto front for two objectives. 
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