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Summary

Viruses are abundant, diverse and dynamic compo-
nents of the marine environments and play a signifi-
cant role in the ocean biogeochemical cycles. To
assess potential variations in the relation between
viruses and microbes in different geographic regions
and depths, viral and microbial abundance and pro-
duction were determined throughout the water
column along a latitudinal transect in the South Atlan-
tic Ocean. Path analysis was used to examine the
relationships between several abiotic and biotic
parameters and the different microbial and viral popu-
lations distinguished by flow cytometry.

The depth-integrated contribution of microbial and
viral abundance to the total microbial and viral
biomass differed significantly among the different
provinces. Additionally, the virus-to-microbe ratio
increased with depth and decreased laterally towards
the more productive regions. Our data revealed that
the abundance of phytoplankton and microbes is the
main controlling factor of the viral populations in the
euphotic and mesopelagic layers, whereas in the
bathypelagic realm, viral abundance was only weakly
related to the biotic and abiotic variables. The relative
contribution of the three viral populations distin-
guished by flow cytometry showed a clear geographi-
cal pattern throughout the water column, suggesting
that these populations are composed of distinct taxa
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able to infect specific hosts. Overall, our data indicate
the presence of distinct microbial patterns along the
latitudinal transect. This variability is not limited to
the euphotic layer but also detectable in the meso-
and bathypelagic layers.

Introduction

Microbes are the most abundant and genetically diverse
life forms on Earth (Pace, 1997; Rappe and Giovannoni,
2003; Riesenfeld et al., 2004) and the oceans cover more
than 70% of the Earth’s surface. Thus, marine microor-
ganisms account for more than 90% of the total ocean’s
biomass and are the main mediators of the marine
biogeochemical cycles (Azam et al., 1983; Di Poi et al.,
2013). In surface waters, viruses are about 10-fold more
abundant than prokaryotes (Parada et al., 2007; 2008).
However, they account for only 5% of the total marine
biomass because of their small size (Suttle, 2005).
Together with flagellates, viruses are the major cause of
microbial and phytoplankton mortality (Weinbauer et al.,
2003; Brussaard, 2004a; Pernthaler, 2005). Hence,
viruses play a major role in controlling key components of
the microbial food web and in stimulating dissolved
organic matter cycling via cell lysis and the associated
release of intracellular material from the host cells
(Middelboe et al., 1996; Middelboe and Lyck, 2002).
Viruses lack universally conserved marker genes (such
as the 16S rRNA gene for prokaryotes). Thus, viral diver-
sity only started to be explored upon the advancement of
—omics approaches (Edwards and Rohwer, 2005; Angly
et al., 2006). Generally, viral abundance co-varies with the
host abundance and activity. Several studies have shown,
however, that virus-to-microbe ratios (VMRs) vary with the
geographical location and depth in the oceanic water
column (Parada et al., 2007; De Corte et al., 2012; Yang
etal., 2014). This suggests that in marine systems, the
viral-microbial interactions and their life strategies (lytic
versus lysogenic) may change with changing environ-
mental conditions. Surprisingly, the decrease in viral
abundance towards the more oligotrophic regions and
deeper layers of the ocean is less pronounced than the
decrease in microbial abundance leading to higher VMRs
in these areas (Parada et al., 2007; De Corte et al., 2012;
Yang et al., 2014). These varying VMRs are in contrast
with the common notion that the abundance of viruses is
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Fig. 1. Location of the stations (indicated by dots) sampled in the
South Atlantic Ocean during the GEOTRACES (leg-3) cruise
covering three oceanic provinces (Longhurst, 1998): Western
Tropical Atlantic (WTRA) (0°S—10°S), the South Atlantic Gyral
(SATL) (10°S-40°S) and the Subantarctic province (SANT) (40°S—
55°S).

tightly linked to microbial abundance and activity. Thus, in
the dark and in oligotrophic areas of the ocean, the
trade-off between viral production and decay may be
substantially distorted, leading to higher VMRs than in
mesotrophic surface waters. Consequently, it remains
enigmatic which survival and reproduction (lytic versus
lysogenic) mechanisms of viruses prevail under different
trophic conditions in the ocean. It has been proposed,
however, that under oligotrophic conditions, the lysogenic
life cycle of viruses prevails, whereas under more
eutrophic conditions the lytic cycle dominates (Weinbauer
and Suttle, 1999; Weinbauer et al., 2003).

The aim of this study was to examine the distribution of
different viral populations distinguished by flow cytometry
along a latitudinal transect in the South Atlantic Ocean
and to identify the main controlling factors determining the

microbial and viral distribution pattern among different
depth layers. Path analysis was used to disentangle the
effect of the different environmental variables on the
virus—microbe interactions.

Materials and methods
Study area and sampling

Water samples were collected at 24 depth layers at 18
stations during the GEOTRACES leg-3 cruise (April 2011)
in the South Atlantic Ocean on board R/V James Cook
(Fig. 1). The study area was divided in three different
oceanic provinces: the Western Tropical Atlantic (WTRA)
(0°S-10°S), the South Atlantic Gyral (SATL) (10°S—40°S)
and the Subantarctic province (SANT) (40°S-55°S) com-
prising the Subtropical Convergence Zone (40°S—45°S)
and the Subantarctic Water Ring (45°S-55°S) (Longhurst,
1998).

Sampling was performed with a rosette sampler
equipped with 25L Niskin bottles, a conductivity-
temperature-depth system (SBE43 Seabird, Bellevue,
WA, USA) and a dissolved oxygen sensor.

Microbial and viral abundance

The microbes distinguished by flow cytometry with the
current protocol consist mainly of bacterial and archaeal
cells.

Samples for microbial and viral abundance were col-
lected at all the 18 stations at 24 depth layers (Table S1).
Flow cytometry after nucleic acid staining was used to
enumerate both viruses and microbes as described else-
where (Del Giorgio etal., 1996; Marie etal, 1999;
Brussaard, 2004b).

Depending on their respective signature in the
cytogram of green fluorescence versus side scatter, two
different microbial populations [high nucleic acid content
microbes (HNA) and low nucleic acid content microbes
(LNA)] and three different viral populations [high nucleic
acid content viruses (V_HNA), medium nucleic acid
content viruses (V_MNA) and low nucleic acid content
viruses (V_LNA)] were discriminated.

The depth-integrated microbial and viral abundances
were calculated using the equation:

$ A+ A D =D
i=1 2

where A is the microbial or viral abundance and D is the
depth (iis the index of summation and nis the upper limit
of summation). Their contribution in the epipelagic
(5—-200 m), mesopelagic (200—1000 m) and bathypelagic
(1000 — about 100 m above bottom) to the integrated
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abundance over the entire water column was calculated
as:

( integrated abundance at a specific depth layer )x 100
integrated abundance of the entire water column

Picophytoplankton abundance

Samples for picophytoplankton abundance were collected
at all the stations in the epipelagic layer (5-250 m). Fluo-
rescing photosynthetic pigments were used to enumerate
the different picophytoplankton populations by flow
cytometry. Synechococcus, Prochlorococcus and photo-
synthetic picoeukaryotes were distinguished according to
their respective signature in the cytogram of red fluores-
cence versus side scatter and versus orange fluores-
cence (Olson et al., 1993).

Leucine incorporation rates by heterotrophic microbes

Samples to measure leucine incorporation by
heterotrophic microbes were collected at eight depths
(Table S1) including the main three (epi-, meso- and
bathypelagic) pelagic zones at 15 stations. Microbial
leucine incorporation was measured on triplicate 10-40 ml
samples (depending on the expected activity) and on
triplicate formaldehyde-killed blanks (Simon and Azam,
1989). The samples and blanks were inoculated with 5 nM
SH-leucine (final concentration, specific activity 160 Ci
mmol-') and incubated in the dark at in situ temperature for
4-24 h depending on the expected activity. Subsequently,
the samples were fixed with formaldehyde (2% final con-
centration), filtered onto 0.2 um polycarbonate GTTP
filters (Millipore, Billerica, MA, USA) supported by Millipore
HAWRP filters and rinsed three times with 10 ml of 5%
ice-cold trichloroacetic acid. Thereafter, the filters were
transferred into scintillation vials and dried at room tem-
perature. Then, 8 ml of scintillation cocktail (Packard Filter
Count, Perkin-Elmer, Waltham, MA, USA) was added to
each vial and the vials were counted in a Tri-Carb 2910TR
(Perkin-Elmer, Groningen, The Netherlands) liquid scintil-
lation counter after 18 h. The obtained disintegrations per
minute were converted to leucine incorporation rates. The
cell-specific leucine incorporation rate was calculated by
dividing the bulk leucine incorporation rates by the respec-
tive microbial abundance (Kirchmam, 2001).

Particulate organic carbon (POC) flux

The POC fluxes were estimated using the equation given
elsewhere (Antia et al., 2001) relating primary production
(g C m2 per year) to the POC flux at a given depth (m), Z:
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Fz (g C m2yr)=0.1x (primary production)”” x (2) >

The primary production values used in this equation
were retrieved from the Ocean Productivity website (http://
www.science.oregonstate.edu/ocean.productivity/); han-
dling of the data is described elsewhere (Yokokawa et al.,
2013).

Statistical analysis

Because our data were not normally distributed (Shapiro—
Wilk normality test), non-parametric statistical tests were
used. Hence, Spearman rank correlation was performed
to analyse the relationship between several measured
parameters and analysis of variance (ANOVA on rank)
was performed to test for possible differences among
depth layers and geographic provinces. Regression
analysis was used to predict the relationship between the
log-transformed microbial abundance and production
versus log-transformed POC flux. Path analysis was used
to explain the linear relationships (R?= coefficient of
determination) between the biological and the contextual
physicochemical parameters. Path analysis was con-
ducted as a hierarchical multiple regression analysis,
where R? is the coefficient of determination of the linear
regression and the beta weights are the regression coef-
ficients for the specific standardized independent vari-
ables. The ratio of the beta weights is the ratio of the
predictive importance of the independent variables. The
obtained results were used to establish a path diagram
(SPSS Amos). This analysis was also applied to the data
obtained at GEOTRACES leg-1 and -2 given in De Corte
and colleagues (2012).

Results
Physical and chemical parameters

Water temperature in the individual depth layers
decreased from the WTRA to the SANT province. This
decrease in temperature was not limited to the surface
waters, but was also detectable in the meso- and
bathypelagic layers (Table S2). In the mesopelagic layers,
the highest temperature was detected in the SATL prov-
ince (Table S2). Salinity showed a similar trend as tem-
perature, decreasing towards the higher latitudes from
35.23+£0.73 in the WTRA to 34.50 £ 0.30 in the SANT
province (Table S2). Moreover, the highest mesopelagic
salinity was recorded in the SATL province.

The apparent oxygen utilization (AOU) varied with depth
and latitude. AOU amounted to 115.82 £ 25.18 umol kg™
in the bathypelagic waters (Table S2). The AOU of the
mesopelagic layers was higher in the WTRA and in the
SANT than in the SATL province (Table S2). The AOU in
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the bathypelagic layers significantly increased towards the
high latitudes (ANOVA on rank, P < 0.01) (Table S2).

Microbial and viral abundance

The abundance of microbes decreased with depth, from
an average of 3.6 £ 2.1 x 10° cells mI™' in the epipelagic
layer to 0.24 £ 0.14 x 10° cells mI~' in the bathypelagic
layer (ANOVA on rank, P<0.01) (Table S3, Fig. 2A).
Additionally, microbial abundance significantly increased
towards the higher latitudes from the WTRA to the SANT
province (ANOVA on rank, P< 0.01). This increase was
not limited to the surface layers but was detectable
throughout the entire water column (Table S3, Fig. 2A).
Microbial abundance was related to the POC flux esti-
mated from phytoplankton primary production (r? = 0.63,
P <0.01) (Fig. S1).

Combining the data from the three oceanic provinces,
we found the integrated microbial abundance of the
epipelagic, mesopelagic and bathypelagic layers
accounted for 31% + 4%, 29% + 2% and 39% =+ 3% of the
total microbial abundance respectively. Whereas the inte-
grated microbial abundance of the epipelagic realm
decreased from WTRA to SANT, i.e., towards high lati-
tudes, in the mesopelagic layers it increased towards high
latitudes (ANOVA on rank P < 0.01) (Fig. 3A, B, C).

The HNA, distinguished based on their signature in a
plot of green fluorescence versus side scatter, increased
in relative abundance with depth, from an average of
49.9% £ 6.9% in the epipelagic to 58.4% + 5.4% in the
deepest layers (r?=0.38, P< 0.001) (Fig. S2). The rela-
tive contribution of HNA to total microbial abundance did
not show any significant trend with latitude (Table S3).
The percentage of HNA was negatively correlated with
temperature, microbial heterotrophic activity and viral
abundance (Table 1).

Viral abundance exponentially decreased with depth
from 46.6 + 40.6 x 10° viruses ml~! in epipelagic waters to
6.1 £ 3.1 x 10° viruses ml~! in the bathypelagic realm.
Considering the whole water column, we found that viral
abundance was positively related to microbial abundance
and heterotrophic microbial production. Considering the
epipelagic realm separately, we also found a positive cor-
relation of viral abundance to total picophytoplankton
abundance (Table 1, Fig. S3). All three viral populations
(V_HNA, V_MNA and V_LNA) distinguished by flow
cytometry decreased in abundance with depth (ANOVA
on rank, P < 0.01) without a significant geographical trend
(Fig. S4). However, the relative contribution of the three
different populations to the total viral abundance showed
a clear geographic pattern (Fig. 4). The percentages of
V_HNA and V_MNA viruses were higher in the WTRA and
in the SANT province throughout the entire water column
than in the SATL. Conversely, the percentage of the

Table 1. Spearman’s rank correlation coefficients between different environmental and biological parameters.

POC  Prochlorococcus Synechococcus Picoeukaryotes

SH-Leu Spec °H-Leu

% V_LNA MPR

% V_MNA

% V_HNA

PA % HNA VA

Temp Depth
(m)

(°C)

-0.95
-0.61

0.59
-0.78

0.21
-0.08
0.01

—0.45
-0.51
-0.12

0.18

-0.49
0.74
0.83
0.33

0.39 -0.42

-0.91

0.61
-0.71
—-0.85
-0.29

0.51
-0.81
-0.54
—-0.62
-0.59

-0.94
0.80
-0.71
0.68
0.80
0.20
-0.31

0.62
—-0.58
—-0.45
—-0.45

0.02

0.45

0.18
-0.43
-0.22
-0.16
-0.07

-0.39

VMR

-0.13

0.32
-0.04

0.62
-0.21

—0.66
-0.38
—0.63

0.13

0.50
0.33
0.44

-0.24

0.53
0.48
0.37
0.40

0.55
0.32
0.49
0.43

0.85
0.80
0.45

0.71
0.50
0.39
0.72

Spec °*H-Leu
Prochlorococcus
Synechococcus

%H-Leu
POC

0.57

0.01 0.47 0.59
0.13 0.20 0.61

-0.16
0.32

0.13 -0.25 -0.16
-0.03 -0.15 0.37

0.30
0.42

0.50
0.52

-0.75 0.79 -0.07
-0.52 0.65 -0.32

0.34
0.22

Picoeukaryotes

Statistically significant correlation coefficients (P-value < 0.05) are marked in bold.

3H-Leu, leucine incorporation rate; HNA, high nucleic acid content microbes; MA, microbial abundance; SPEC_°H-Leu, specific leucine incorporation rate; VA, viral abundance; VMR, viral to

, high nucleic acid content viruses; V_LNA, low nucleic acid content viruses; V_MNA, medium nucleic acid content viruses.

V_HNA

microbial ratio;
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Fig. 4. Relative contribution of the three viral populations to the
total viral abundance throughout the water column along the
South Atlantic latitudinal transect: (A) HNA, (B) MNA and (C) LNA
viruses.

V_LNA population was higher in the SATL province than
in the WTRA and SANT (Fig. 4, Table S3).

The V_HNA and V_MNA populations were positively
correlated with leucine incorporation rates and bacterial
abundance, whereas the V_LNA population was nega-
tively correlated with both leucine incorporation rates and
microbial abundance. Also, the V_HNA population of the
epipelagic layer was positively correlated with total
picophytoplankton abundance and negatively correlated
with depth (Table 1).

The VMR significantly increased with depth from an
average of 15.0x15.7 in the epipelagic layer to
32.9 £ 25.1 in the bathypelagic layer (ANOVA on rank,
P <0.01) (Fig. 2B, Table S3). Moreover, the VMR varied
according to the geographic location, exhibiting the lowest
values in the WTRA and SATL province (ANOVA on rank,
P <0.01) (Table S3, Fig. 2B). The VMR was negatively
correlated with leucine incorporation rates, temperature
and with the POC flux indicating the overall depth-related
increase in VMR (Table 1, Fig. 2B).
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The integrated viral abundance over the three different
provinces of the epipelagic, mesopelagic and the
bathypelagic realms contributed 22% + 2%, 23% + 4%
and 55% + 6% to the total viral abundance respectively.
The integrated viral abundance increased in the epi-
and mesopelagic layers towards the SANT province,
whereas in the bathypelagic layers it decreased (ANOVA
on rank P < 0.01) in contrast to the microbial abundance
(Fig. 3D-F).

Leucine incorporation rates

Leucine incorporation, as a proxy of heterotrophic micro-
bial production, decreased with depth from an average of
278 + 141 pmol leu I' per day to 0.62 + 0.91 pmol leu I
per day. Significant differences in leucine incorporation
rates were also found between the different geographic
regions throughout the water column. The geographic
variation was not limited to the surface layer but was also
found in the meso- and bathypelagic layers (Table S3,
Fig. 2C). Overall, the leucine incorporation rate was also
significantly related to the POC flux [from the meso- to the
bathypelagic layers (> = 0.34, P < 0.01)] (Fig. S1).

The specific leucine incorporation rate decreased from
the epipelagic layer (61 + 33 x 1075 fmol cell™" per day) to
the bathypelagic layer (2.56 + 4.28 x 107 fmol cell™" per
day) (ANOVA on rank P<0.01). The specific leucine
incorporation rate showed a similar geographic pattern as
bulk leucine incorporation (Fig. 2C, D).

Links between biological and environmental variables

In the epipelagic layer, the variability in picophytoplankton
abundance was largely explained by temperature, nutri-
ent concentrations and salinity (r = 0.35, P < 0.01) as well
as by the percentage of HNA and LNA (> = 0.37, 1= 0.51,
P < 0.01, respectively) (Fig. 5). The variability of the three
viral populations (high, medium and low fluorescence) in
the epipelagic layer was largely explained by microbial
abundance and temperature (r?=0.47, r>=0.32,
r’=0.39, P<0.01, respectively). Conversely, in the
mesopelagic layer, the variation in the percentage of the
high and low nucleic acid containing microbial populations
was only partially explained by the environmental param-
eters (r?=0.25, r2=0.22, respectively, P<0.01). The
variation in the V_HNA and V_MNA viral populations
was largely explained by host abundance and tempera-
ture (r?=0.48, r*=0.50, P<0.01, respectively) in the
mesopelagic environment (Fig. 5), but not the variation of
the LNA viral population (r?=0.13). In the bathypelagic
layer, the links between biological and environmental
parameters were weaker than in the upper layers. Thus,
the abiotic variables only partially explained the variability
of the microbial and viral populations in the deep waters
layer (Fig. 5).
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Fig. 5. Path diagrams showing the hypothesized relationships between the biotic and abiotic parameters and the microbial, viral and
picophytoplankton compartments in the Atlantic Ocean in the three depth layers (epi-, meso- and bathypelagic). In italics (red or blue) the path
coefficients (beta weights) leading to the coefficients of determination (R?) in bold.

Discussion
Latitudinal patterns of microbial and viral populations

The microbial abundance in the different depth layers was
comparable with previous studies conducted in the North
Atlantic Ocean and in the Pacific Ocean (De Corte et al.,
2010; 2012; Yokokawa et al., 2013) exhibiting clear geo-

graphic and depth-related patterns. The latitudinal vari-
ability in microbial abundance was not limited to the
epipelagic layer but was clearly detectable throughout the
whole water column down to the bathypelagic environ-
ment (~6000 m depth).

The tight relationships found between phytoplankton
productivity, POC flux and microbial abundance and

© 2016 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd,
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leucine incorporation throughout the entire water column
have also been previously reported for other oceanic
regions, such as the North Atlantic Ocean (De Corte et al.,
2012). These relationships support the notion that the
dark ocean’s microbial activity mainly depends on sinking
particles originating from epipelagic phytoplankton pro-
duction (Nagata et al., 2000; Baltar et al., 2009).

The VMR generally increased with depth because of
the lower decrease in viral abundance with depth than in
microbial abundance. Increasing VMRs with depth were
also reported from the open North Atlantic (Parada et al.,
2007; De Corte et al., 2010) and the Pacific (Yang et al.,
2014).

The oceanic currents and the stratification of the water
column (Moore et al., 2013) limit the input of nutrients for
primary producers into the euphotic layer and conversely,
the organic carbon export into the deeper layers in the
centre of the gyre. A prevalence of lysogeny and a high
burst size have been suggested as viral survival mecha-
nisms under oligotrophic environmental conditions
and low host abundance (Weinbauer and Suttle, 1999;
Weinbauer et al., 2003; Bongiorni et al., 2005) similar to
those found in the centre of the Southern Atlantic gyre.
However, the lack of a significant increase of lysogeny
with increasing depth found in the North Atlantic (De Corte
et al., 2010; 2012) suggests that other viral survival strat-
egies such as pseudo-lysogeny should be considered as
well in the deep ocean. Another possible factor that might
contribute to explain the increasing VMR towards the
deeper layers of the ocean is the low viral decay rates
prevailing in the cold deep waters (Parada et al., 2007).
Furthermore, a recent study conducted in the Pacific
Ocean showed the presence of photosystem Il reaction
centre genes (psbA) of viral origin in the aphotic layers,
suggesting a downward flux of viruses from the euphotic
zone to the deep ocean on sinking particles (Hurwitz
et al., 2014; 2015) that could add to the high numbers of
viral particles in deep waters as compared with microbial
cells.

The three viral populations distinguished by flow
cytometry showed a clear depth-related and geographic
pattern (Fig. 3), suggesting (i) that each viral population is
likely composed of specific taxonomic groups with a spe-
cific genome size, (i) that each viral population may
consist of several taxa able to infect different hosts and
(iii) that the clear shift in the viral populations along the
transect is probably due to the water masses’ circulation
in the South Atlantic that shape the host populations and
consequently the viral communities.

Recent metagenomic studies on marine viruses
conducted in the global surface ocean showed a signifi-
cant variation of the viral communities between
different Longhurst provinces with their characteristic
physicochemical conditions and host abundance (Hurwitz
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etal, 2014; Brum etal.,, 2015) in agreement with our
results. In contrast, a study on viral morphology reported
minimal viral geographic variation (with a dominance of
non-tailed viruses) across six different oceans (Brum et al.,
2013). This indicates that the viral morphology is consid-
erably less variable than the genomic composition of viral
communities in the ocean.

The tendency of the high-fluorescence viral population
to co-vary with the eukaryotic phytoplankton abundance
has been reported for coastal waters (Brussaard, 2004b;
Brussaard et al., 2008). Only recently, however, sorting
the different viral populations (high, medium and low fluo-
rescence) and the subsequent molecular analyses
revealed that these viral populations are taxonomically
different (Martinez-Martinez et al., 2014). Particularly, the
V_HNA and the V_MNA populations mostly contained
sequences of cyanophages and eukaryotic algal viruses,
thus confirming the findings of Brussaard and colleagues
(2004b, 2008). In contrast, the V_LNA populations mostly
comprised bacteriophages such as Myoviridae and
Podoviridae families infecting mainly the bacterial clades
SAR11 and SAR116 (Martinez-Martinez et al., 2014). This
is in accordance with the high abundance of these two
morphotypes in the euphotic zones of the ocean (Brum
etal., 2013).

Virus—host interactions

Recent studies conducted in surface waters describe a
tight relation between microbial and viral abundance and
production both in coastal and in open oceans (Winter
et al., 2004; 2005; Parada et al., 2008). This positive cor-
relation has been generally interpreted as an indication of
a direct link between viruses and their hosts. Thus, it has
been assumed that the viral distribution pattern is mainly
determined by microbial abundance. However, studies
conducted in the deep ocean reported that viruses and
microbes are not always tightly coupled (De Corte et al.,
2012; Yang et al.,, 2014). The results obtained by path
analysis support the notion that the viral abundance in the
epipelagic and mesopelagic layers is mainly influenced by
host availability and physicochemical variables (Winter
et al., 2004; 2005; Parada et al., 2008; Yang et al., 2010;
Brum et al., 2013; 2015). In contrast, in the bathypelagic
layer, the relationship between microbial and viral popu-
lations was weak (Fig. 5). Thus, the variation in viral abun-
dance in the deep Atlantic cannot be comprehensively
explained by the biotic and abiotic parameters measured,
consistent with results obtained from the deep Pacific
Ocean and the Southern Ocean (Yang et al., 2014). This
latter study revealed that viral abundance decreases with
time in the Circumpolar Deep and Pacific Deep Waters,
suggesting that the decay rates exceed the viral produc-
tion rates during the deep-water mass circulation (Yang
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et al., 2014). This finding might seem contradictory to the
high VMR found in the deep ocean. However, the high
VMR could be (partly) explained by the input of viruses
associated to sinking particles originating in the euphotic
layers (Hurwitz et al.,, 2015). Several lines of evidence
suggest that microbes in the deep ocean are mainly
attached to particles (Baltar etal, 2009; Herndl and
Reinthaler, 2013). Thus, the balance between viral pro-
duction, decay and viral flux associated to sinking parti-
cles may contribute to the weak correlations found
between the viral populations and their hosts in the deep
ocean.

Conclusion

Our data revealed that picophytoplankton and microbial
abundance are the main controlling factors of the viral
populations in the epi- and mesopelagic layers of the
Atlantic Ocean, supporting the notion that the viral distri-
bution in the surface ocean mainly depends on host
availability. However, in the bathypelagic realm, viral
abundance is only weakly related to host abundance sug-
gesting that other environmental and/or biological vari-
ables may control the viral distribution and virus—host
interactions in the deep ocean. Additionally, the viral popu-
lations distinguished by flow cytometry showed a clear
geographic distribution pattern, suggesting that these
populations are composed of distinct taxa.
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