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Abstract  
Baggett et al. (2015) identified a set of three universal environmental variables to be monitored for 

evaluating all oyster habitat restoration projects: salinity, temperature and dissolved oxygen. 

Perhaps evidencing a bias towards subtidal reefs, this set of parameters omits another first-order 

environmental factor, tidal emersion. Intertidal oyster reefs can be the dominant reef habitat in 

estuaries, with clear zonation in oyster performance across the intertidal exposure gradient. 

Therefore, we propose to include tidal emersion as a fourth universal environmental parameter 

when designing and evaluating oyster restoration projects to better encompass the whole 

environmental spectrum along which reefs occur.    

 

Key words: Crassostrea gigas, Crassostrea virginica, intertidal, reef performance, subtidal, 

tidal emersion, vertical zonation. 

  

 
 

Monitoring restoration projects is essential to evaluate the success of restoring degraded 

ecosystems. Thus, we read with interest and appreciation Baggett et al. (2015), as they suggest a 

common set of metrics with standardized techniques for judging oyster habitat restoration efficacy 

regardless of initial project goal(s). As oyster reef construction is a rapidly growing field within 

restoration ecology, such a “lingua franca” is important from a practitioners point of view as it 

allows better evaluation of individual projects, but also enables scientists to draw comparisons 

Implications for Practice  

 Tidal emersion should be incorporated into 

environmental models of oyster habitat suitability to 

inform restoration guidelines that are more generically 

applicable across micro-, meso- and macro-tidal 

systems. 

 Reef development and subsequent ecosystem service 

delivery are regulated by tidal emersion in most 

intertidal habitats. 

 Subtidal and intertidal reef restoration activities can 

inform one another, but these reef types only rarely 

co-occur in the same location, largely due to the 

interactive effects of salinity and tidal emersion.  



among diverse projects and environmental contexts. This working group with experience in 

designing and monitoring oyster reef projects recommends to monitor a set of four universal 

metrics (reef areal dimensions, reef height, oyster density, and oyster size-frequency distribution) 

and a set of three universal environmental variables (water temperature, salinity, and dissolved 

oxygen). We support these three environmental parameters as dominant drivers of trends in 

universal metrics and oyster reef performance for subtidal reefs as proposed by Baggett et al. (2015). 

This set of parameters, however, omits another first-order environmental factor, i.e. tidal emersion. 

Conditions in the intertidal zone are different from the subtidal, leading to possible different 

distribution of oyster reefs within a coastal or estuarine system. Within the intertidal zone, 

settlement, growth and survival differ along the gradient from low to high intertidal, influencing 

oyster reef performance. We argue that tidal emersion should be included into the set of universal 

environmental parameters when designing and evaluating the performance of oyster habitat 

restoration projects. We demonstrate this with examples from Europe and the US. 

 

Oyster reefs occur both subtidally and intertidally, but depending on the species and the prevailing 

abiotic and biotic conditions, intertidal oyster reefs can be the dominant reef habitat locally or 

regionally. For instance, eastern oysters, Crassostrea virginica, occupy the intertidal zone within 

higher-salinity portions of estuaries along the Mid-Atlantic US, escaping from their “enemies” 

(predators, bioeroders, parasites) that thrive in the subtidal (Bahr &  Lanier, 1981). Only in more 

brackish environments, where these enemies are also less abundant, is C. virginica able to form 

subtidal reefs (Figure 1). Because areas with significant tidal amplitudes also regularly experience 

polyhaline-euhaline salinities, intertidal and subtidal reefs typically do not co-occur at local scales, 

but may at whole-estuary scales along meso- and macro-tidal coasts. 

 

In contrast to C. virginica, Crassostrea gigas does occur both intertidally and subtidally within 

northern European estuaries (Diederich, 2005). Since C. gigas relatively recently invaded these 

European estuaries, a low predation pressure could be the reason they co-occur at local scales, 

whereas the native C. virginica population needs refugia from their “enemies” along either salinity 

(as highlighted by Baggett et al., 2015) or tidal emersion axes (Johnson &  Smee, 2014).    

 

The importance of tidal emersion in the ecology of intertidal oyster reefs was well understood 

before the beginning of the 20th century (reviewed in Bahr &  Lanier, 1981). Indeed, intertidal 

zonation in oyster fitness resulting from vertical gradients in settlement, competition, predation, 

pests (e.g., bioeroders), and disease was thoroughly investigated even prior to marine community 

ecologists famously highlighting the interplay of those dynamics along rocky shores. Consider the 

following cases that highlight the role of tidal emersion in natural and restored oyster reef 

performance and development in the intertidal zone.  

 

Natural intertidal reefs of C. gigas occur from the low intertidal up to 55% tidal emersion time in 

the Oosterschelde (SW Netherlands), 50% tidal emersion time in the Wadden Sea (NW, 

Netherlands) (Walles, 2015) and 55% in the Westerschelde (SW Netherlands, unpublished data). 

In the Oosterschelde estuary a manipulative field study showed that recruitment, growth, survival 

and condition index of oysters (C. gigas) is related to tidal emersion (Figure 2), with highest 

recruitment around 36% emersion and highest condition index around 20% emersion (Walles, 

2015). Placement of artificial C. gigas reefs across a tidal emersion gradient (23-50%) in the 

Oosterschelde showed that reefs constructed at the upper boundary failed to become self-

sustainable (Walles, 2015; Walles et al., 2016).  



 

Experimental restoration in North Carolina (US) revealed lower vertical limits in the efficacy of 

oyster (C. virginica) restoration (Fodrie et al., 2014), analogous to the work in the Netherlands on 

upper vertical limits. Despite settlement rates of oysters in NC that were an order-of-magnitude 

higher on subtidal and low intertidal reefs, reefs that developed best and supported the highest 

densities of adult oysters (by over an order of magnitude) were constructed in the mid intertidal 

zone (Fodrie et al., 2014). 

 

From completely immersed to completely emersed, oyster density and growth, for both C. gigas 

and C. virginica, follow a unimodal curve defined by a lower boundary, upper growth ceiling (for 

individual oysters and whole reefs), and an optimal growth zone identifiable between 20-40% 

emersion during the average tidal cycle (Ridge et al., 2015; Walles, 2015). Therefore, oyster 

performance depends directly on tidal emersion which broadly influences reef areal dimensions, 

reef height, oyster density, and oyster size-frequency distribution (e.g., Rodriguez et al., 2014; 

Walles et al., 2015). Practically, tidal emersion is also a crucial factor for standardizing quadrat-

based data among sites and projects as quadrats may represent a range of tidal emersions even 

across a single reef (Ridge et al., 2015; Walles et al., 2016).  

 

Unfortunately, the restriction of oysters to the intertidal zone in the high-salinity portions of eastern 

US estuaries has often been ignored in recent oyster enhancement and restoration efforts. Where 

reefs would be submerged during most of the tidal cycle and salinities are high, this oversight 

relative to tidal emersion can lead to significant underperformance or failures (e.g., Ocracoke and 

Clam Shoal Oyster Spawning Sanctuaries in North Carolina (NC), U.S.A., J. Fodrie personal 

observations). Failure to include the effect of tidal emersion in guidelines of reef restoration is also 

troubling given the recent emphasis on building oyster reef sills along eroding shorelines as a 

natural alternative to hard walls (sensu, Gittman et al., in press). If these oyster reef sills are sited 

subtidally in the lower, saltier sections of US mid-Atlantic estuaries, our observations indicate that 

they will not support viable oyster populations as intended to buffer shores against sea-level rise 

(Ridge et al., 2015), even though dissolved oxygen and, in temperate latitudes, temperatures rarely-

if-ever approach the physiological limits of oysters.  

 

There are also several obvious links between tidal emersion and functional performance metrics to 

evaluate natural or restored intertidal oyster reefs. For example, changes in tidal emersion per se, 

as well as changes in oyster density (a structural proxy of performance in many instances) as a 

function of emersion, affect the rates of denitrification supported by reefs (sensu Smyth et al., 2015). 

Relatedly, depth of tidal emersion over reefs likely impacts access to reefs for large mobile 

predators such as Sciaenops ocellatus and Sphyrna tiburo, which constrains both the habitat service 

provided by oyster reefs as well as the potential for top-down (i.e., cascading) community 

regulation (Byers et al., 2015).  

 

“The oyster habitat restoration monitoring and assessment handbook” (Baggett et al., 2014) 

includes vertical position of reefs related to tide as a descriptive variable between different 

restoration projects. To create a more inclusive framework that can be used across systems 

dominated by either subtidal or intertidal reefs, we propose expanding the list of key environmental 

variables that are broadly applied to reef restoration to include tidal emersion (Table 1). When 

designing or evaluating oyster restoration projects, the interplay between salinity, temperature, 

dissolved oxygen and tidal emersion should be considered, together with the biological processes 



that go along with them. This requires a thorough understanding of the ecosystem under 

consideration, as well as the life history traits of the targeted oyster species.  
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Table 1. Tidal emersion included in the universal environmental variables table of Baggett et al. 

(2015). 

Metric Methods Units Frequency 

Water temperature  Measure above substrate close to reef using in 

situ instrumentation, a thermometer, or other 

handheld instrumentation. 

ºC Continuous (preferred), 

otherwise as often as possible 

Salinity  Measure above substrate close to reef using in 

situ instrumentation, a refractometer, or other 

handheld instrumentation 

ppt or 

psu 

Continuous (preferred), 

otherwise as often as possible 

Dissolved oxygen (subtidal only)  Measure above substrate close to reef using in 

situ instrumentation or other handheld 

instrumentation 

mg/L Continuous (preferred), 

otherwise as often as possible 

Tidal emersion (intertidal only)  Use bathymetry/topography maps, or measure 

height on top of the reef using a dGPS 

(converting elevation to emersion time) 

%  Preconstruction, within 3 

months postconstruction. 

After events that could alter 

reef morphology  

 

 
Figure 1. Conceptual model for C. virginica oyster reef fitness, along the mid-Atlantic of the US, 

as it relates to salinity, tidal emersion (relative elevation), and estuarine location based on authors’ 

observations from Georgia and North Carolina. The salinity axis labels are approximations. MLW 

= mean low water; MSL = mean sea level. In northern European estuaries, subtidal (C. gigas) reefs 

can extend in to higher-salinity environments, perhaps due to the relative absence of predators (e.g., 

oyster drills), bioeroders (e.g., Cliona spp. sponge), and other pests. 

 



Figure 2. Conceptual model of oyster reef height (Crassostrea gigas) along a tidal emersion 

gradient in the intertidal zone. The maximum height reefs can reach depend on their location in the 

intertidal as well as an upper growth ceiling. Greatest individual growth occurs at short tidal 

emersion. The number of recruitment is highest around 36% tidal emersion. Condition index (CI) 

is highest around 20% tidal emersion (Walles, 2015).  
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