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ABSTRACT: We reviewed compliance monitoring requirements in the European
Union, the United States, and the Oslo-Paris Convention for the protection of the
marine environment of the North-East Atlantic, and evaluated if these are met by
passive sampling methods for nonpolar compounds. The strengths and
shortcomings of passive sampling are assessed for water, sediments, and biota.
Passive water sampling is a suitable technique for measuring concentrations of
freely dissolved compounds. This method yields results that are incompatible with
the EU’s quality standard definition in terms of total concentrations in water, but
this definition has little scientific basis. Insufficient quality control is a present
weakness of passive sampling in water. Laboratory performance studies and the
development of standardized methods are needed to improve data quality and to
encourage the use of passive sampling by commercial laboratories and monitoring
agencies. Successful prediction of bioaccumulation based on passive sampling is
well documented for organisms at the lower trophic levels, but requires more research for higher levels. Despite the existence of
several knowledge gaps, passive sampling presently is the best available technology for chemical monitoring of nonpolar organic
compounds. Key issues to be addressed by scientists and environmental managers are outlined.

■ INTRODUCTION

Great progress has been made over the past few decades in the
field of passive sampling of nonpolar organic compounds (log
octanol−water partition coefficients (log Kow) > 4) in the aquatic
environment. With such methods, a sorption phase is exposed in
a medium (e.g., water, sediment), where it samples the target
compounds at a rate that is proportional to the difference in
chemical activity between sampler and medium, and where the
uptake kinetics are controlled by passive processes (diffusion and
ambient convection), until equilibrium is attained. By contrast,
grab sampling methods aim to quantitatively extract compounds
from a distinct water volume (e.g., solid phase extraction, liquid−
liquid extraction). Passive sampling allows measurement of the
concentrations of freely dissolved compounds (Cfree), while grab
sampling yields total dissolved concentrations (freely dissolved +
colloidally bound) or total concentrations (total dissolved +
particulate).
Various passive sampler designs have been proposed for

nonpolar organic compounds since the early 1980s (Supporting
Information, Table S1),1−7 of which solid phase microextraction
(SPME)8 and semipermeable membrane devices (SPMDs)9

were the first designs that were used on a wider scale by multiple
research and monitoring groups. Passive sampling devices (PSDs)
can be broadly categorized as single-phase samplers, which only
consist of a single polymer (e.g., low-density polyethylene) and
dual-phase samplers, which consist of a sorption phase that is
enclosed by a polymeric membrane (e.g., SPMDs, nonpolar
version of the Chemcatcher).
The recognition of the added value of passive sampling by

regulators is rather limited. PSDs are considered by European
Union (EU) regulators to be useful but complementary tools for
assessing environmental contamination under the EU Water
Framework Directive.10 The recent European Chemical Agency
workshop on contaminated sediment risk assessments noted the
utility of passive sampling for performing these assessments.11

Environmental authorities in the U.S. actively support the use
of passive sampling in environmental assessments.12−15 For
example, the U.S. Environmental Protection Agency’s (U.S.
EPA) Superfund program for the remediation of contaminated
sites has encouraged the application of passive sampling at their
sites around the country.14 The Oslo-Paris Convention for the
protection of the marine environment of the North-East Atlantic
(OSPAR) recognizes the potential of passive sampling for the

risk assessment of nonpolar compounds in sediments and water,
based on a trial survey in the OSPAR area.16−18

In January 2013, the International Council for the Exploration
of the Sea (ICES) organized a workshop that aimed to 1. review
the state of the knowledge on the applicability of passive
sampling in relation to compliance monitoring, 2. review the
links between passive sampling and chemical monitoring in biota,
and 3. identify the research needs to further apply passive
sampling in marine monitoring assessments.19 The present
review builds upon the findings of this workshop with respect to
the monitoring of nonpolar compounds in water, sediment, and
biota, considering that passive sampling of metals, polar organic
compounds, and volatile molecules require separate evaluation.
The United States perspective and experience with passive
sampling in environmental monitoring was included in what
started as primarily a European exercise in order to provide
greater scientific and regulatory robustness to this review’s
analysis. In addition, inclusion of both the European and United
States approaches provides interesting opportunities for con-
trasting the ways in which two of the largest political entities have
applied passive sampling toward a specific aspect of environ-
mental regulation. The aim of this review was 1. to evaluate the
differences in perspective between environmental managers and
passive sampling scientists with respect to the risk assessment of
nonpolar compounds in the aquatic environment, and 2. to
critically address the achievements and shortcomings of passive
sampling research in relation to the needs of environmental
managers, based on documented evidence.

■ REQUIREMENTS OF COMPLIANCE MONITORING
Amajor focus of chemical monitoring in the aquatic environment
is to assess compliance with water quality thresholds that aim to
protect aquatic organisms and humans from the adverse effects
of chemicals.20,21 Additional purposes are the assessment of
the effectiveness of emission control policies (temporal trends)
and source identification (geographical trends). The general
approach is to set concentration thresholds in environmental
matrices that offer adequate protection, and to set performance
requirements for the methods that are used to measure actual
concentrations in the environment.
The basis for monitoring programs can be national legislation

(e.g., U.S. Clean Water Act), supra-national legislation (e.g., EU
Water Framework Directive, WFD), or international treaties
(e.g., regional seas conventions, such as OSPAR, and the
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Canadian and United States International Joint Commission for
the protection of transboundary waters). In this review, we take
chemical monitoring in the U.S., EU, and the North-East Atlantic
as examples to discuss the performance of passive sampling for
demonstrating compliance with legally defined concentration
thresholds. We selected these three regions because the status
of chemical monitoring is sufficiently similar to identify general
requirements, yet sufficiently different to illustrate that various
approaches toward compliance monitoring are possible.
Concentration Thresholds. Compliance monitoring of

European inland surface waters, estuaries, groundwater, coastal
waters, and territorial waters is regulated by the WFD,22 the
directive on Environmental Quality Standards (EQSs),23 and the
directive on Technical Specifications for Chemical Analysis and
Monitoring of Water Status.24 Alongside these legally binding
directives, technical guidance documents have been published
for the implementation of the WFD. These documents provide
guidance for defining quality standards (QS) for the protection
of freshwater and saltwater pelagic and benthic communities, top
predators, and humans, proposing to adopt the most protective
QS as overall EQS.20 To compare biota QSs (μg kg−1wet weight)
with those derived for the protection of pelagic communities
(μg L−1) the former have to be converted to equivalent water
concentrations using appropriate bioaccumulation factors
(BAFs).
For nonpolar organic compounds, the EQS guidance

document states that laboratory toxicity and bioconcentration
tests usually contain low levels of total organic carbon (TOC) in
the test system, and that the resulting EQSs for water therefore
refer to concentrations of dissolved compounds.20 However, the
EQS directive 2013/39/EU stipulates that the EQS for organic
compounds refer to “total concentrations in the whole water
sample”, for unspecified reasons.23

Technical guidance documents on chemical monitoring of
surface waters10 and sediments/biota25 state that passive sampl-
ing can be used as a complementary method. The WFD allows
member states to use alternative matrices for compliance
monitoring if they define and use EQS values that are at least
as protective as those specified in the EQS directive. However,
the legally binding definition of organic contaminant EQSs in
terms of total concentrations remains an obstacle for the use of
passive sampling in compliance checking in the EU.
The key drivers in compliance monitoring of marine, coastal

and transitional waters in the North-East Atlantic Ocean and
its adjacent seas are the OSPAR Coordinated Environmental
Monitoring Program (CEMP),26,27 the EU Marine Strategy
Framework Directive (MSFD; coastal and marine waters only),28

and the WFD with its daughter directive on EQSs (transitional,
coastal, and territorial waters).23 Regulations for chemical
monitoring under the MSFD are still under discussion, but it is
assumed that they will be based on those already established
for the WFD, merged with the monitoring approaches by
OSPAR and other regional seas conventions in the European area.
Thresholds for the protection of marine systems are named
Environmental Assessment Criteria (EAC) within OSPAR.
These EACs are primarily based on aqueous toxicity data that
have been recalculated to concentrations in sediments and biota
using equilibrium partitioning (EqP) models.29 OSPAR recog-
nizes the relevance of Cfree of nonpolar compounds for toxicity
assessment, but requires contracting parties to monitor these
compounds in biota and sediment, because these compounds
cannot easily be measured in seawater due to their low con-
centrations.30 EACs are not legally binding, but instead are based

on consensus among contracting parties, and can be adapted
when additional knowledge becomes available.31

Chemical monitoring for checking compliance with National
Pollutant Discharge Elimination System (NPDES) permit limits
and for monitoring of ambient waters in the U.S. are regulated by
the CleanWater Act (CWA). The CWA requires States to define
Water Quality Standards (WQSs), which describe the designated
uses of a water body, narrative and/or numerical Water Quality
Criteria (WQC) that protect these uses, and antidegradation
policies. Under Section 304(a) of the CWA, U.S. EPA publishes
recommendations for WQC. States can either adopt these
recommendations, modify them to account for site specific
conditions, or use other scientifically defensible methods to
develop their own WQC. State-adopted WQSs should be
reviewed every three years, and are subject to approval by the
federal EPA.32 In some cases the EPA can promulgate WQC for
the states. WQC aim to protect sensitive species, similar to EQSs
under the WFD.21 States monitor to assess attainment of WQS
and identify impaired waters. If a waterbody is impaired,
discharges are restricted to a total maximum daily load (TMDL).

Method Requirements. In the U.S., acceptable chemical
analysis methods for compliance monitoring of effluents under
the NPDES are listed in the Code of Federal Regulations, title
40, part 136, but a permitting authority may specify the use of
alternative methods.33 Passive sampling may not be the first
method of choice for this type of compliance monitoring, because
discharge permits are defined as TMDLs (i.e., concentrations in
total effluent, multiplied by the daily effluent discharge volume).
By contrast, method requirements for ambient water monitoring
by the States are essentially unregulated by federal law, but instead
result from the interaction between the U.S. EPA and a given
State’s department of environmental quality on how to assess
water quality in relation to the WQC, using the best available
practices. The Consolidated Assessment and Listing Methodo-
logy (CALM)34 aims to continuously improve the quality of
ambient water monitoring, using chemical, biological, and
toxicological data, among others.
OSPAR and EU prescribe a number of criteria for chemical

analysis and sampling to ensure that valid and comparable
data are generated within monitoring programs (Table 1).24,27

Methods have to be documented and validated, and a quality
assurance and control system needs to be in place to monitor
and control data quality. WFD related methods have to be in
accordance with EN/ISO/IEC 17025. Reference materials
should be used, and laboratories must participate in proficiency
testing schemes for the analytes of interest. Legally binding
minimum performance requirements for chemical methods used
in WFD monitoring are that the measurement uncertainty be
≤50% at the level of the EQS, and the limit of quantification
≤30% of the EQS.24 OSPAR does not specify quantitative
requirements for these parameters, but requires that background
assessment concentrations (BACs) for the target analytes in the
sampled matrix be available. These BACs are derived from
the mean and variance of long-term (10-year) concentration data
for remote areas, as reported by participating laboratories.
Measured concentration values are considered to be above back-
ground unless there is statistical evidence showing that it is near
background.24,27

Method requirements for the application of PSDs in chemical
monitoring of nonpolar compounds in a regulatory context are
fulfilled to varying degrees (Table 1). Detailed guidelines for
the use of PSDs are available for silicone sheet samplers35 and
semipermeable membrane devices.2,36,37 ASTM International
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developed a standard method for SPME of polycyclic aromatic
hydrocarbons (PAHs) in pore waters.38 Several interlaboratory
studies that demonstrate method consistency are available, and
are discussed below. A proficiency testing scheme organized by
QUASIMEME is operational (www.quasimeme.org). Certified
reference materials (CRMs) are presently not available, but
CRM preparation for passive sampling could be easier than
for batch water sampling.39 Data quality can be assessed from
repeated analysis of CRMs (when available) or reference
materials prepared by laboratories in-house, similar to current
practice for the analysis of sediment and biota samples. Although
Table 1 is focused on passive sampling in water, it can be
envisioned that similar requirements exist for passive sampling
in sediments.
In the U.S. context, ambient WQC for the protection of

aquatic life against nonpolar compounds are based on toxicity
tests with low organic carbon concentrations in the test water,
and hence are essentially based on Cfree, albeit implicitly.40

WQC for the protection of human health are derived from
chemical uptake by consumption (drinking water, fish/shellfish).
Concentrations in fish/shellfish that are considered to be
sufficiently protective are converted to aqueous concentrations
using (preferably field derived) BAFs that are based on Cfree.

41

However, for use in WQC development, to be consistent with
water quality monitoring data, these BAFs are converted back to
values based on the total concentration.42,43 Thus, human health
WQC cannot be directly compared with passive sampling results.
Consequently, while regulators in the U.S. recognize the
importance of Cfree, the actual water quality monitoring regula-
tions do not yet use this parameter. OSPAR also aims to define
water standards on a Cfree basis.

30 Quality standards in the EU
are commonly defined as Ctotal, but EU regulations allow the use
of standards for other matrices if these offer an equal level of
protection. Generic suspended particulate matter (SPM)

contents of 15 mg L−1 (fresh waters) and 3 mg L−1 (marine
waters) are recommended to convert between Cfree, Ctotal and
concentrations in SPM.20,44,45 An ISO standard for the
deployment, retrieval, and analysis of passive samplers is
available,46 but guidance that is specific to particular sampler
types and contaminant groups (e.g., polychlorinated biphenyls -
PCBs, PAHs, polychlorinated dibenzo-p-dioxins/furans - PCDD/
Fs) may have to be added in the future. This ISO standard also
includes quality control measures to assess recoveries, precision,
and method detection limits. Guidance for the selection,
validation (QA/QC) and deployment of PSDs for contaminated
sediments is also available.47

Differences in the monitoring approaches between the
U.S. and OSPAR on one hand, and the EU on the other, will
likely affect the further application of passive sampling in
a regulatory context. In the U.S. context, States, U.S. EPA, and
the research community cooperate in the CALM approach, to
generate monitoring data that are best fit for a given purpose.34

Also OSPAR promotes the use of new technologies to amend
existing methods for chemical monitoring.48 By contrast,
monitoring in the EU is strongly regulated in legally binding
directives that define EU-wide EQSs and specify method
requirements for compliance checking with these EQSs.
To promote adoption of passive sampling into the implementa-

tion of compliance monitoring regulations, there is a critical need
to get beyond passive sampling as a purely scientific endeavor and
begin to standardize PSD type selection, deployment, chemical
analysis, and data reporting. For example, in theUnited States, the
lack of standardized methods has impeded greater acceptance of
passive sampling in regulations. The following discussion reviews
the progress made with passive sampling with regard to use in
water, sediments, and biota. The discussion also emphasizes
the areas in which passive sampling needs more work before
standardizing can be successfully initiated.

Table 1. Formal Requirements forMethods Used in Chemical Monitoring of Nonpolar Compounds inWater, for the Coordinated
Environmental Monitoring Programme (CEMP) of the Oslo-Paris Convention for the Protection of the Marine Environment of
the North-East Atlantic (OSPAR), the EU Water Framework Directive (WFD), and the U.S. Clean Water Act (CWA)

required by

requirements OSPAR WFD CWAa present status for passive sampling

guidelines for passive sampling in water yes yes yes available for silicone samplers35 and SPMDs2

insufficiently available for low-density polyethylene,
poly(oxymethylene), and other PSDs

proficiency testing schemes (PTS) and
interlaboratory studies (ILS)

yes yes yes PTS for silicone samplers is operational (www.quasimeme.org)
(PTS) (PTS) (ILS) some interlaboratory comparisons available49−51

certified reference materials yes yes no no CRMs available

accuracy assessment yes yes yes general considerations available for nonpolar samplers52

background assessment concentrations yes no no available for PAHs, PCBs, HCB, DDE53

water quality standards yes yes yes OSPAR: in development (to be defined as Cfree)
(EAC) (EQS) (WQC) EU: defined as Ctotal

USA: defined as Cfree and Ctotal

ISO standard yes yes no ISO 5667−23:2011(E)46

QA/QC system yes yes yes QA/QC considerations available in the
(ISO 17025) (EPA guide-lines)b guidelines above, and in ISO 5667−23:2011(E)

aAmbient water monitoring. bwww.epa.gov/quality/qa_docs.html.
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■ PASSIVE SAMPLING IN WATER

Target Compounds. The capability of PSDs for measur-
ing aqueous concentrations of most nonpolar compounds
(log Kow > 4) that are listed by OSPAR, U.S., and EU has been
demonstrated, with detection levels in the low picogram per liter
range.54 While most studies have focused on PAHs and globally
regulated contaminants such as hexachlorobenzene (HCB), PCBs,
organochlorine pesticides, PCDD/Fs, and polybrominated
diphenyl ethers (PBDEs),55−58 a number of hydrophobic com-
pounds of emerging concern have also been sampled by PSDs,
including triclosan,57,59 alkylphenols,59 pyrethroids,60−62 cyclic
methylsiloxanes,63 and organophosphates.58

Kinetic and Equilibrium Sampling Stages. Understand-
ing the difference between the kinetic and the equilibrium
sampling stage is important for a proper evaluation of the
information that PSDs can and cannot provide. During the initial
(kinetic) sampling stage, PSDs can be regarded as an infinite sink,
and accumulated amounts of target compounds reflect the time
weighted average concentrations over the deployment period.
During prolonged exposure, the compounds gradually attain
their equilibrium concentrations. All samplers go through a
kinetic sampling stage, but equilibrium is not always reached on
practical time scales for compounds with high sampler-water
partition coefficients (Ksw), particularly for passive sampling in
the water column, where the sampling rates (Rs) are usually
smaller than for passive sampling in pore waters or biota.64−68

Equilibration times are generally shorter at higher water flow
rates, lowerKsw, and higher area/volume ratios of the sampler,2,69

and typically range from days (e.g., endosulfan, log Kow = 4) to
years (e.g., benzo[ghi]perylene, log Kow = 6.5) and beyond.54

Whether or not fast equilibration is desirable depends on the
research question: long equilibration time scales may be desirable
when a time-weighted average concentration is aimed for.
Fast equilibration may be desired when studying the extent of
equilibrium between pore waters and overlying waters, because
equilibrium concentrations in the samplers can be directly
compared (i.e., require no knowledge of the sampling kinetics).
The options for optimizing equilibration time scales are limited
to manipulation of the area/volume ratio, the choice of sampler
material (higher or lower Ksw for a particular compound),
and flow rate.70,71

Uptake Rate Control. Uptake rates of nonpolar compounds
by PSDs can be limited by transport through the water boundary
layer (WBL) or by the polymer, and the relative importance of
these transport steps can be estimated from the polymer−water
partition coefficient Kpw and the mass transfer coefficients of the
WBL (kw) and the polymer (kp). Specifically, kw/(Kpwkp) ≪1 is
indicative of WBL controlled uptake and values ≫1 indicate
polymer control.2,69,72 Uptake rates of highly hydrophobic
chemicals are usually limited by transport through the WBL, and
weakly decrease with increasing molecular size. Polymer-
controlled uptake is characterized by a strong decrease of Rs
with decreasing hydrophobicity.2,73−75 Models for kp in single-
phase PSDs typically rely on the assumption that kp equals the
diffusion coefficient of the chemical in the membrane divided by
the half-thickness of the polymer.76−78 However, these models
are approximate, because kp decreases with time as the analytes
diffuse further into the polymer, until a steady state value is
attained.69,79 The compounds that show polymer controlled
uptake typically have low Ksw values, and reach equilibrium
relatively quickly. Models for partial and full polymer-controlled
uptake are available,80 but are usually not needed for passive

sampling of the water column, possibly with the exception of
short-term exposures,81 very high water flow rates71 and in the
case of polyoxymethylene (POM) samplers, for which diffusion
coefficients in the polymer are more than an order of magnitude
smaller than in low density polyethylene (LDPE) and 3 orders
of magnitude smaller than in silicone.77,79,82,83 In addition,
a comparison of silicone and LDPE samplers suggests that the
uptake of PBDEs by LDPE may be polymer controlled to some
extent.58

For WBL controlled uptake, hydrodynamic theory predicts kw
to be proportional to aqueous diffusion coefficient (Dw) to the
power 2/3.84,85 Dw has been correlated with molar volume,
molecular weight, Kow, and Ksw, and all of these models predict
a similar decrease of Rs with increasing molecular size.78 For
example, the Rs of PCB180 is expected to be 1.2−1.5 times
smaller than the Rs of pyrene, depending on the model.86 The
weak dependency of Rs on molecular size was experimentally
confirmed in some studies,75,78 but in other studies a stronger
dependency was observed, which was modeled empirically as a
polynomial regression of log Rs versus log Kow.

2,87 The stronger-
than-expected decrease in Rs with increasing Kow has been
attributed to experimental artifacts due to sorption of analytes
to dissolved organic matter in calibration setups,88 and the use of
these models is therefore not recommended.
A value of log Kow = 4.5 is often used as a reference for the

transition from polymer-controlled to >50% WBL-controlled
uptake.2,81,89,90 However, this is an approximate value only,
because the transition value depends on the hydrodynamic
conditions, the diffusion coefficient in the polymer, and the
polymer thickness. Thus, the transition to WBL-controlled
uptake has been observed for SPMDs at logKow = 5.5 at flow rates
of 90 cm s−1,75 and for uptake by LDPE samplers in sediment
slurries at log Kow = 6.5.91 The >100 times higher diffusion
coefficients in silicone compared with LDPE may explain WBL-
controlled uptake by silicone samplers for all compounds with log
Kow values >3.

78,82

In Situ Calibration. The dependency of Rs on water flow
velocity makes it necessary to either control the flow rate near
the sampler5,92,93 or to calibrate the in situ uptake kinetics using
the dissipation rates of performance reference compounds
(PRCs).52,94−96 The PRC method is based on the consideration
that the magnitude of Rs results from exposure-specific effects
(flow, temperature, biofouling) and compound-specific effects
(diffusion coefficients, Ksw). In the original application of the
PRC method, Rs were calculated for individual PRCs that show
sufficient (e.g., > 20%), yet not complete dissipation, in order to
determine the exposure-specific effect. An Rs model was used to
calculate the Rs of compounds in the high-hydrophobicity
range, for which PRCs show insufficient dissipation.2 In a later
application, the exposure-specific effect was determined by
nonlinear least-squares regression based on all PRC dissipation
data, including PRCs that show insignificant or complete
dissipation,52 thus allowing to determine uncertainties in Rs.
The PRC method requires the use of an Rs model for calculating
the Rs for compounds in the hydrophobicity range where PRCs
show insignificant dissipation. Thesemodels can be empirical,2,87

semiempirical,75 or mechanistic.2,52,78 The use of mechanistic Rs
models is recommended, because the empirical models likely
suffer from experimental artifacts, and semiempirical models
must first be calibrated for particular contaminant classes. In a
special application of PRCs, the degree of equilibrium for target
analytes is calculated directly (i.e., without the use of any model)
from the fractional dissipation of isotopically labeled analogues.93
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In a modification of the latter approach, equilibrium attainment
of target analytes is estimated from an empirical linear correla-
tion of 100 minus the percentage of retained PRCs versus
log Kow.

97 This approach may not be ideal, because the degree
of equilibrium is not a linear function of log Kow, and because
log Ksw - log Kow correlations may be compound class
dependent.98,99 A relatively widespread idea is that PRCs must
be mass-labeled analogues of the target analytes,100 but although
this criterion is sufficient, it is too restrictive. Instead, the only
requirement is that the PRCs should follow the same Rs model as
the target analytes.101

In situ calibration is not necessary for sampler designs in which
the mass transfer resistance of the membrane is much larger
than that of the water boundary layer; for example, membrane-
enclosed sorptive coating (MESCO)102 and ceramic dosimeters.103

This approach inevitably reduces the Rs and increases the
detection limits, and therefore restricts the use of these samplers
to highly contaminated sites.
Sampler-Water Partition Coefficients. The accuracy of

Ksw values is a key issue for compounds that reach the equilibrium
sampling stage, since the errors in the estimated Cfree are linearly
proportional to the errors in Ksw. For compounds that remain in
the kinetic sampling stage, Rs is the critical factor, and errors in
Cfree measurements depend strongly on the errors in the Ksw of
the PRCs, and not on the Ksw of the target analytes themselves.

52

Dissolved salts cause log Ksw to be higher in seawater (ionic
strength = 0.72 mol L−1) than in fresh water by about 0.1−0.2 log
units, and a temperature decrease from 25 to 5 °C causes an
increase in log Ksw by about 0.1−0.7 log units.

76,104 Hydrostatic
pressure may have an effect on log Ksw that becomes noticeable
below a few hundred meters water depth.105

The experimental determination of Ksw values of nonpolar
compounds is not a trivial task, as is evidenced by the high
interlaboratory variability of 0.2−0.5 log units.76,90,106 This gives
rise to errors in the estimated Cfree by factors of 1.6−3.
We recommend to use stricter protocols for the determination of
Ksw and, for quality control purposes, to include a limited number
of compounds with well-established Ksw values for new Ksw
experiments. The selection and use of reference polymers can
also be considered for documenting the accuracy of Ksw
determinations. Further, considering that polymer−polymer
partition coefficients are within 1 order of magnitude from unity,
and therefore easier to measure than Ksw, the use of a reference
polymer may help to harmonize Ksw values for different
polymers, and may help to better address between-manufacturer
and between-batch variability of the polymers used. Application
of this approach showed that the manufacturer effect on Ksw for
five silicone sheets ranged between 0.2 and 0.6 log units, and that
the Ksw for three batches from the same manufacturer differed
less than 0.09 log units98

Due to the difficulty of measuring Ksw, several authors have
suggested to report equilibrium concentrations in a re-
ference polymer (e.g., poly(dimethylsiloxane) - PDMS) or
reference lipid as target parameters in addition to Cfree, because
these concentrations are also linearly proportional to chemical
activity.107−109 In this approach, Ksw is not needed since the
monitoring results are reported as concentrations in the reference
polymer or the reference lipid. Concentrations in the re-
ference lipid are calculated from concentrations in the polymer
and the polymer−lipid partition coefficients. The latter are easier
to measure than Ksw due to their lower values. The conversion
of aquatic toxicity thresholds from Cfree to equilibrium con-
centrations in a reference polymer allows the use of these

concentrations within a regulatory context. Although this
approach is scientifically sound, it requires a change of paradigm
that is not easily accomplished, and accurate Ksw values are
still needed for the conversion of toxicity data that have been
published as total dissolved concentrations or Cfree. Further,
practical difficulties with reference polymers or lipids are that the
scientific community has to agree on phases for which all target
analytes reach equilibrium within a reasonable time frame. Rapid
equilibrium attainment can be accomplished for passive sampling
in sediments and in lipid-rich phases, but generally not for passive
sampling in the water column, where equilibrium attainment for
compounds with log Kow values >5.5 is not often observed.

Uncertainties. The EU’s directive on technical specifications
for chemical analysis and monitoring of water status requires
a measurement uncertainty of ≤50% (k = 2) at the level of the
EQS.24 It should be noted that the main error source for Cfree is
not in the chemical analysis of the PSD matrix, but in the Ksw
values used in the calculations thereafter (see above). Further,
the uncertainty in Cfree remains fairly constant down to the level
where the amounts in exposed PSDs approach the amounts that
are present in the field control samplers (i.e., ∼ 10 pg L−1 or
lower).54 In addition, several water EQS values for nonpolar
compounds are set at the pg L−1 level (e.g., cypermethrin) or
below, and it is difficult to imagine how compliance with these
EQS can be demonstrated without PSDs. Moreover, the time-
integrative nature of passive sampling makes this method less
sensitive to short-term temporal variation than batch sampling.
Finally, it should be considered that QA/QC measures that are
typically taken for the chemical analysis of other matrices can also
be applied to PSDs, including the determination of recoveries,
procedure blanks, quantitation and detection limits, the analysis
of CRMs and the participation in laboratory performance
studies.46

The accuracy of PSD based Cfree determinations can be
assessed from PSD comparisons, which should all yield the same
values. A field deployment of seven PSDs in the river Meuse
showed that Cfree estimates from SPMDs, silicone, and LDPE
strips were in agreement within a factor of 2, with somewhat
larger deviations for Chemcatcher, MESCO and silicone rods.49

In a PSD comparison in the laboratory, the calculatedCfree agreed
with nominal concentrations within a factor of 2 for SPMDs,
silicone, and LPDE strips, with low values for LDPE and high
values for silicone, on average.110 Results for POM and thin-
film PDMS samplers that were exposed in a Norwegian Fjord
agreed within a factor of 2−3.111 Calculated Cfree of PAHs were
3 times higher for POM than for LDPE samplers exposed in
Narragansett Bay, while the reverse was found for PCBs.97

Concentrations of o,p′-DDE and p,p′-DDE derived from LDPE
samplers were about 3 times higher than SPME based con-
centrations.112 Results from an interlaboratory study for PAH
passive sampling that included 22 laboratories using five sampler
types, showed a coefficient of variation (CV) in Cfree of 90%, and
mean PSD based concentrations that were two times higher than
results based on batch sampling.51 No relationship between Cfree
and sampler type was observed in this study, suggesting that
the chemical analysis of the sampler and/or the chosen method
of Cfree calculation are important sources of variability. Results
from the NORMAN interlaboratory study on passive sampling
(www.norman-network.net) showed that Rs estimation is a
major error source (∼factor 25) for the reported Cfree of PBDEs
(14 laboratories), followed by the chemical analysis of target
compounds and PRCs in the sampler (∼factor 4).50 The ICES
Passive Sampling Trial Survey identified chemical analysis
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(20−40%) and Rs estimation (30%) to be the main sources of
interlaboratory variability of reported Cfree values of PAHs and
PCBs.113 Between-laboratory CVs for the chemical analysis of
PSDs are at the lower end of CVs for the analysis of PCBs in
biological materials (14−117%), PCBs in sediments (21−59%),
and PAHs in sediment andmussel (23−62%).114−116 The results
from interlaboratory studies imply that standardization of Rs
estimation methods, improvement of analytical techniques, and
the selection of consensus values for Ksw may greatly reduce
interlaboratory variability of passive sampling results. It can
therefore be expected that participation in laboratory perform-
ance studies that focus on chemical analysis of PSDs and on
calculation methods will reduce between-laboratory variability
for two reasons. First, such studies will force laboratories to
continuously and critically assess their analytical methods.
Second, a comparison of calculation methods will reveal if
any inappropriate Cfree calculation methods are being used.
The observed differences in Cfree estimates are not surprising
in view of the inaccuracies in Ksw values and the occasional use
of empirical Rs models.

49,117 This stresses the importance of
improving the experimental determination and theoretical
evaluation of Ksw and Rs as well as developing robust guidelines
for not only chemical analysis but also Cfree calculation.
Comparisons of passive sampling with batch water sampling

followed by filtration and extraction provide additional informa-
tion about passive sampling accuracy. However, results from
these studies are difficult to interpret, because of the differences
of the targeted concentrations (freely dissolved versus total
dissolved), the time-integrative nature of passive sampling data,
and because filtration/extraction methods have their own
difficulties, such as contaminant adsorption to equipment
surfaces, and filtration efficiencies that vary with the extent of
filter clogging.118,119

Results from passive sampling with SPMDs, POM, and
silicones generally agree within a factor of 3 with results from
batch sampling119−125 although differences by a factor of
∼10 have also been observed.111,126 In some cases, differences
increased with hydrophobicity, which could be attributed to
the contribution of dissolved organic carbon (DOC) bound
compounds to batch sampling based results.121,123,125

■ PASSIVE SAMPLING IN SEDIMENTS
The 2012 SETAC technical workshop “Guidance on Passive
Sampling Methods to Improve Management of Contaminated
Sediments” reviewed the knowledge on passive sampling of
nonpolar organic compounds and trace metals in sediments.127,128

There was general agreement that Cfree of nonpolar compounds is
a better proxy of sediment toxicity and bioaccumulation in
benthic invertebrates than total concentrations in the sedi-
ment,12,129−132 and that passive sampling is a better method for
obtaining Cfree than EqP calculations utilizing sorption to
amorphous and black carbon.130,133 The SETAC workshop also
noted that the uncertainties in Cfree span several orders of
magnitude for EqP calculations, and 1 order of magnitude for
direct measurement with PSDs.127,130 The preferred strategy for
obtaining Cfree from ex situ passive sampling in sediments was to
allow compounds to reach equilibrium with the sampler, because
Cfree can then be directly calculated from Ksw.

47,127,129,130 It was
also noted that equilibriummay be difficult to attain at reasonable
time scales for some very hydrophobic compounds at least when
sampling in situ, and that kinetic models may be needed in those
cases.129 With passive sampling in stirred sediments (ex situ) the
same first-order kinetic uptake models that are used in passive

water sampling may be applied47,91,129,134 while more complex
models are needed for sampling in unstirred (in situ) sedi-
ments.91,130,135−137 Parallel sampling with multiple coating
thicknesses are increasingly used to confirm attainment of
equilibrium, while at the same time checking for additional quality
assurance criteria (negligible depletion, absence of surface related
artifacts).109,138 The SETAC workshop noted further that the
main sources of error for passive sampling in sediments are the
inaccuracies in the Ksw values, and the possible underestimation of
equilibration times, particularly for in situ applications.130 Practical
guidance on the use of PSDs for measuring Cfree in sediments was
summarized, including the choice of sampler type, in situ versus ex
situ application, sampler calibration, experimental design, assess-
ment of equilibrium attainment, QA/QC issues, and the use of
passive sampling in tiered risk assessments.47

Bioaccessibility and Chemical Activity. Passive sampling
can be used as a depletive method for measuring the (readily)
desorbing contaminant fraction of the sediment as a measure of
bioaccessibility, or as a negligible-depletion method for Cfree as a
measure of chemical activity.139,140 The 2012 SETAC workshop
focused for practical reasons on Cfree but also recognized the
relevance of passive sampling for evaluating bioaccessibility.
Depletive sampling of sediment slurries with poly(2,6-diphenyl-
p-phenylene oxide) (Tenax) has been used to separate
contaminant fractions that show rapid, slow, and very slow
desorption rates.141,142 It has been suggested that high organic
carbon−water partitioning coefficients can be quantitatively
explained by the occurrence of a (very) slowly desorbing
contaminant fraction.142,143 Further, the available evidence
suggests that contaminant toxicity and body burden for benthic
organisms are linked both to concentrations in SPME fibers at
equilibrium and to the rapidly desorbing fraction as determined
with the Tenax method.144 Tenax and SPME performed equally
well in explaining bifenthrin toxicity to chironomids and
crustaceans for three sediments that spanned a 5 fold difference
in organic carbon content.145 Smedes et al. developed a passive
sampling approach for measuring both accessibility and Cfree by
incubating sediments and silicone sheets at multiple polymer/
sediment mass ratios.66 At low ratios, this method yielded
Cfree (no depletion of the sediment phase). At high ratios the
accessible contaminant pool in the sediment phase could be
quantified (maximum depletion).

■ LINKING PASSIVE SAMPLING TO
CONCENTRATIONS IN BIOTA

Maximum protection of aquatic species, humans, and predators
is achieved by monitoring all relevant matrices (water, food,
prey organisms, respectively) but this would be very costly. It is
therefore common practice to limit the number of matrices that
are monitored, and to establish relationships between concen-
trations in water and in biota in order to compare quality
standards derived for the protection targets (aquatic organisms,
predators and humans).20 Whether passive sampling or biota
monitoring is the preferred method therefore depends on their
respective relevance for the species that is to be protected and
on the uncertainties involved in estimating concentration levels
in water from those in biota and vice versa. Below, we will discuss
established biota-PSD relationships and the performance of PSDs
and biota monitoring for assessing Cfree, spatial and temporal
trends, and predator diet.

Biota-PSD Relationships. Passive sampling research has
shown that BAFs and Kow follow a log−log linear relationship
when the BAFs are based on Cfree rather than on total dissolved
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concentrations, and that the frequently reported nonlinearity in
log BAF at high log Kow is in fact artificial.

146,147 Passive sampling
based linear log BAF- log Kow relationships have been observed
for bioaccumulation of nonpolar compounds (3 < log Kow < 7.5)
by oligochaetes,146,148,149 midge larvae,150 and blue mussels.151

Many studies show correlations between measured concen-
trations in PSDs and aquatic animals. Strong correlations have,
for instance, been observed between lipid-based concentrations
of organochlorine pesticides, PAHs and PCBs in biota and
equilibrium concentrations in thin (<0.05−0.5 μm) films of
poly(ethylene-co-vinyl acetate) (EVA) for earthworms,152

bivalves,153 and amphipods.154 Lipid-EVA concentration ratios
ranged between 0.1 and 0.8, and similar ratios (∼0.5) were
observed with in vitro sampling of rainbow trout homogenates
with EVA.155 Lipid normalized PCB concentrations in poly-
chaetes were also strongly correlated with equilibrium
concentrations in LDPE, with polychaete/PSD concentration
ratios ranging from about 1 to 20.156,157 Weaker correlations
(log−log slope of 0.6) and site-specific concentration ratios were
observed for PAHs in polychaetes and LDPE.158 Concentrations
of PAHs and organochlorine pesticides in mussels were
positively correlated with Cfree that were obtained from SPME
and LDPE samplers, but correlations for PCBs were much
weaker.60

It is also possible to predict EqP concentrations in biota. One
approach is to predict lipid based biota concentrations as the
product of Cfree and BAF values,149,159−161 where some studies
used Kow as surrogate for BAF.162−165 This approach yielded
predicted lipid based concentrations of PCBs and PAHs in
earthworms and oligochaetes that were generally within a factor
of 3 of measured lipid normalized concentrations. This is a
surprisingly good agreement, considering that uncertainties in
BAF,Kow, andKsw all contribute to the error in the predicted EqP
concentrations. Another approach is to determine EqP concen-
trations in lipids from the product of measured equilibrium
concentrations in the passive sampling polymer and lipid to
polymer partition coefficients.138,166,167 This approach resulted
in EqP concentrations in lipids, which were either near or
higher than actually measured concentrations in biota. This was
observed for benthic worms,138 mussels, and several fish
species.109,167−169 A close correspondence between passive
sampling based Cfree and concentrations in mussels for PAHs
and PCBs was observed in a monitoring study over four years,
two sampling seasons, and eight estuarine and coastal stations.151

Calculated log BAF values showed a scatter of ∼0.2 log units,
indicating that concentrations in mussels can be predicted from
PSD based Cfree with a similar precision.
Chemical Activity. It is widely recognized that Cfree is a

valuable proxy for chemical activity, because knowledge of these
concentrations allows estimation of the equilibrium concen-
trations in other environmental compartments (sediments, air,
biota).12,20,90,132,170 Measured chemical activities in sediment
and overlaying water allow a direct assessment of whether the
sediment acts as a diffusive source or sink, since diffusive mass
transfer always goes from high to low chemical activity. Chemical
activity can be measured with passive sampling, either as ratio
of Cfree and subcooled liquid solubility or as product of Cfree and
activity coefficient. Witt et al. have for instance used ex situ
passive sampling with silicone coated glass fibers to determine
depth profiles of chemical activity for PAHs at three locations
in the Baltic Sea.171 For equilibrium sampling, ratios of chemical
activity can be determined very easily as concentration ratios on
a polymer basis.

Passive sampling of biota tissue and extracted lipids is a recent
application that allows for a direct assessment of chemical activity
in biota.67,68,138,166,172,173 With this method, a polymer is
equilibrated with biota tissue, tissue homogenate, or lipid extract,
by immersion or via a headspace. Typical equilibration times
are in the order of hours for PCBs and PAHs in fat-rich
tissues.67,172,173 Contaminant concentrations in the polymer are
directly proportional to the chemical activity, and comparison
of these concentrations therefore allows for directly comparing
chemical activities. For instance, Jahnke et al. applied equilibrium
sampling to sediment and eel tissue from a Swedish lake, and
showed the eel to be under-equilibrated relative to the
sediment.168 Allan et al. compared equilibrium concentrations
in silicone samplers that were exposed to water with samplers
that were exposed to fish tissue in vivo.68 Concentration ratios
were ∼1 for hexachlorobenzene and PCBs as well as for some
three-ring PAHs, reflecting a significant degree of fish-water
equilibrium for these compounds.
Biota monitoring is less suitable for estimatingCfree and chemical

activity, because the required BAFs show a high variability among
studies, even for the same species.45,174 Furthermore, a review of
>7000 BAF values showed that 45% of the data suffered from one
or more major sources of uncertainty.175

Spatial and Temporal Trends. Biota monitoring has been
used extensively to assess spatial and temporal trends of
contamination by nonpolar compounds and trace metals.176−179

The limitations of using sentinel organisms for comparing
contamination levels in time and space are generally recognized.
Multiple species may be needed for obtaining a good
geographical coverage (e.g., oysters, blue mussels, green mussels,
zebra mussels), and sometimes may not be available (e.g., off-
shore environments, deep sea, anoxic or toxic locations), and
several biotic and abiotic factors have to be accounted for.180,181

These issues do not exist for PSDs when results are expressed
as Cfree (rather than as an accumulated amount per unit
sampler mass). When a transition from biota to PSD-based
trend monitoring is considered, it is important to determine
appropriate biota-PSD conversion factors, in order to ensure data
continuity. An evaluation of nine mussel-SPMD comparison
studies suggested that BAF values were the major source of
variability of SPMD/mussel concentration ratios, and that
site-specific repetitive parallel exposures are needed to convert
historical biomonitoring data to current passive sampling
data.174 The 4-y mussel-PSD comparison study mentioned
above showed that the transition of biota monitoring time
series (using bivalves) to passive sampler based time series is
feasible.151

Predator Diet. Under the WFD, EQS values in biota
(EQSbiota) are defined for hydrophobic and other substances
(e.g., Hg) where risks of secondary poisoning and risk for human
health via fish consumption cannot be excluded.20 In the most
current revision of the EQS directive most of these substances
have to be monitored in fish, except for PAHs (crustaceans
and molluscs), and dioxins as well as dioxin-like PCBs (fish,
crustaceans and molluscs), but other organisms can be used if
EQSs for these alternative organisms offer the same level of
protection.23 Some promising relationships have been established
for legacy contaminants between equilibrium concentrations in
PSDs and biota, including fish (see above). However, the WFD
requires monitoring of other substances in fish (e.g., Hg,
hexachlorobutadiene - HCBD, dicofol, hexabromocyclododecane
-HBCDD), and the suitability of PSDs to predict concentrations
of these compounds in fish is still unclear. Bioaccumulation
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models for aquatic species at trophic levels up to and including
predatory fish provide a mechanistic link between the con-
centrations in biota and concentrations in the water phase,170

although reliable species- and compound- specific BAF values
are required. These can be scarce or even absent.175 These
considerations imply that setting water based thresholds for the
protection of predators is in principle valid, but direct monitor-
ing of prey organisms may still be required because of the
uncertainties in the BAF values that are used.We recommend that
biota based monitoring be supplemented by passive sampling,
because this allows the generation of valuable field-based BAF
values that would improve modeling of contaminant transfer to
the higher trophic levels. Such data would also be helpful for
establishing biota-PSD relationships for pelagic species, which are
presently scarce.182

■ THE WAY FORWARD
Much progress has been made in the field of passive sampling
for environmental monitoring of nonpolar compounds in the
aquatic environment, since the introduction of passive sampling
in the early 1990s. This is notably the case for the risk assessment
of contaminated sediments, where passive sampling based Cfree
has proven superior to the use of concentrations in whole
sediment or partitioning based modeling approaches for the
various organic carbon pools, both with respect to sediment
toxicity and bioaccumulation. Significant progress has also been
made for passive water sampling, with the development of
mechanistic sampler-water exchange models and improved in
situ calibration. Yet, not all claims that have been made by the
passive sampling community with respect to accuracy, have been
demonstrated beyond doubt. Insufficient quality control
presently appears to be a dominant weakness of passive sampling,
and progress can be expected from laboratory performance
studies that include a detailed assessment of the sources of
variability in the reported results. Inaccuracies in the Ksw of target
analytes (in the case of equilibrium passive sampling) and
PRCs (kinetic sampling) are a major source of concern. The
determination of these partition coefficients is more difficult
than generally assumed, and scientific journals could be less
permissive in admitting data obtained from single experiments,
even when these are carried out in triplicate. Researchers should
carefully consider this issue before introducing new passive
sampling matrices for nonpolar compounds.
The tight connection between PSD-based Cfree and lipid-

normalized concentrations in biota suggests that passive
sampling can be used to predict Cbiota to a fair or good degree
for organisms at lower trophic levels. More research is needed
to assess how passive sampling measurements can best be linked
to concentrations at higher levels of the aquatic food web. The
combination of passive sampling and bioaccumulation models
seems then the most effective approach for assessing and
predicting bioaccumulation.
Passive sampling inside biota, or in biota homogenates and

lipid extracts, is a promising method for assessing the degree of
equilibrium between biota and their environment. More research
in this field is required, particularly with respect to passive
sampling in biota with low lipid content, and for compounds
other than PCBs and PAHs.
The capabilities of passive sampling are not fully utilized in a

regulatory context by environmental managers, particularly in
the EU. This is partly due to the scientific community, which may
have overrated the achievements of passive sampling research
in the past, and may have shown insufficient concern for the

legal and practical context in which environmental managers
operate, including quality control procedures. The community of
environmental managers on its part could make more efforts in
comparing the pros and cons of passive sampling based
monitoring with the pros and cons of current approaches,
with respect to scientific justification, uncertainty (including
sampling uncertainty), and relevance for environmental risk
assessment.
In Europe, the strict monitoring requirements laid down in the

EUWFD and its daughter directives impede the implementation
of passive sampling for regulatory purposes, whereas environ-
mental managers in the United States and in OSPAR have more
freedom to adapt management approaches to current scientific
insights.
Specifically, in the United States, the use of passive sampling

in the implementation of ambient water monitoring and
remediation processes for contaminated sediments has been
encouraged by regulators. This encouragement is based on the
recognition that passive sampling-based Cfree data provides a
better scientific basis for risk assessment, compared with
conventional sampling and monitoring procedures. The actual
use of passive sampling is limited by the current lack of
commercial laboratories performing passive sampler deploy-
ments, chemical analyses, and data reporting. Hesitancy by many
commercial laboratories is linked to the current lack of
standardized methods and procedures for using PSDs. In the
near future, the scientific community will be crucial in pro-
viding guidance on the standardization of passive sampling
methods. We expect that an open and critical communication
between scientists and environmental managers will be beneficial
for both.
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■ GLOSSARY
BAC Background Assessment Concentration, threshold

concentration that is considered to indicate that
measured concentrations represent natural background
levels (OSPAR)

BAF Bioaccumulation factor, concentration in biota divided
by concentration in water at steady state, resulting from
all uptake and elimination processes, including
bioconcentration, biomagnification, biotransformation,
and growth dilution

Cfree concentration of freely dissolved compounds in the
water phase

Ctotal total concentration of compounds, including freely
dissolved compounds and compounds that are bound
to particles and colloids

CWA Clean Water Act (U.S.)
EAC Environmental Assessment Criteria, threshold concen-

trations that are considered to cause no unacceptable
adverse effects on biota or human health (OSPAR)

EQS Environmental Quality Standard, threshold concen-
tration that is considered to cause no unacceptable
adverse effects on biota or human health (EU)

kw mass transfer coefficient of the water boundary layer at
the PSD-water interface

kp mass transfer coefficient in the polymer
ko overall mass transfer coefficient of the water boundary

layer
Kow 1-octanol - water partition coefficient
Kpw polymer - water partition coefficient
Ksw sampler - water partition coefficient
MSFD Marine Strategy Framework Directive (EU)
OSPAR Oslo-Paris Convention for the protection of the marine

environment of the North-East Atlantic
Rs water sampling rate
PSD passive sampling device
WQC Water Quality Criteria, narrative and/or numerical

indicator of water quality that is considered to
cause no unacceptable adverse effects on biota or
human health (U.S.)

WQS Water Quality Standard, description of designated uses
of a water body, WQC that protect these uses, and
antidegradation policies (U.S.)

WFD Water Framework Directive (EU)
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Table S1. Types and configurations of passive samplers for nonpolar organic contaminants (logKow>4). 

The list of sampler types and target compounds is not exhaustive.  

Sampler type  Configuration Target contaminants 
a
 references 

Chemcatcher 1-octanol loaded C18 

extraction disk covered 

with LDPE membrane 

PCBs, PAHs 
1-5

 

Low-density 

polyethylene (LDPE) 
25-200 µm polymer sheets PCBs, PAHs, OCPs, 

PCDD/Fs, PBDEs,  

organophosphates, 

triclosan, alkylphenols, 

polycyclic musks  

1,2,6-15
 

Membrane-Enclosed 

Sorptive Coating 

(MESCO) 

silicone rod enclosed within 

a water-filled LDPE 

membrane 

PCBs, OCPs, PAHs 
2,16-18

 

Silicones 25-500 µm sheets, fibers, or 

wall coatings of 

poly(dimethylsiloxane) or 

related polymers 

PCBs, PAHs, OCPs, 

PCDD/Fs, PBDEs, 

organophosphates, triclosan, 

pyrethroids, chlorobenzenes, 

alcohol ethoxylates, cyclyc 

methylsiloxanes, polycyclic 

musks, oxadiazon 

1,2,7,10-12,15,19-

27
 

Poly(oxymethylene) 

(POM) 
20-80 µm polymer sheets PCBs, PAHs, OCPs, 

PCDD/Fs, PBDEs, triclosan, 

trifluralin 

11,12,28-30
 

Semi-permeable 

membrane device 

(SPMD) 

triolein enclosed within an 

75-90 µm LDPE membrane 

PCBs, PAHs, OCPs, 

PCDD/Fs, PBDEs, 

organophosphates, trifluralin, 

pyrethroids, oxadiazon, 

alkylphenols, carbazoles 

1,2,27,31-35
 

Ceramic dosimeters various sorbents enclosed 

within a ceramic membrane 

PAHs, PCDD/Fs, PBDEs, 

organophosphates 

36-39
 

Triolein-embedded 

cellulose acetate 

membrane 

blend of cellulose acetate 

and triolein, 50 µm 

thickness 

PAHs, OCPs 
40-42

 

Poly(ethylene-co-

vinylacetate) (EVA) 

EVA impregnated glass 

fiber filter 

PCBs, OCPs, 

organophosphates, trifluratlin, 

pyrethroids, chlorobenzenes 

43-45
 

a
 PCBs = polychlorinated biphenyls, PAHs = polycyclic aromatic hydrocarbons, OCPs = organochlorine pesticides, PBDEs 

= polybrominated diphenyl ethers, PCDD/Fs = polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans 
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