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Abstract 

 

The influence of eddy structures on the seasonal depletion of dissolved inorganic carbon (DIC) and 

carbon dioxide (CO2) disequilibrium was investigated during a trans-Atlantic crossing of the Antarctic 

Circumpolar Current (ACC) in austral summer 2012. The Georgia Basin, downstream of the island of 

South Georgia (54-55S, 36-38W) is a highly dynamic region due to the mesoscale activity associated 

with the flow of the Subantarctic Front (SAF) and Polar Front (PF). Satellite sea-surface height and 

chlorophyll-a anomalies revealed a cyclonic cold core that dominated the northern Georgia Basin that 

was formed from a large meander of the PF. Warmer waters influenced by the SAF formed a smaller 

anticyclonic structure to the east of the basin. Both the cold core and warm core eddy structures were 

hotspots of carbon uptake relative to the rest of the ACC section during austral summer. This was most 

amplified in the cold core where greatest CO2 undersaturation (78 μatm) and substantial surface ocean 

DIC deficit (5.1 mol m-2) occurred. In the presence of high wind speeds, the cold core eddy acted as a 

strong sink for atmospheric CO2 of 25.5 mmol m-2 day-1. Waters of the warm core displayed 

characteristics of the Polar Frontal Zone (PFZ), with warmer upper ocean waters and enhanced CO2 

undersaturation (59 μatm) and depletion of DIC (4.9 mol m-2). A proposed mechanism for the enhanced 

carbon uptake across both eddy structures is based on the Ekman eddy pumping theory: (i) the cold 

core is seeded with productive (high chlorophyll-a) waters from the Antarctic Zone and sustained 

biological productivity through upwelled nutrient supply that counteracts DIC inputs from deep waters; (ii) 

horizontal entrainment of low-DIC surface waters (biological uptake) from the PFZ  downwell  within the 

warm core and cause relative DIC-depletion in the upper water column. The observations suggest that 

the formation and northward propagation of cold core eddies in the region of the PF could project low-

DIC waters towards the site of Antarctic Intermediate Water formation and enhance CO2 drawdown into 

the deep ocean. 

Keywords: carbon uptake; eddies; Polar Front; Antarctic Circumpolar Current; Georgia Basin. 

 



   

1. Introduction  

The Southern Ocean is a key component in the global meridional overturning circulation through water 

mass formation, ventilation, and transport by the Antarctic Circumpolar Current (ACC) between the 

Atlantic, Pacific and Indian ocean basins (Marshall and Speer, 2012). The ACC is predominantly driven 

by strong westerly winds where shoaling isopycnal surfaces towards the Antarctic continent enable a 

direct connection between the surface and the deep ocean and the transfer of carbon dioxide (CO2) to 

the ocean interior (Rintoul et al. 2001; Watson and Orr, 2003; Hauck et al., 2013). The ACC is 

characterized by a series of circumpolar fronts that are distinguished by strong meridional gradients in 

hydrographic and biogeochemical parameters (Orsi et al., 1995; Pollard et al., 2002); the Sub-Tropical 

Front (STF), the Subantarctic Front (SAF), Polar Front (PF), the Southern ACC Front (SACCF) and the 

Southern Boundary (SB). Between the STF and SAF are the sub-tropical waters of the Sub-Antarctic 

Zone (SAZ). The SAF and the PF delimit the sub-Antarctic waters of the Polar Frontal Zone (PFZ). South 

of the PF is the Antarctic Zone (AAZ). Inverse modelling suggests that the CO2 sink of the Southern 

Ocean is sensitive to climate change as wind intensification can lead to increased upwelling of deep 

waters rich in natural CO2 (Le Quéré et al., 2007; Law et al., 2008; Zickfeld et al., 2008). In contrast, 

hydrographic data indicates that transport and meridional overturning circulation in the ACC is not very 

sensitive to increasing winds (Böning et al., 2008) due to mesoscale (principally eddy) activity in the ACC 

being inadequately resolved by numerical simulations. Hence gaps persist in the understanding of the 

role of eddies on CO2 uptake in the ACC.   

 

Mesoscale structures, such as meandering hydrographic fronts, currents, eddies and topographically 

induced turbulence, are ubiquitous in the ACC. Such structures are linked to enhanced entrainment, 

retention, mixing, biological production and transport of heat, salt, carbon and nutrients within the ACC 

(McGillicuddy and Robinson, 1997; Siegel et al., 1999).  Mesoscale eddies are conspicuous structures, 

typically up to 50 km in radius (of the order of the first baroclinic Rossby radius), and can be detected by 

anomalies in sea surface height and temperature. Eddies contribute to distinct patchiness in the upper 

ocean by affecting the spatio-temporal distribution of sea surface chlorophyll-a and productivity of 

phytoplankton through the uplift or subduction of isopycnals and nutriclines (Strass, 1992; Kimura et al., 

1997; McGillicuddy et al., 1998; Lee and Williams, 2000; Lévy, 2003; Klein and Lepeyre, 2009; Saraceno 

and Provost, 2012) and they play an important role in the ACC component of the global overturning 

circulation (Thompson et al., 2014). The concept of „eddy pumping‟ states that vertical motions within the 

eddy cores produces anomalies in sea surface height and temperature (McGillicuddy et al, 1998; Klein 

and Lapeyre, 2009). Cold core (cyclonic) eddies lead to a doming of isopycnals and upwell cold, nutrient-

rich deep water into the euphotic zone (McGillicuddy and Robinson, 1997). Cold core eddies can be 



   

detected by satellite as negative sea surface height and are often associated with increased biological 

productivity (Falkowski et al., 1991; Robinson et al., 1993; Allen et al., 1996; McGillicuddy et al., 1998). 

Warm core (anticyclonic) eddies can be detected by an elevated sea surface height (positive sea level 

anomaly) and are vortices of anticlockwise rotating water leading to a deepening of isopycnals and 

downwelling of surface waters, which are relatively unproductive (McGillicuddy and Robinson, 1997; 

McGillicuddy et al., 1998). However, other mechanisms such as deepening mixed layers and horizontal 

advection can result in productive anticyclonic eddies (Dufois et al., 2014). The objective of this study is 

to understand the role of eddies on the biological carbon uptake in the ACC (e.g., Moore and Abbot, 

2000; Strass et al., 2002; Sokolov and Rintoul, 2007; Le Quéré et al., 2007; Böning et al., 2008) and the 

wider impact of eddies on the sensitivity of the carbon cycle to climate change in the Southern Ocean.  

 

Remotely sensed chlorophyll-a and sea surface height showed high levels of mesoscale activity 

downstream (to the north) of the island of South Georgia (54-55S, 36-38W) in the Atlantic sector of the 

Southern Ocean (Korb et al., 2004; Borrione and Schlitzer, 2013). Shipboard surveys have revealed finer 

scale topographic interactions of the SAF, PF and SACCF with the Scotia Ridge that leads to 

meandering and the formation of eddy structures in the Georgia Basin (Trathan et al., 1997; Meredith et 

al., 2003; Korb and Whitehouse, 2004; Smith et al., 2010). The waters in the Georgia Basin support vast 

phytoplankton blooms that develop each year and often persist for 4 months or more, characterising the 

region as one of the most biologically productive areas in the Southern Ocean (Atkinson et al., 2001; 

Korb and Whitehouse, 2004; Korb et al., 2004; Borrione and Schlitzer, 2013). Enhanced biological 

uptake of CO2 occurs from spring to summer to autumn in the large South Georgia blooms (Jones et al., 

2012; Jones et al., in press).  

 

Persisting mesoscale activity and eddy formation mechanisms associated with the meandering of the PF 

and SAF make the Georgia Basin an ideal location to explore the effects of eddy dynamics on the uptake 

and cycling of CO2 in the ACC. Anomalies in remotely sensed sea surface topography and chlorophyll-a 

in austral summer 2012 revealed the presence of an eddy dipole structure downstream of South 

Georgia. Shipboard hydrographic measurements confirmed the existence of a large (400 km diameter) 

cyclonic cold core in the northern Georgia Basin with warmer waters to the east forming a smaller  

anticyclonic core (Strass et al., this issue). Effects of the mesoscale eddy structures on the seasonal 

depletion of inorganic carbon and the summertime CO2 disequilibrium are investigated. The data 

comprise shipboard continuous and discrete measurements of the CO2 system and MODIS-Aqua ocean 

colour and altimetry data. Results from these measurements are put into context by reference to the 

whole trans-Atlantic passage and the potential of eddies to create „hotspots‟ of carbon uptake in the ACC 

is inferred.  



   

2. Methods 

2.1. Oceanographic setting and station sampling 

A biogeochemical survey of the Atlantic sector of the Southern Ocean was conducted from 7 January to 

11 March 2012 during expedition ANT-XXVIII/3 on FS Polarstern (Wolf-Gladrow, 2013). Satellite 

altimetry and ocean colour data were used onboard to identify mesoscale features along the ships track 

from Cape Town, South Africa, to Punta Arenas, Chile. Three sub-regions were studied in detail: (1) a 

section along 44-53°S, 10°E; (2) a mesoscale survey at 50-52°S, 12-13.5°W west of the Mid-Atlantic 

Ridge; (3) a mesoscale survey at 48.5-51.5°S, 37-39.5°W in the Georgia Basin (Fig. 1). Numerous 

measurements were made alongside the conductivity, temperature, depth (CTD, SeaBird SBE 911plus) 

surveys in each of the sub-regions (Fig. 2). Vertical profiles of potential temperature () and salinity were 

obtained from the CTD downcast at each station and were used to determine the summer mixed layer 

depth (mld) at each station (Strass et al., this issue). Shipboard meteorological parameters were 

continually recorded from sensors located at 39 m above sea level and hydrographic parameters were 

frequently measured from the underway seawater supply, with an intake located at 8 m depth. All salinity 

values are reported on the practical salinity scale. Satellite altimeter data is presented as merged 

absolute dynamic topography (Fig. 3) where the main hydrographic fronts (SAF, PF, SACCF) of the 

region were identified based on the definitions by Venables et al. (2012). The altimeter products were 

produced by Ssalto (Segment Sol multi-missions dALTimeterie, d‟orbitographie et de localisation 

précise)/ Duacs (Data unification and Altimeter combination system) and distributed by Aviso (Archiving, 

Validation and Interpretation of Satellite Oceanographic data), with support from Cnes (Centre National 

d‟Etudes Spatiales); http://www.aviso.altimetry.fr/duacs/. Hydrographic stations are classified based on 

physical characteristics of the Sub-Antarctic Zone (SAZ), the Polar Frontal Zone (PFZ) and Antarctic 

Zone (AAZ) including warm core (w/core) and cold core (c/core) eddy structures (Table 1; Fig. 4). 

 

2.2. Marine chemical parameters 

Samples for dissolved inorganic carbon (DIC) and macronutrients (silicate, phosphate, nitrite and nitrate) 

were collected from 24  12 L Niskin bottles mounted on the CTD rosette. Seawater (500 mL) for DIC 

analysis was collected in borosilicate glass bottles and analysed within 20 hours using a VINDTA 3C 

(Versatile INstrument for the Determination of Total Alkalinity, Marianda, Kiel) instrument. The DIC 

concentration was determined by coulometric analysis (Johnson et al., 1987) with calibration performed 

at the start and end of each measurement cycle (typically one cycle refers to one full depth hydrographic 

station) with certified reference materials (CRM, batch 113) (Dickson et al., 2007). The precision of the 

DIC measurements is 1.4 μmol kg-1, based on the average difference between all CRM in-bottle 

http://www.aviso.altimetry.fr/duacs/)


   

duplicate analyses. The accuracy is estimated as 2.0 μmol kg-1, based on the average difference 

between measured CRM raw and corrected DIC values. For macronutrient assays, seawater (125 mL) 

was collected in polypropylene bottles and transferred into 5 mL polyethylene vials and analysed within 

15 hours of sampling using a Technicon TRAACS 800 Auto-analyzer. All samples and standards were 

brought to laboratory temperature of 22°C in approximately two hours prior to analysis. During each run 

a daily freshly diluted nutrient standard containing silicate, phosphate and nitrate was measured in 

triplicate. Additionally, a natural sterilized Reference Material Nutrient Sample (JRM Kanso, Japan) 

containing known concentrations of silicate, phosphate and nitrate was analyzed in triplicate every 2 

weeks. The house standard and the JRM were both used to monitor the performance of the analyzer, 

where the precision for silicate, phosphate and nitrate is determined as 0.6 μmol L-1, 0.016 μmol L-1, 0.13 

μmol L-1, respectively. 

 

Depth-integrated nitrate and DIC deficits were calculated from vertical profiles relative to the 

concentration at 100 m depth (Table 1); nutrient deficits for this cruise are also presented in Hoppe et al. 

(this issue). Vertical integration to 100 m depth was selected from the average depth of the Winter Water 

potential temperature minimum (min), which was clearly visible in the depth range 100-150 m for stations 

south of the Polar Front (Fig. 5a). Depth-integrated DIC deficits relative to the concentration at 150 m 

depth reveal similar trends; high DIC deficits generally occurred within both the cold and warm cores with 

a maximum DIC deficit in the cold core. However, there was a large disparity in the absolute values of 

some of the deficits for those two reference depths. For example, all cold core stations showed DIC 

deficits enhanced by 13-47% when 150 m was used as the reference depth instead of 100 m and for 

warm core stations the equivalent difference was 1-8%. This largely reflects the influence of the cyclonic 

uplift of DIC-rich waters in the cold core in the upper 250 m. In contrast, the choice of reference depth for 

the value of DIC deficits in the warm core is less critical. Therefore, 100 m is a more conservative choice 

as the reference depth to determine DIC-deficits as the seasonal depletion in inorganic carbon. This 

depth was also used for stations north of the PF, with no visible potential temperature minimum, in order 

to be consistent within this study and comparable to other studies in the Southern Ocean and ACC 

region (e.g., Bates et al., 1998; Sweeney et al., 2000; Bakker et al., 2007; Jones et al., 2012). It is 

assumed that the 100 m DIC concentration represents the Winter Water reference and no significant 

lateral or vertical exchanges of DIC have taken place at this depth. It is recognised that this is not totally 

valid in the turbulent ACC, hence the resultant deficit values are compared more on a regional basis and 

not station by station.  

 

 



   

2.3. Air-sea CO2 fluxes 

Quasi-continuous determinations of the fugacity of CO2 (fCO2) in surface water from the ships underway 

seawater supply and in marine air were made using a General Oceanics system (GO 8050). Marine air 

samples were taken from an air inlet located forward on FS Polarstern at 39 m height. Mixing ratios of 

CO2 and moisture in the marine air and equilibrator headspace were determined by infrared detection 

with a LI-COR 7000 as part of the GO 8050 system. The LI-COR was calibrated using secondary gas 

standards with nominal CO2 concentrations of 200, 400 and 750 ppm and nitrogen was used as the zero 

reference gas. The fCO2 was computed from the dried mixing ratios and the ship‟s barometric pressure 

and then corrected for seawater vapour pressure (Weiss and Price, 1980). Sea surface fCO2 data were 

corrected to sea surface temperature to account for warming upon passage through the ship (Takahashi 

et al., 1993). The precision of the fCO2 data is estimated at better than 2 μatm. Sea surface CO2 

disequilibrium (fCO2) is determined from the gradient of fCO2 across the air-sea interface (fCO2sea-

fCO2air). Air-sea fluxes of CO2 were calculated along the ships track from fCO2 and the gas transfer 

relationship of Nightingale et al. (2000) using (i) shipboard wind speeds corrected to 10 m altitude (u10; 

Hartman and Hammond, 1985) and (ii) monthly means of the NCEP 6-hourly, 10 m wind speed product 

(Kalnay et al., 1996) during the study period. The two calculated flux values thus allow a comparison of 

instantaneous CO2 fluxes from shipboard winds and CO2 fluxes representative of monthly mean wind 

speeds from re-analysis data (Table 1). Negative values of fCO2 and CO2 flux indicate CO2 

undersaturation with respect to the atmosphere and therefore net uptake of atmospheric CO2. 

 

2.4. Satellite and shipboard chlorophyll-a  

MODIS-Aqua ocean colour data were obtained from NASA (http://oceancolor.gsfc.nasa.gov) as 8 day, 9 

km, level 3 mapped data with contours of merged absolute dynamic topography overlain (Fig. 3). Water 

samples for chlorophyll-a determination were obtained from the CTD Niskin bottles at 8 to 10 depths 

from the surface down to 200 m depth. In addition, sea surface samples for chlorophyll-a analysis were 

collected at 30-60 minute intervals from the ship's underway seawater supply. All samples were filtered 

onto 25 mm diameter GF/F filters at pressures not exceeding 200 mbar. Filters were immediately 

transferred to centrifuge tubes with 10 mL 90% acetone and 1 cm3 of glass beads. The tubes were 

sealed and stored (cooled) at 20°C for at least 30 minutes and up to 24 hours. Chlorophyll-a was 

extracted by placing the centrifuge tubes in a grinder for 3 minutes followed by centrifugation at 0°C. The 

supernatant was poured in quartz tubes and measured for chlorophyll-a content in a Turner 10-AU 

fluorometer. Calibration of the fluorometer was carried out at the beginning and at the end of the cruise. 

Results of the fluorometer calibration diverged by 2% between beginning and end of the cruise. 



   

Chlorophyll-a content was calculated using the equation given in Knap et al. (1996) using average 

parameter values from the two calibrations. Chlorophyll data are also presented in Hoppe et al. (this 

issue).   

3. Results 

 

3.1. The Atlantic ACC during summer: a physical and biological perspective 

Surface physical and biological data are first presented from the whole Atlantic crossing from Cape Town 

on 7 January to Punta Arenas on 11 March 2012 (Fig. 2) in chronological order to provide a basin-wide 

perspective of summertime patterns and processes in the ACC, from which effects on oceanic CO2 

uptake are determined. Maximum sea surface temperature and salinity occurred north of 45°S (day 8-

10) on the south-westerly passage from Cape Town to the start of the 10°E section (Fig. 2a). Between 

45.7-47.0°S (stations 62-66) sharp decreasing sea surface temperature is evident, identifying the SAF at 

46.5°S. The poleward decrease in sea surface temperature along the 10°E section appeared to 

culminate with surface gradients of decreasing temperature and a slight increase in salinity at about 

50.5°S. The transition to saltier, 2°C surface waters represents the surface expression of the PF 

(stations 82-83). A slight increase in surface salinity at about 52.5°S marks the SACCF, accompanied by 

colder Winter Water temperatures (Strass et al., this issue). Along the 10°E section, sea surface 

chlorophyll-a was consistently higher than 0.3 mg m-3, peaking at 1.2 mg m-3 at station 78 (day 18). 

After the North-South transect at 10°E the ship headed westward for a mesoscale survey at 12-13.5°W 

50-52°S west of the Mid-Atlantic Ridge (Fig. 1). Sea surface chlorophyll-a concentrations steadily 

decreased on the westward passage, with the exception of two blooms at 1.4-0.6°E (day 25) and 1.5-

3.2°W (day 25-26). The lowest chlorophyll-a values of our study (0.10 mg m-3) were found in this region 

at station 85 (day 26).  

Further west, concentrations of chlorophyll-a sharply increased to 3.3 mg m-3 in an area from 52.0°S 

8.8°W (day 27) to 50.9°S, 13.1°W (day 33). Blooms in this more land-remote region of the ACC have 

been previously documented, possibly fuelled by iron input from South Georgia to the east (Venables 

and Meredith, 2009). Sea surface temperature and salinity, in the mesoscale survey area, were relatively 

stable at about 2.5°C and 33.88-33.90, respectively, until station 87 at about 50.8°S (day 33), where a 

distinct warming (3.5-4.0°C) and freshening (33.80) was evident and was largely sustained for the 

remainder of the survey west of the Mid-Atlantic Ridge. High chlorophyll-a concentrations ( 1 mg m-3) 

were measured throughout the mesoscale survey area.  



   

Continuing westwards of the Mid-Atlantic Ridge towards the island of South Georgia (54-55°S, 36-

37°W), the greatest freshening (salinity of 32.18) was observed, relative to the whole survey region, due 

to locally warm, shallow shelf waters of South Georgia (day 54). Northwards, a strong gradient in sea 

surface temperature was present from about 3.3°C to 4.3°C, at 52.74°S in the central Georgia Basin, to 

just over 7°C by 50.81°S (day 55). From this point, a second mesoscale survey of 30 hydrographic 

station occupations was carried out at 48.5-51.5°S, 37-39.5°W (Fig. 1). Large fluctuations in sea surface 

temperature and salinity were evident throughout the 6 day survey (Fig. 2a). Surface waters in the 

eastern part of the grid (stations 145, 146, 153) were typically warm (Fig. 4a) and slightly more saline 

(Fig. 4b); those in the west (stations 152, 158, 159, 164, 165, 170, 173) were cooler (Fig. 4a) and slightly 

fresher (Fig. 4b). Winter Water potential temperatures had properties of AAZ waters and revealed the 

presence of a cold-core cyclonic structure across most of the grid (Strass et al., this issue). Warmer 

waters along the northern and eastern boundaries had temperature minima exceeding 2°C, hence north 

of the PF, accompanied by a slight sub-surface salinity minimum showing that the SAF is in close 

proximity (Strass et al., this issue). These features reflect the high levels of mesoscale activity in the 

region that have been previously well documented (Orsi et al., 1995; Meredith et al., 2003). Surface 

chlorophyll-a in the Georgia Basin grid was highly variable with patches of high and low concentrations in 

close proximity (Figs. 2 and 3). A surface water chlorophyll-a maximum for the entire survey of 3.8 mg m-

3 was observed in the southern part of the grid at 50.8°S 38.2°W at station 156 (day 57) (Fig. 2b). Other 

notable chlorophyll-a peaks (chlorophyll-a  2 mg m-3) occurred at stations 144 (day 55), 159 (day 58) 

and 174 (day 61). 

3.2. Summertime CO2 disequilibrium and seasonal DIC deficits 

Surface waters were predominantly undersaturated across the region of investigation in the South 

Atlantic (Fig. 2c). Distinctly large CO2 disequilibrium was measured across the Subtropical Front (STF) 

(day 9-10). Oceanic CO2 saturation increased towards equilibrium levels with a steeper gradient at the 

SAF near station 65 (day 14-15). High oversaturation occurred near station 85 to create a regional 

maximum of fCO2 of 3 µatm and efflux of CO2 (day 26). Surface waters throughout the mesoscale survey 

to the west Mid-Atlantic Ridge (stations 91-142) remained consistently undersaturated with relatively 

high CO2 disequilibrium around 40 µatm. Variable and strong CO2 disequilibrium was evident along the 

shelf and downstream of the island of South Georgia during the Georgia Basin mesoscale survey 

(stations 144-173). Greatest CO2 disequilibrium of 78 µatm in the local region occurred in the 

southwestern part of the grid (stations 156, 161, 162) (Fig. 4a). Upon completion of the mesoscale 

survey the ship steamed through surface waters of substantial CO2 disequilibrium in the south-western 

Georgia Basin, reaching a  minimum for the study period of 120 µatm at 52.30°S, 40.89°W (day 65). 



   

During the westward passage towards the Falkland Islands, oceanic CO2 disequilibrium returned to 

equilibrium levels with respect to atmospheric CO2.   

Wind speed (u10) from shipboard data and re-analysis data varied strongly along the cruise track (Fig. 

2d). Instantaneous shipboard winds depicted fine scale fluctuations and had a mean value of 10.6  3.8 

m s-1 (n = 57,535), ranging from 1.2 m s-1 during calm periods to over 23.5 m s-1 during storm events 

encountered between stations 67 and 69 (day 14), between stations 85 and 86 (day 28) and between 

stations 106 and 107 (day 38). Moderate to strong winds of 10-17 m s-1 prevailed along the cruise track. 

Wind speeds determined from the NCEP re-analysis product for January, February and March gave 

monthly mean values of 10.8 m s-1, 10.0 m s-1 and 7.9 m s-1, respectively, i.e., generally lower than that 

measured onboard where the mean wind speed decreased each month. 

The whole region was (on average) a moderate instantaneous sink of atmospheric CO2 of 7.9 mmol m-2 

d-1. Oceanic CO2 uptake was generally lower across the SAZ and PFZ (0-14 mmol m-2 d-1) whereas 

strong CO2 sinks ( 57 mmol m-2 d-1) occurred south of the PFZ for all other regions (Fig. 2e). Moderate 

CO2 source waters of 3-4 mmol m-2 day-1 were observed around station 85 (day 26-27) and over the 

Falkland Islands shelf at 53.62°S 55.16°W (day 68). Intense oceanic CO2 sinks exceeding 40 mmol m-2 

d-1 were evident between stations 85 and 86 (day 28), between stations 106 and 107 (day 38) and at the 

south-western edge of the Georgia Basin, 52.42°S, 41.85°W, (day 65), typically co-located with the 

storm events and largest CO2 disequilibrium. The corresponding value of the CO2 sink using NCEP wind 

speed averages was slightly less at 6.7 mmol m-2 d-1. Fluxes of CO2 determined from re-analysis data 

averaged per month give a more representative view of CO2 uptake as effects of short term storm events 

and calm periods are removed. Thus, the CO2 flux values more closely follow the variations in CO2 

disequilibrium and that, with respect to monthly mean wind speeds, the data show that the region was a 

moderate sink of atmospheric CO2. 

The DIC deficit in the upper ocean reflects the spring-summer seasonal depletion of inorganic carbon up 

until the moment of sampling with respect to DIC concentrations at 100 m depth. The DIC deficit was 

generally small along the 10°E section (day 11-21), with the lowest values for the whole cruise (close to 

0 mol m-2 at several stations, Fig. 2f). There was a gradual southward increase of DIC depletion with a 

regional maximum of 2.0 mol m-2 at station 83 (Table 1). In the mesoscale survey to the west of the Mid-

Atlantic Ridge DIC deficits slightly increased and varied consistently between 0.2 mol m-2 and 2.5 mol m-2  

throughout the whole survey (day 26-50). The DIC deficit further increased to 2.9-5.1. mol m-2 during the 

Georgia Basin mesoscale survey, downstream of South Georgia (day 55-61). The greatest DIC deficits 

occurred in the western part of the grid (stations 159, 165, 170, 173) reaching a maximum value of 5.1 

mol m-2 at station 173 (Table 1). The higher DIC deficits coincided with the greatest degree of (more 



   

negative) CO2 disequilibrium (Fig. 2c and 2f). It is noted that DIC deficits could only be determined at the 

sites of hydrographic stations and that large CO2 disequilibrium occurred close to the beginning (day 10) 

and end of the survey (days 65-66), where no DIC data is available. 

The nitrate deficit in the upper ocean reflects the seasonal biological depletion of nitrate. Nitrate deficits 

largely followed the DIC deficits, with lower values along the 10°E section and higher values in the 

Georgia Basin (Fig. 2f). The seasonal depletion of DIC as a result of net biological uptake is inferred  

from nitrate deficits using the Redfield ratio for C:N (106:16; Redfield 1963), where the difference 

between measured and calculated DIC deficit can indicate the influence of gas exchange. However, the 

Redfield ratio has been shown to be variable and hence the calculated difference is strongly dependent 

on the C:N ratio used (Anderson and Sarmiento, 1994). All warm core stations had a lower calculated 

(from nitrate deficits) versus measured DIC deficit, indicating an input of DIC through atmospheric CO2 

uptake. In contrast, most cold core stations had a higher calculated DIC deficit, resulting from a loss of 

DIC through CO2 release from the ocean.   

3.3. Identification and characterisation of mesoscale features  

Satellite sea surface topography and chlorophyll-a (Fig. 3) revealed the location of the SAF passing to 

the north of the Georgia Basin and a large meander of the PF dominating the central part of the basin 

(Fig. 3) This was confirmed by shipboard potential temperature, salinity and potential density that 

showed a large cyclonic cold core eddy associated with the PF meander (Strass et al., this issue). Cold, 

fresh surface waters and shoaling of the isotherms and isohalines in the upper 250 m (Fig. 5a and 5b) 

were associated with the PF, passing to the north of stations 144, 156, 161, 162. The Winter Water 

potential temperature minima were colder than 1.5°C and located at around 200 m depth. The cold core 

eddy could be identified by cooler and slightly fresher surface waters with a cyclonic motion (Fig. 4a and 

4b) and shoaling of the isotherms in the western part of the grid at stations 152, 159, 164, 165, 170, 173. 

Surface waters with high chlorophyll-a concentrations (1.5 mg m-3) become entrained into the large 

meander of the PF, with elevated concentrations observed to a depth of 50 m (Fig. 5c), and consistently 

trace the direction of the contours of dynamic height (Fig. 3). Productive (high chlorophyll-a) waters of 

the PF feed into the cold core eddy.  

 

Warmer water to the north and east of the basin from the main flow and meanders in the SAF, 

respectively, emulated an anticyclonic warm core on the eastern margin of the mesoscale survey (Strass 

et al., this issue). Maxima in sea surface temperature (11.7°C) and salinity (34.11) occurred at station 

167 (day 60) and secondary peaks (10.3°C, 33.96) at station 149 (day 56) in the north of the grid (Fig. 

4a). Considerable deepening of the isotherms and isohalines and intersection of 2°C isotherm below 200 



   

m confirmed that stations 149 and 167 are north of the PF, in the PFZ, and reflect characteristics of the 

SAF (Fig. 5a). Relative to surrounding waters of the AAZ, surface waters within the warm core eddy  

structure were typically warm and saline with an anticyclonic motion (Strass et al., this issue), which 

encompassed stations 145, 146, 153 in the eastern part of the grid (Fig. 4a and 4b). The SAF was 

generally associated with lower chlorophyll-a concentrations, less than 0.5 mg m-3  (Fig. 5c) that followed 

the meandering nature of the SAF to the north and PF to the south to form a smaller warm core structure 

in the east (Fig. 3). The cores of frontal water at 50-51S in neighbouring patches (35-37W, 37-39W) 

thus simulated an eddy dipole in the Georgia Basin, where waters of the PFZ and AAZ are in close 

proximity with contrasting low and high chlorophyll-a concentrations, respectively. 

 

4. Discussion 
 
4.1. Mesoscale features and variability in oceanic CO2 uptake  

Satellite altimetry and ocean colour data showed the Georgia Basin to be a highly dynamic region (Fig. 

3) with multiple mesoscale features due to the passage of the SAF in the north (~49S) and the 

interaction of the PF (~51S) with topography, most notably in the vicinity of South Georgia and Maurice 

Ewing Bank (Fig. 1). Shipboard measurements revealed this region to have fluctuations in sea surface 

temperature and salinity with high and variable surface chlorophyll-a concentrations accompanied by 

large (negative) CO2 disequilibrium and substantial seasonal DIC depletion relative to the entire surveyed 

region (Fig. 2a, 2b, 2c, 2f). The mesoscale survey in the Georgia Basin revealed the presence of a large 

meander in the PF entering the region in the southwestern part of the survey grid, creating a cyclonic 

cold core. In the eastern part of the survey grid, a smaller anticyclonic warm core structure is evident 

from meanders in the main flow path of the SAF.  

The cold core and warm core structure are not „isolated‟ eddies but undergo some interaction with 

surrounding waters and modification to the water properties. However, as they reflect the characteristics 

of their respective end-member frontal waters, with distinct surface (temperature, salinity and chlorophyll-

a) and upper ocean expressions (potential temperature and salinity), they are taken here to represent an 

eddy dipole. Stations 149, 167 are situated close to the SAF in the north and with water mass 

characteristics of the PFZ; stations 144, 156, 161, 162 are set within the large meander of the PF with 

water mass characteristics of the AAZ; these two sets of stations are taken as end-member stations in 

interpreting the effects of eddy structures on the CO2 uptake and the distribution of DIC in the upper 

ocean. 



   

The summertime CO2 disequilibrium across the Georgia Basin reflects the influence of the mesoscale 

activity with consistently high but variable CO2 disequilibrium (Fig. 4c). Relative to the PFZ end-member 

stations (149, 167), the pre-conditioned (warm, salty, low chlorophyll-a) waters of the SAF meander that 

feed the warm core structure were modified through sea surface cooling (Fig. 4a) and freshening (Fig. 

4b). Such changes led to enhanced CO2 disequilibrium and uptake of atmospheric CO2. The strongest 

CO2 disequilibrium (86 atm) occurred near the main path of the PF at station 156, which coincided 

with the highest chlorophyll-a values (3.8 mg m-3).  

The relatively low nitrate concentrations of waters of the PFZ are drawn down into the water column by 

deepening of the nutricline concurrent with the thermocline (Fig. 5d). Despite low/moderate chlorophyll-a 

concentrations in the upper 50 m, nitrate and DIC were relatively depleted within the warmest waters 

near the surface. Low concentrations of nitrate and DIC characterised the warm core structure 

throughout the upper 250 m, as summertime productive waters of the euphotic zone that were depleted 

in nitrate and DIC were drawn down in-line with deepening isotherms, i.e., the depth of the 2170 µmol kg-

1 contour was deepened by about 100-150 m (Fig. 5e).   

Relative to the AAZ end-member stations (144, 156, 161, 162), the northward transport of pre-

conditioned (cold, fresh, high chlorophyll-a) water into the cold core experienced warming (Fig. 4a) and 

thermodynamic CO2 saturation (Fig. 4c). Warming of surface waters acts to compensate the strong 

biological CO2 uptake in the productive cold core, which can be seen in the reduction of the CO2 

disequilibrium originally associated with the AAZ source waters (Fig. 4c). The distinct cold and salty 

waters below 100 m of the AAZ are transferred to and thus used to identify the cold core eddy-like 

feature displaying distinct perturbations to the upper 250 m of the water column across a diameter of 

400 km. Warming penetrated the upper 50 m with a slight deepening and strengthening of the 

thermocline (Fig. 5a). Distinct sub-surface potential temperature minima less than 1C were detected 

between 100-200 m across the cold core, retaining the distinct feature of the broad potential temperature 

minimum. Below the Winter Water potential temperature minimum, salty, nitrate- and DIC-rich water was 

upwelling along the shoaling isopycnals. Thus, high nitrate and DIC concentrations are projected/ 

transported towards the surface with maximal vertical gradients across the thermocline. However, 

surface nitrate and DIC values are rapidly reduced in the upper 50 m, co-incident with some of the 

highest chlorophyll-a values (second to those measured near the main flow of the PF to the south) where 

chlorophyll-a concentrations exceeded 1.5 mg m-3 from the surface to 50 m depth (Fig. 5c).   

Highest vertical gradients in DIC occurred across the thermocline from the base of the mixed layer to 

120 m depth (Fig. 5e). The low concentrations of DIC within the shallow mixed layer (20 m) of the warm 

core increased by 100 mol kg-1  to around 2170 mol kg-1 at about 100 m, with little increase by 250 m 



   

depth. In contrast, the deeper mixed layers (20-50 m) of the cold core had slightly higher surface DIC 

concentrations that increased steadily from the base of the mixed layer to 120 m and then continued to 

increase towards 2225 mol kg-1 at 250 m depth. This pattern was concurrent in the nitrate distributions 

(Fig. 5d).  

4.2. Hotspots of carbon uptake in the ACC 

Two principal carbon parameters are selected as criteria to assess whether an area represents a 

„hotspot‟ of carbon uptake in terms of: (1) DIC deficits - the balance of uptake and input of inorganic 

carbon in the upper 100 m of the water column ; (2) CO2 disequilibrium (fCO2) - the summertime degree 

of (under-) saturation of the surface ocean with respect to atmospheric CO2.  

All CO2 disequilibrium along the cruise track (n  57,535) and DIC deficits for each station (n  105) were 

averaged to assess carbon cycling across the whole cruise track in the South Atlantic (Table 1). The 

whole trans-Atlantic survey region had (on average) moderate upper-ocean seasonal depletion in DIC of 

2.1  1.5 mol m-2 and quite strong CO2 disequilibrium of 38  20 µatm. Hotspots are defined here by 

accounting for one standard deviation of each parameter (DIC deficits and fCO2) as this reflects a 

quantitative assessment of the variability by considering the deviation from the mean of all summertime 

data in the whole surveyed region. Therefore, hotspots of carbon uptake have DIC deficits and CO2 

disequilibrium exceeding 3.6 mol m-2 and 58 µatm, respectively (Table 1). Such hotspots were identified 

in 11 locations: stations 144, 145, 152, 156, 159, 161, 162, 164, 165, 170, 173; persistently in the cold 

core in the Georgia Basin (Fig. 6a). Air-sea CO2 fluxes are used to investigate further the transient 

summertime exchange of CO2 with the atmosphere due to the influence of in-situ wind speeds at the 

time of sampling and hence represent a snap-shot of CO2 uptake. The higher DIC deficits and strong 

CO2 disequilibrium in the warm and cold cores were frequently accompanied by moderate to high CO2 

sinks (Fig. 6b and 6c), but the relationship between CO2 disequilibrium and the actual CO2 sink is 

weaker due to the additional wind speed variable. The CO2 flux determined from monthly averaged re-

analysis wind speeds more closely followed the variations in CO2 disequilibrium due to the smoothing of 

short term wind speed fluctuations (storm and calm periods). This is a more representative view of the 

magnitude of summertime CO2 uptake in this region, highlighting the same patterns of enhanced CO2 

uptake across the ACC and especially in the Georgia Basin. 

DIC deficits rely on the assumption of no advection and mixing, which is not the case in the dynamic 

ACC (Naveira Garabato et al., 2004). Therefore, DIC deficits on a large spatial (basin wide) scale are 

better examined by taking into account the temporal differences, i.e., the time of sampling (Table 1). 

Satellite chlorophyll-a images of the months leading up to the survey (not shown) indicate elevated 



   

chlorophyll-a, with increased light levels, occurring from early spring, i.e., October 2011,  thus 1 October 

2011 is taken as the start of the growing season. DIC deficits determined by in-situ sampling are  

normalised to rate of change of DIC per day after the start of the growing (productive) season (t0  1 

October 2011). The rate of consumption of DIC over the length of the growing season reached maxima 

of 33.5 mmol m-2 day-1 and 33.1 mmol m-2 day-1 in the warm and cold eddy cores, respectively, relative to 

the rate of depletion of 19.3-29.7 mmol DIC m-2 day-1 in the surrounding waters of the Georgia Basin. 

This confirms that the cold core and warm core are areas of enhanced biologically-driven DIC uptake.   

As both the warm and cold cores had steadily increasing DIC concentrations between the base of the 

mixed layer and 120 m, this can be used to investigate the vertical gradients in both DIC and nitrate. 

Changes in nitrate along the gradient can be used as an indicator of biological DIC uptake (Fig. 6d). The 

rate of change of DIC (1 mol kg-1 m-1) relative to nitrate (0.15 mol kg-1) shows that high concentrations 

of DIC introduced at the base of the thermocline are rapidly reduced in the depth range between the 

base of summer mixed layer and 120 m, indicating the strong effect of biological carbon uptake within 

the cold core eddy that counteracts the input of DIC-rich waters from below (Fig. 7). Comparing DIC 

deficits determined from DIC measurements to those calculated from nitrate deficits could suggest an 

additional loss of DIC within the cold core through CO2 release to the atmosphere, however this result is 

dependent on the C:N ratio used.  

The cold core and warm core eddy structures in the Georgia Basin represent hotspots of carbon uptake 

during the summer, relative to the surrounding surveyed waters of the ACC. A suggested mechanism is 

based on the Ekman eddy pumping theory, as postulated by McGiliicuddy et al. (1998), and is shown 

schematically in Figure 8. Waters of the cyclonic cold core eddy can become seeded with productive 

(high chlorophyll-a) waters from the AAZ where an enhanced biological response occurs through 

upwelled (micro-)nutrients into the euphotic zone. Upwelled deep waters would also supply the upper 

ocean with DIC. However, it is postulated that DIC delivered along the thermocline of the cold core eddy 

are largely compensated by the concurring high rates of biological carbon depletion that occur in the 

euphotic zone.  

The horizontal entrainment of low DIC surface waters (from spring-summer biological carbon uptake in 

the euphotic zone) of the PFZ downwell within the anticyclonic warm core to yield relative DIC-depletion 

in the upper water column (Fig. 8). The impact of cold cores shed from meanders of the PF could further 

enhance the carbon uptake capacity of this region as highly productive waters of the AAZ seed the upper 

ocean and upwelled (micro)-nutriclines resupply the euphotic zone with nutrients. When the uptake ratio 

C:Fe in the surface is higher than the C:Fe ratio of upwelled deeper waters, this mechanism can 

enhance seasonal carbon deficits by stimulating a biological response and negating the effect of input of 



   

carbon-rich deep waters. Accompanied by strong CO2 disequilibrium, significant instantaneous oceanic 

CO2 sinks can ensue in the presence of high winds (up to 25.5 mmol m-2 d-1), which are shown to be 

only slightly dampened at this location, i.e. 13.6 mmol m-2 d-1, when removing fluctuations by using wind 

speed monthly means to compute the CO2 fluxes. The results described here indicate that the northward 

deflection of persistent meanders of the PF and eddy shedding could displace a DIC-deficient mixed 

layer towards the PFZ, the site of Antarctic Intermediate Water formation, subsequently enhancing the 

subduction of low carbon waters into the ocean interior. 

Waters downstream of South Georgia, in the southern Georgia Basin, have previously been identified as 

sites of high biological carbon uptake (Jones et al., 2012; Jones et al., in press) within the extensive 

phytoplankton blooms that develop annually (Korb et al., 2004; Borrione and Schlitzer, 2012). In a wider 

Southern Ocean context, the DIC deficits in the upper 100 m of the eddy structures in the Georgia Basin 

(4.1-5.1 mol m-2) are some of the largest in ice-free waters of the Southern Ocean; compared to 2.2 mol 

m-2  in the central Scotia Sea (56-58S, 37-43W) (Jones et al., 2012), 3.4 mol m-2 by the Crozet plateau, 

Indian Ocean (45-47S, 49-53E) (Bakker et al., 2007), 4.6 mol m-2 in the central Georgia Basin (52-

54S, 38-42W) (Jones et al., 2012) and 1.2-10.8 mol m-2 in the Ross Sea (77S, 169-187E) (Bates et 

al., 1998; Sweeney et al., 2000). 

 

5. Conclusion 

Cold core and warm core eddy structures created hotspots of carbon uptake in the ACC during austral 

summer. The most intense undersaturation in oceanic CO2 of 78 μatm and substantial seasonal deficits 

in DIC of 5.1 mol m-2 occurred within a large cyclonic cold core in the Georgia Basin, downstream of the 

island of South Georgia. Eddy (Ekman) pumping is proposed as a mechanism where productive (high 

chlorophyll-a) waters from  a meander in the Polar Front seed the cold core, which is subsequently 

resupplied with upwelled (micro-)nutrients and sustained biological carbon uptake follows. Nitrate deficits 

along the thermocline indicate rapid biological assimilation of DIC  that counteracts  inputs from carbon-

rich deep waters. High wind speeds created a strong instantaneous sink for atmospheric CO2 of 25.5 

mmol m-2 day-1 in the cold core eddy. The anticyclonic warm core structure also showed enhanced 

carbon uptake through the horizontal entrainment of low DIC surface waters (spring-summer biological 

carbon uptake) from the Polar Frontal Zone, which downwell within the warm core to cause relative DIC-

depletion in the upper water column. 

The formation and northward projection of cold core eddies from the PF can displace DIC-deficient 

mixed layer towards the site of Antarctic Intermediate Water formation in the Polar Frontal Zone. 

Subduction of intermediate waters enables low carbon waters to permeate the ocean interior. Therefore, 



   

eddy pumping mechanisms in the ACC could enhance CO2 drawdown into the deep ocean. This study 

does not attempt to attribute the observations definitively to eddy mechanisms but provides an insight on 

how mesoscale activity, that includes eddies, influences the summertime and seasonal uptake of CO2. 

From this observational perspective, a base can be drawn in order to better assess the role of eddies in 

carbon cycling in the ACC. 
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Figure 1. Map of the ANT-XXVIII/3 cruise track in the South Atlantic and Southern Ocean. The surveyed 

regions are depicted by clusters of hydrographic stations (black open circles) and labelled numerically 

as: (1) a section along 44-53°S, 10°E (stations 57-84); (2) mesoscale survey at 50-52°S, 12-13.5°W 

west of the Mid-Atlantic Ridge (stations 87-142); (3) mesoscale survey at 48.5-51.5°S, 37-39.5°W in the 

Georgia Basin (stations 144-173). South Georgia island, Mid-Atlantic Ridge, Maurice-Ewing Bank (MEB) 

and the Falkland Islands are marked on the map.  

Figure 2. ANT-XXVIII/3 underway hydrological and meteorological parameters with respect to day 

(2012): (a) sea surface temperature (SST, °C; black), sea surface salinity (grey); (b) chlorophyll-a (mg m-

3); (c) fCO2 (µatm); (d) ship (black) and NCEP re-analysis data (grey) of wind speed (u10, m s-1); (e) air-

sea CO2 flux using ship (black) and monthly means of NCEP re-analysis data (grey) wind speed (mmol 

m-2 d-1); (f) DIC deficit (mol m-2; black bars), NO3 deficit (mol m-2; grey dots); (g) latitude (S; black), 

longitude (W; grey). Horizontal dashed lines mark 0 fCO2 and 0 CO2 flux where data below represent 

CO2 undersaturation and a CO2 sink, respectively. The vertical grey lines de-limit the main surveyed 

regions with key stations labelled: (1) 10°E section (stations 57-84); (2) mesoscale survey west of the 

Mid-Atlantic Ridge (stations 87-142); (3) mesoscale survey in the Georgia Basin (stations 144-173).  

Figure 3. MODIS-Aqua chlorophyll-a (mg m-3) composite image from 10-17 February 2012 with merged 

absolute dynamic topography contours (dyn cm, black) and the cruise track (white) overlain. Pink lines 

denote locations of (from north to south) the main path of the SAF, PF and SACCF, as defined by 

Venables et al. (2012). The island appearing in the image is South Georgia.   

Figure 4. Sea surface plots of (a) temperature (SST, °C), (b) salinity, and (c) fCO2 (µatm) during the 

mesoscale survey in the Georgia Basin. General flow vectors marking areas of clockwise cyclonic (cold 

core) and anti-clockwise anti-cyclonic (warm core) motions are indicated (Strass et al., this issue) with 

relevant stations labelled. For upper ocean sections in Figure 5 the order of station data displayed is 

indicated by the solid black arrows.    

Figure 5. Upper ocean distributions of potential temperature (, °C), salinity, chl-a (mg m-3), NO3 (µmol 

kg-1) and DIC (µmol kg-1) for the Georgia Basin. Station numbering at the top in the order shown in 

Figure 4 and vertical grey columns indicate the location of the warm (w/ core) and cold (c/ core) cores. 

Figure 6. Relationships for all data (grey), warm core (red) and cold core (blue) in the Georgia Basin for 

(a) fCO2 (µatm) and DIC deficit (mol m-2), (b) air-sea CO2 flux (mmol m-2 d-1) and DIC deficit (mol m-2), 

(c) air-sea CO2 flux (mmol m-2 d-1) and fCO2 (µatm), (d) DIC deficit (mol m-2) and NO3 deficit (mol m-2). 

The yellow box highlights ‘hotspots’ with respect to DIC deficit and fCO2. 

Table



   

Figure 7. DIC gradient (DIC/ depth, µmol kg-1 d-1) vs. nitrate gradient (NO3/ depth, µmol kg-1 d-1) 

between the base of the summer mixed layer (MLD, m) and 100 m for all stations in the Georgia Basin 

mesoscale survey. 

Figure 8. Summary of proposed eddy (Ekman) pumping mechanism, highlighting the main flows of CO2 

and DIC, in the cyclonic cold core and anticyclonic warm core eddy structures in the Georgia Basin. 

Table 1. ANT-XXVIII/3 station information and selected biogeochemical data: station number; latitude 

(S); longitude (W); sampling day in 2012; time (t) since start of growing season; average mixed layer 

chlorophyll-a (chl-a, mg m-3); CO2 disequilibrium (fCO2, µatm); DIC deficit (mol m-2); DIC/ t (mol m-2 

day-1); air-sea CO2 flux (mmol m-2 d-1) from shipboard wind speeds and, in parentheses, fluxes from 

NCEP re-analysis wind speeds. No data marked by -. Data highlighted with * indicate a ‘hotspot’ as 

defined as a magnitude equal to or exceeding the average + one standard deviation. 



   

 

station latitude longitude day t chl-a fCO2 DIC deficit DIC/ t CO2 flux 

 S W  days mg m-3 µatm mol m-2 mmol m-2 day-1 mmol m-2 d-1 

57 -44.0012 10.0040 11 103 - 15 0.6 5.7 3.5 (3.4) 

58 -44.3367 10.0015 12 104 - 7 - - 3.6 (1.7) 

59 -44.6685 10.0018 12 104 - 8 0.4 4.2 1.5 (2.0) 

60 -44.9987 9.9985 12 104 0.3 11 1.1 10.3 3.8 (2.5) 

62 -45.6755 10.0077 12 104 - 8 0.1 1.0 2.5 (1.8) 

63 -46.0087 10.0013 13 105 0.3 11 0.4 4.3 3.6 (2.5) 

64 -46.3378 10.0007 13 105 - 18 - - 3.3 (4.3) 

65 -46.6668 10.0015 13 105 - 12 1.2 11.7 1.3 (2.9) 

66 -46.9993 10.0082 13 105 0.6 7 0.6 5.6 1.2 (1.6) 

67 -47.3332 9.9985 14 105 - 9 0.3 3.2 3.6 (2.2) 

69 -47.9963 10.0065 15 107 0.4 3 0.1 1.0 0.6 (0.8) 

70 -48.3343 10.0002 15 107 - 3 0.2 1.7 1.6 (0.8) 

71 -48.6672 10.0055 15 107 - 2 0.0 0.1 0.9 (0.5) 

72 -49.0000 10.0040 16 108 0.4 5 0.1 1.2 2.0 (1.3) 

73 -49.3428 10.0072 16 108 - 13 1.3 12.2 5.2 (3.5) 

74 -49.6667 10.0023 16 108 - 15 0.4 3.6 5.7 (3.8) 

75 -50.0005 9.9993 16 108 0.9 16 0.8 7.0 8.3 (2.8) 

76 -50.3298 10.0232 17 109 1.0 12 0.5 4.4 1.6 (1.7) 

77 -50.6647 10.0000 17 109 1.1 7 0.2 2.3 0.3 (1.6) 

78 -51.0017 9.9992 18 110 1.2 7 0.4 4.1 2.0 (1.6) 

79 -51.3360 9.9998 18 110 1.1 7 0.6 5.3 3.6 (1.1) 

80 -51.6687 10.0037 18 110 0.6 6 0.4 4.1 4.1 (1.5) 

81 -51.9990 10.0048 18 110 0.6 5 0.8 7.0 2.4 (1.2) 

82 -52.3448 10.0005 20 112 0.5 2 0.7 5.8 0.3 (0.6) 

83 -52.6665 10.0027 21 113 0.6 4 2.0 17.3 0.6 (0.8) 

84 -52.9977 10.0013 21 113 0.4 4 0.7 5.8 0.8 (1.0) 

85 -51.9983 -8.0042 26 118 0.1 3 0.0 0.0 1.2 (0.8) 

86 -51.9970 -11.9762 29 121 2.6 41 0.3 2.3 13.3 (10.0) 

87 -50.8365 -13.1553 33 125 0.6 36 1.9 15.1 8.5 (7.4) 

88 -50.3333 -13.1662 33 125 1.5 42 1.8 14.6 10.2 (8.7) 

91 -51.2127 -12.6733 34 126 2.0 36 - - 4.8 (7.5) 

92 -50.7988 -12.6647 35 127 2.2 49 1.8 14.3 4.3 (10.1) 

93 -50.8085 -12.6693 35 127 - 51 2.0 15.9 3.6 (10.5) 

95 -51.1980 -12.0015 36 128 2.3 44 0.8 6.1 12.8 (9.0) 

96 -51.1998 -12.3307 36 128 2.3 47 - - 8.6 (9.7) 

98 -51.2058 -12.6637 36 128 2.2 48 1.3 9.9 11.4 (9.9) 

101 -51.3997 -12.6660 37 129 2.4 47 1.9 14.6 7.2 (9.7) 

102 -51.5967 -12.6665 37 129 2.3 44 1.3 9.8 3.9 (9.2) 



   

103 -51.6017 -12.9975 38 130 - 46 2.2 16.8 2.8 (9.5) 

104 -51.6005 -13.3317 38 130 2.4 45 0.7 5.2 5.0 (9.3) 

105 -51.3998 -13.3317 38 130 - 57* 2.2 17.2 16.7 (11.8) 

106 -51.2007 -13.3315 38 130 1.7 52 2.5 18.9 16.5 (10.9) 

107 -51.0018 -13.3292 38 130 - 43 1.9 14.3 25.0 (8.9) 

108 -50.7985 -13.3308 38 130 1.1 42 1.8 13.8 16.7 (8.8) 

109 -50.7997 -12.9987 39 131 - 42 2.0 14.9 14.6 (8.7) 

110 -50.9995 -12.9973 39 131 - 46 2.4 18.5 16.8 (9.6) 

111 -51.1970 -12.9985 39 131 1.6 48 2.4 18.1 26.5 (9.9) 

112 -51.4003 -12.9952 39 131 - 42 0.9 7.2 14.8 (8.8) 

114 -51.1993 -12.6690 39 131 2.2 41 2.0 15.1 16.1 (8.6) 

115 -50.9985 -12.6645 40 132 1.8 45 1.0 7.7 20.3 (9.4) 

116 -50.7985 -12.6603 40 132 1.3 45 2.3 17.8 23.4 (9.4) 

117 -50.8000 -12.3330 40 132 - 47 2.3 17.0 2.5 (9.8) 

118 -51.0007 -12.3322 41 133 - 39 0.7 5.4 3.8 (8.0) 

119 -51.2022 -12.3342 41 133 2.1 39 1.4 10.2 5.6 (8.0) 

120 -51.4015 -12.3328 41 133 - 39 0.2 1.6 9.2 (8.0) 

121 -51.5992 -12.3303 41 133 - 40 1.6 12.0 8.9 (8.3) 

122 -51.5978 -11.9965 41 133 1.8 39 1.4 10.6 12.8 (8.0) 

123 -51.4010 -11.9993 41 133 - 42 0.7 5.3 24.5 (8.7) 

124 -51.2000 -11.9970 42 134 2.1 42 2.2 16.1 21.6 (8.7) 

125 -51.0000 -11.9992 42 134 - 41 1.5 10.8 20.4 (8.5) 

126 -50.7998 -11.9990 42 134 1.7 44 2.3 17.3 17.9 (9.2) 

127 -51.2302 -12.4127 42 134 2.0 42 1.7 12.4 20.6 (8.7) 

128 -51.2005 -12.6623 43 135 1.6 41 0.7 5.3 18.9 (8.4) 

129 -50.5990 -13.0010 43 135 - 40 1.1 8.1 4.4 (8.2) 

130 -50.4002 -12.9993 44 136 0.9 33 - - 3.8 (6.9) 

131 -50.2013 -13.0065 44 136 0.8 38 1.4 10.6 5.5 (7.9) 

132 -50.2000 -13.3343 44 136 - 36 1.5 10.9 5.6 (7.5) 

133 -50.4003 -13.3335 44 136 0.7 34 1.6 11.9 6.5 (7.0) 

134 -50.5985 -13.3335 44 136 0.7 33 0.9 6.3 6.2 (6.8) 

136 -51.2003 -12.6655 45 137 1.4 37 1.8 13.4 9.3 (7.6) 

137 -51.0362 -12.1722 46 138 1.7 37 1.3 9.2 7.1 (7.7) 

139 -50.9932 -12.9892 46 138 0.8 35 2.0 14.4 5.0 (7.3) 

140 -51.2003 -12.6645 47 139 1.7 40 2.3 16.8 8.0 (8.3) 

141 -51.1995 -12.6120 48 140 1.4 39 0.5 3.8 18.7 (8.1) 

142 -51.1988 -12.6683 50 142 1.0 35 2.2 15.7 8.8 (7.3) 

144 -50.7942 -36.9777 55 147 1.8 79* 4.3* 29.5 9.5 (16.1) 

145 -50.3935 -36.9973 56 148 - 59* 4.9* 33.1 12.1 (11.9) 

146 -50.0018 -37.0010 56 148 - 49 4.3* 29.3 12.8 (10.0) 

147 -49.6058 -37.0140 56 148 - 52 3.5 23.5 12.0 (10.5) 

148 -49.1965 -36.9668 56 148 - 50 4.1* 27.4 13.8 (10.1) 



   

149 -48.8022 -36.9830 56 148 - 41 4.3* 29.0 7.5 (8.3) 

150 -48.8050 -37.5858 56 148 - 45 3.4 22.8 10.6 (9.2) 

151 -49.1990 -37.5940 57 149 - 49 4.1* 27.6 10.1 (9.9) 

152 -49.6063 -37.5953 57 149 1.8 70* 4.3* 28.9 16.7 (14.3) 

153 -50.0025 -37.6092 57 149 1.0 55 4.2* 28.5 17.9 (11.2) 

154 -50.4042 -37.6045 57 149 0.8 53 4.4* 29.7 8.4 (10.7) 

155 -50.8100 -37.5773 57 149 0.9 53 4.3* 28.9 5.3 (10.8) 

156 -50.8142 -38.1948 57 149 3.8 86* 3.8* 25.4 4.6 (17.6) 

157 -50.4068 -38.1892 58 150 1.0 55 4.1* 27.1 0.4 (11.2) 

158 -50.0000 -38.2182 58 150 1.0 51 4.1* 27.3 2.9 (10.4) 

159 -49.9958 -38.8110 58 150 2.0 73* 4.7* 31.6 16.7 (14.9) 

160 -50.3970 -38.8008 58 150 1.2 56 3.4 23.0 17.8 (11.6) 

161 -50.8010 -38.7952 58 150 1.2 61* 4.1* 27.3 14.2 (12.6) 

162 -50.7967 -39.4158 58 150 1.6 75* 4.5* 29.9 22.5 (15.5) 

163 -50.4013 -39.3993 59 151 0.6 38 2.9 19.3 17.7 (7.9) 

164 -49.9985 -39.4027 59 151 1.9 66* 4.3* 28.4 25.5 (13.6) 

165 -49.6010 -39.4013 59 151 1.7 72* 4.4* 29.1 9.1 (14.8) 

166 -49.2000 -39.3982 60 152 1.2 51 3.5 23.1 8.3 (10.6) 

167 -48.7895 -39.3222 60 152 - 46 4.4* 29.1 14.4 (9.2) 

168 -48.7960 -38.7347 60 152 - 48 3.9* 25.6 9.6 (9.6) 

169 -49.1998 -38.8005 60 152 0.7 42 3.5 23.0 7.3 (8.5) 

170 -49.6025 -38.7978 60 152 1.9 78* 5.1* 33.5 15.6 (15.8) 

171 -48.7962 -38.1482 60 152 - 54 3.8* 25.3 7.8 (11.0) 

172 -49.2048 -38.2032 61 153 0.7 41 3.7* 24.3 2.6 (5.4) 

173 -49.5978 -38.2060 61 153 1.5 72* 4.1* 26.9 9.0 (9.4) 

          

      -38 2.1 average  

      20 1.5 std dev  

      -58 3.6 ‘hotspot’  
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