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Abstract 
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The Antarctic Circumpolar Current has a high potential for primary production and carbon 

sequestration through the biological pump. In the current study, two large-scale blooms 

observed in 2012 during a cruise with RV Polarstern were investigated with respect to 

phytoplankton standing stocks, primary productivity and nutrient budgets. While net primary 

productivity was similar in both blooms, chlorophyll a –specific photosynthesis was more 

efficient in the bloom closer to the island of South Georgia (39°W, 50°S) compared to the 

open ocean bloom further east (12°W, 51°S). We did not find evidence for light being the 

driver of bloom dynamics as chlorophyll standing stocks up to 165 mg m
-2

 developed despite 

mixed layers as deep as 90 m. Since the two bloom regions differ in their distance to shelf 

areas, potential sources of iron vary. Nutrient (nitrate, phosphate, silicate) deficits were 

similar in both areas despite different bloom ages, but their ratios indicated more pronounced 

iron limitation at 12°W compared to 39°W. While primarily the supply of iron and not the 

availability of light seemed to control onset and duration of the blooms, higher grazing 

pressure could have exerted a stronger control toward the declining phase of the blooms. 

 

 

Keywords: biological pump; nutrient budgets; primary productivity; Southern Ocean 

1. Introduction 

Oceanic phytoplankton account for about half of the global primary production, thereby 

providing the basis of marine food webs and exerting a major control on biogeochemical 

cycles and global climate (Falkowski et al. 1998, Field et al. 1998). The supply of nutrients 

such as nitrate, phosphate and silicate to the photic zone (i.e. ‘new’ nutrients) constrains the 

biologically-mediated export of organic carbon to the deep ocean (Dugdale and Goering 

1967, Eppley and Peterson 1979, Longhurst and Harrison 1989). The strength of this 

biological carbon pump can be estimated from the degree to which these nutrients are 

consumed as well as the carbon to nutrient ratios in the organic matter sinking to depth.  

One area with great potential for an increase in both new and recycled production is 

the Antarctic Circumpolar Current (ACC). As concentrations of nitrate and phosphate are 

high, primary production is limited by other controlling factors (Priddle et al. 1992, Moore et 

al. 2000). More specifically, productivity in the ACC region is thought to be controlled by 

interactions between light availability (Mitchell and Holm-Hansen 1991, Nelson and Smith 

1991), iron supply (Martin 1990, de Baar et al. 1995), silicate limitation (Brzezinski et al. 

2003), and the effect of grazing (Dubischar and Bathmann 1997, Atkinson et al. 2001). More 

recent studies suggest that iron is the primary limiting factor in these open ocean areas 
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(Smetacek et al. 2012). Phytoplankton blooms in the ACC tend to occur downstream of land 

masses and have been associated with fronts, islands and bathymetric features, which increase 

the input of iron and other trace metals into the surface waters  (Moore et al. 1999, Blain et al. 

2001, Borrione and Schlitzer 2013). In the Atlantic sector of the ACC, high phytoplankton 

standings stocks and production rates have been observed in the Antarctic Polar Frontal Zone 

(APFZ; Bathmann et al. 1997, Bracher et al. 1999, Moore and Abbott 2000, Tremblay et al. 

2002). In this particular region, an alleviation of light limitation through upper water column 

stratification in spring was proposed as a trigger for the development of phytoplankton 

blooms. Finally, the termination of blooms is often caused by a combination of grazing 

pressure as well as iron and silicate limitation (Abbott et al. 2000, Tremblay et al. 2002).   

Attempts to disentangle the effects of potential factors controlling bloom dynamics are 

complicated by the fact that these different factors tend to co-vary and also interact with each 

other (e.g. iron limitation decreases photoadaptive capabilities, thereby affecting light 

limitation; Sunda and Huntsman 1997, Petrou et al. 2014). The aim of the present study was, 

therefore, to understand how different environmental factors influence the biomass, primary 

productivity, nutrient usage and the potential for carbon sequestration in two large-scale 

phytoplankton blooms with a putatively different iron supply. 

2. Material and methods 

 

2.1. Cruise track and sampling locations 

Sampling was conducted in the framework of the ‘Eddy-Pump’ project during the ANT-

XXVIII/3 expedition on-board the German research vessel Polarstern (Wolf-Gladrow 2013) 

between January and March 2012 in two survey areas. In addition to physical properties, 

nutrient and chlorophyll concentrations as well as primary productivity were determined in 

two survey areas at 10 stations in a land-remote bloom at 50 - 52°S and 13.5 - 11.5°W 

(hereafter 12°W bloom) and at 9 stations in a bloom downstream of South Georgia at 48 - 

52°S and 37 - 39°W (hereafter 39°W bloom; Figure 1). Water samples for all measured 

parameters except iron (see below), were obtained at discrete depths (10, 20, 40, 60, 80 and 

100 m) from Niskin bottles attached to a Conductivity Temperature Depth (CTD) rosette. The 

mixed layer depth (MLD) was defined as a change of density of 0.02 kg m
-3

 relative to the 

uppermost value of each CTD vertical profile (Cisewski et al. 2005, Strass et al. this issue). It 

should be noted that at station PS79/085 (the out-station in the 12°W area), chlorophyll 

biomass was evenly distributed to a deeper pycnocline at a depth of 82 m even though the 

MLD determined was 30 m only.  
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2.2. Macronutrient measurements and nutrient deficit calculations 

Macronutrients were measured colorimetrically using a Technicon TRAACS 800 auto-

analyzer (Seal Analytical) on board the ship. Orthophosphate (PO4
3-

) was measured at 880 nm 

after the formation of molybdophosphate-complexes (Murphy and Riley 1962). Orthosilicate 

(Si(OH)4) was measured at 820 nm after formation of silica-molybdenum complexes with 

oxalic acid being added to prevent the formation of phosphate-molybdenum (Strickland and 

Parsons 1968). After nitrate reduction through a copperized cadmium coil, nitrate plus nitrite 

(NO3
-
+NO2

-
) was measured at 550 nm after complexation with sulphanylamide and 

naphtylethylenediamine (Grasshoff et al. 1983). Complex formation without the reduction 

step was used to determine nitrite concentrations. Nitrate is calculated by subtracting the 

nitrite value from the ‘NO3+NO2’ value (Grasshoff et al. 1983).  

Prior to analysis, all samples and standards were brought to 22°C in about 2 h. 

Concentrations were recorded in mmol m
-3

 at this temperature. Calibration standards were 

diluted from stock solutions of the different nutrients in 0.2 μm filtered low nutrient seawater. 

During every run, a freshly diluted mixed nutrient standard, containing silicate, phosphate and 

nitrate, the so-called ‘NIOZ nutrient cocktail’, was measured in triplicate. Every 2 weeks, a 

sterilized ‘Reference Material Nutrient Sample’ (JRMNS, Kanso Technos, Japan) containing 

known concentrations of silicate, phosphate, nitrate and nitrite in Pacific Ocean water was 

analysed in triplicate. The cocktail and the JRMNS were both used to monitor the 

performance of the analyser. Finally, the NIOZ nutrient cocktail was used to adjust all data by 

multiplying with the offset factor derived from the differences between assigned and 

measured nutrient concentrations. The average standard deviations of the NIOZ nutrient 

cocktail measurements were 0.02 mmol m
-3

 for phosphate, 0.59 mmol m
-3

 for silicate and 

0.13 mmol m
-3

 for nitrate (n=113).  

Surface nutrient concentrations were calculated as the weighted average of the 

measured values for sampling depths 10 - 60 m, accounting for differences in sampling 

frequency with increasing depth. Nutrient deficits were calculated at each station as the 

differences between the nutrient concentration in remnant Antarctic Winter Water (AWW) in 

the layer below the seasonal pycnocline and the average concentrations above that (Jennings 

et al. 1984, Hoppema et al. 2000). The nutrient deficit per m
3
 at each station was averaged 

over the different depths, while the deficit per m
2
 was calculated by integrating the deficits 

from 10-120 m data for the water column of 0-120 m. It should be noted that nutrient deficits 

are suitable estimates for annual net community production only if vertical and lateral mixing 
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in both the temperature minimum and the surface layer are small (Jennings et al. 1984, 

Hoppema et al. 2000, Hoppema et al. 2007). The deficits thus represent a somewhat larger 

area than just the station location. The AWW layer, which was characterised by a well-

defined potential temperature minimum (Ztmin) in the CTD profiles, was situated at 150 ± 15 

m water depth during this cruise. AWW nutrient concentrations were similar in both bloom 

areas (2.1 ± 0.1 mmol m
-3

 for phosphate, 30.1 ± 6.1 mmol m
-3

 for silicate and 30.6 ± 1.4 

mmol m
-3

 for nitrate; n=113; Figure 2). Deficit ratios (i.e. Si(OH)4:NO3 and NO3:PO4) were 

calculated after averaging the nutrient deficits from the different depths at each station.  

 

2.3. Iron sampling and measurements 

Samples for total dissolved iron (TDFe) measurements were collected from the upper 

300 m of the water column in metal free GOFLO bottles attached to a Kevlar line. Samples 

were immediately online filtered through trace-metal clean 0.22 µm sterile capsules 

(Sartobran 300, Sartorius) and subsequently collected in low-density polyethylene bottles. 

TDFe was determined on-board by voltammetry following the protocol described by Laglera 

et al. (2013). 

 

2.4. Irradiance estimates 

Solar irradiance was measured continuously at one-minute intervals using a RAMSES 

hyperspectral radiometer (TriOS GmbH, Germany) placed on the uppermost deck of the ship 

to avoid shading. The sensor measured downwelling incident sunlight from 350 to 950 nm 

with a spectral resolution of 3.3 nm. Plane photosynthetically active radiation (PAR) was 

calculated as the integral of irradiances from 400 to 700 nm. Daily PAR values [mol photons 

m
-2

 d
-1

] were then calculated by integrating the PAR values from the start to the end of each 

incubation (~24 h).  

 

2.5. Chlorophyll a  

Chlorophyll a (Chl a) concentrations were determined by two methods: fluorometry (Chl 

aFLUO) and high performance liquid chromatography (HPLC; Chl aHPLC). Except for stations 

PS79/160 and PS79/175, where Chl aFLUO data were used, Chl a estimates are based on Chl 

aHPLC data. The two Chl a datasets produced similar results, showing a significant correlation 

and only minimal differences (r
2 

= 0.97, p < 0.001, n=104, Chl aFLUO = 0.990* Chl aHPLC + 

0.0837). 
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For the Chl aFLUO determination, samples were filtered onto 25 mm diameter GF/F 

filters (Whatman; 0.7 µm nominal pore size) at a vacuum of <100 mmHg. Filters were 

immediately transferred into centrifuge tubes containing 10 mL of 90% acetone and 1 cm
3
 of 

glass beads. The tubes were sealed and stored at -20°C for at least 30 min and up to 24 h. Chl 

aFLUO was extracted by placing the centrifuge tubes in a grinder for 3 min followed by 

centrifugation at 0°C. The supernatant was poured into quartz tubes and the Chl aFLUO content 

was quantified in a 10-AU fluorometer (Turner). Calibration of the fluorometer was carried 

out at the beginning and at the end of the cruise, diverging by 2%. Chl aFLUO content was 

calculated using the equation given in Knap et al. (1996) and the average parameter values 

from the two calibrations. 

For the Chl aHPLC determinations, samples were filtered onto 25 mm diameter GF/F 

filters (Whatman) at a vacuum of <100 mmHg. Filters were shock-frozen in liquid nitrogen 

and stored at -80°C until analysis in the home laboratory following the method described by 

Hoffmann et al. (2006) as detailed in Cheah et al. (this issue). For calculating Chl aHPLC the 

sum of concentrations of monovinyl-, divinyl chlorophyll a and chlorophyllide a was taken 

(divinyl chlorophyll a was not detected in our samples). 

Vertical plankton net samples were used to qualitatively determine the dominant 

phytoplankton functional types by means of light microscopy. 

 

 

2.6. Particulate organic carbon and nitrogen  

Samples for particulate organic carbon (POC) and nitrogen (PON) were filtered onto pre-

combusted (15 h, 500°C) glass fibre filters (GF/F, Whatman). Filters were stored at -20°C and 

processed according to Lorrain et al. (2003). Analyses were performed using a CHNS-O 

elemental analyser (Euro EA 3000, HEKAtech). 

 

2.7. Primary Productivity 

Net primary production rates (NPP) were determined in duplicates by the incubation of 20 mL 

seawater sample spiked with 20 µCi NaH
14

CO3 (53.1 mCi mmol
-1

; Perkin Elmer) in a 20 mL 

glass scintillation vial for 24 h in a seawater cooled on-deck incubator. Seawater samples 

from 6 depths (10, 20, 40, 60, 80 and 100 m) were incubated at different irradiances, which 

were achieved with neutral density filters decreasing incoming light to 25, 12.5, 6.3, 3.1, 1.6 

and 0.8% of downwelling PAR above the ocean surface.  
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After the addition of the NaH
14

CO3 spike, 0.1 mL aliquots were immediately removed 

and mixed with 10 mL of scintillation cocktail (Ultima Gold AB, PerkinElmer). After 2 h, 

these samples were counted with a liquid scintillation counter (Tri-Carb 2900TR, 

PerkinElmer) to determine the total amount of added NaH
14

CO3 (100%). For blank 

determination, one additional replicate per sample was immediately acidified with 0.5 ml 6N 

HCl (blank). After the outdoor incubation of the samples over 24 h, 
14

C incorporation was 

stopped by adding 0.5 mL 6N HCl to each vial. The vials were then left to degas overnight, 

thereafter 15 ml of scintillation cocktail (Ultima Gold AB) were added and samples were 

measured after 2 h with the same liquid scintillation counter. NPP rates [mg C m
-3

 d
-1

] at each 

sample depth were calculated as follows: 

 

NPP [mg C m
-3

 d
-1

] = (DIC * (DPMsample – DPMblank) *1.05) / (DPM100% *t)   (1) 

 

where DIC is the concentration of dissolved inorganic carbon [µmol kg
-1

], t is the incubation 

time [h] and 1.05 is the factor describing the discrimination between incorporation of 
14

C and 

12
C. DPMblank, DPMsample and DPM100% are the disintegration per minute measured by the 

scintillation counter for the blank, the sample and the determination of the total amount of 

added NaH
14

CO3, respectively. Chl a-specific carbon fixation (NPPChl a [mg C [mg Chl a]
-1

 d
-

1
]) was calculated by dividing the depth-specific NPP value by the depth-specific Chl a 

concentrations. Column-integrated NPPChl a  and primary productivity (NPP [mg C m
-2

 d
-1

]) 

were derived by integrating values for 100 m depth. 

2.8. Satellite Chl a maps 

Weekly satellite maps of Chl a were used to study the development of the blooms. The 

comparison of satellite derived Chl a concentrations with the in-situ values measured at the 

two bloom locations was based on daily maps. The Chl a maps were derived using the 

POLYMER level-3 product of the Medium Resolution Imaging Spectrometer (MERIS) at a 

0.02° spatial resolution (Steinmetz et al. 2011). POLYMER is an improved atmospheric 

correction algorithm for pixels contaminated by sun glint, thin clouds or heavy aerosol 

plumes. MERIS Polymer products improve the spatial coverage by almost a factor of two and 

have been proven successful for retrieving MERIS Ocean Colour products (Müller et al. 

2015). The Chl a concentrations are retrieved using the standard OC4Me algorithm (Morel et 

al. 2007).   

3. Results 
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3.1. Temporal and spatial development of the blooms 

During austral summer (January - March) 2012, two large-scale phytoplankton blooms were 

observed in the APFZ (Figure 1A). A comparison of all surface Chl a concentrations (<10 m) 

derived by HPLC measurements with daily MERIS Polymer Chl a within the respective 

satellite pixel (Figure 1B, C) revealed a reasonable correlation coefficient (r
2
 = 0.67), low bias 

(0.17 mg m
-3

) and low percentage error (33%) between the two approaches. Estimates of Chl 

a standing stocks from in-situ measurements and satellite-based products are thus in good 

agreement, showing a nearly perfect match for the bloom situated at 12°W (Figure 1C). A 

reasonable agreement was observed for the 39°W bloom north of South Georgia, where 

satellite data tended to underestimate Chl a concentrations, particularly in the higher range of 

the measured values (Figure 1B). Both blooms were dominated by diatoms (C. Klaas, unpubl. 

results; also indicated by silicate depletion in the surface waters, Figure 2). 

In the 12°W bloom area (Figure 1A, C), satellite Chl a maps indicated that a bloom 

developed from mid December 2011 onwards and peaked in the first two weeks of January 

2012 with Chl a concentrations of around 3 mg m
-3

. Our in-situ sampling took place between 

January 26th and February 15th, i.e. in the declining phase of the bloom. Within these three 

weeks, a central station (at 12°6’W, 51°2’S) was re-visited six times to investigate the 

temporal development of the bloom. The satellite data indicated that Chl a concentrations in 

the area quickly decreased within 5 days after the last sampling date to values lower than 1 

mg m
-3

.  

The phytoplankton bloom at 39°W (Figure 1 A, B) was located in the Georgia Basin, 

north of the island of South Georgia. Satellite Chl a maps indicated that the 39°W bloom had 

already developed during mid-October and peaked in mid-December with surface Chl a 

concentrations reaching values higher than 3 mg m
-3

. In-situ sampling took place between 

February 16th and March 3rd, in the declining phase of the bloom. Satellite data indicated that 

Chl a concentrations above 0.5 mg m
-3

 persisted at least until mid-March.  

 

3.2. Phytoplankton standing stocks and primary productivity 

In the 12°W area, average MLD was 71 ± 14 m. The depth-integrated Chl a concentrations in 

the bloom ranged from 50 to 180 mg Chl a m
-2

 (Table 1) and were on average 120 ±41 mg 

Chl a m
-2

. Values were as low as 9 mg m
-2

 outside the bloom area
 
(Table 2). NPP ranged from 

800 to 2820 mg C m
-2

 d
-1

 (Table 1) and was on average 1750 ± 750 mg C m
-2

 d
-1

 (Table 2) in 

the bloom, and thus significantly higher than values outside the bloom area (160 mg C m
-2

 d
-

1
). Chl a-specific carbon fixation NPPChl a, a measure of photosynthetic efficiency, varied 



 9 

between 10.1 and 17.3 mg C [mg Chl a]
-1 

d
-1

 (on average 14.4 ± 2.6 mg C [mg Chl a]
-1 

d
-1

) in 

the 12°W bloom (Table 1 and 2). The average depth-integrated molar POC:PON ratios in this 

area were 6.3 ± 0.6 (Table 2). Average daily PAR during primary production measurements 

in the 12°W bloom was 12.3 ± 5.1 mol photons m
-2

 d
-1 

(Table 2). 

In the 39°W bloom north of South Georgia, average MLD was 35 ± 13 m. In-situ Chl 

a standing stocks ranged from 25 to 130 mg Chl a m
-2

 (Table 1), with an average of 60 ± 30 

mg Chl a m
-2

 (Table 2). NPP (Table 1) in this region varied between 570 and 3020 mg C m
-2

 

d
-1

 (on average 1370 ± 830 mg C m
-2

 d
-1

).
 
NPPChl a varied between 14.4 and 30.3 mg C [mg 

Chl a]
 -1

 d
-1

 (average of 19.4 ± 5.5 mg C [mg Chl a]
 -1 

d
-1

). In the 39°W bloom, average depth-

integrated molar POC:PON ratios (Table 2) were 5.9 ± 0.5. Average daily PAR during 

primary production measurements in this bloom was 15.7 ± 6.1 mol photons m
-2

 d
-1 

(Table 2).  

Light profiles in the surface ocean were measured at 6 stations in the 12°W bloom area 

(with an average depth of the euphotic zone, Zeu [0.8%], of 29.6 ±7.6 m) and only one station 

in the 39°W bloom area (Zeu [0.8%] = 21.5 m), indicating similar euphotic depths in both 

blooms. 

 

3.3. Nutrient concentrations and deficits 

In the 12°W bloom area, average surface nutrient concentrations (10 m depth) were 19.7 ± 0.3 

mmol NO3 m
-3

, 1.3 ± 0.1 mmol PO4 m
-3

, and 4.1 ± 3.1 mmol Si(OH)4 m
-3

 (Figure 2). The 

average nutrient concentrations in the euphotic zone (10 - 60 m) were 20.6 ± 0.5 mmol NO3 

m
-3

, 1.4 ± 0.1 mmol PO4 m
-3

, and 6.6 ± 2.7 mmol Si(OH)4 m
-3

 (Table 2). Average integrated 

nutrient deficits in this area were 1090 ± 110 mmol NO3 m
-2

, 75 ± 7 mmol PO4 m
-2

, and 2710 

± 300 mmol Si(OH)4 m
-2

 (Table 2) with a Si(OH)4:NO3 deficit ratio of 2.5 ± 0.3 mol mol
-1

 

and a NO3:PO4 deficit ratio of 14 ± 1 mol mol
-1

 (Table 2, Figure 3). Average total dissolved 

iron (TDFe) concentrations in the upper 100m of the water column were 0.12 ± 0.03 nM 

(Table 2, Figure 4).  

In the 39°W bloom area, average surface nutrient concentrations (10 m depth) were 

14.9 ± 1.8 mmol NO3 m
-3

, 1.0 ± 0.1 mmol PO4 m
-3

, and 0.6 ± 0.5 mmol Si(OH)4 m
-3

 (Figure 

2). Average nutrient concentrations of the euphotic zone (10 - 60 m) were 16.3 ± 1.8 mmol 

NO3 m
-3

, 1.2 ± 0.1 mmol PO4 m
-3

 and 2.2 ± 1.3 mmol Si(OH)4 m
-3

 (Table 2). Resulting 

average integrated surface nutrient deficits in the 39°W bloom area were 1220 ± 310 mmol 

NO3 m
-2

, 68 ± 18 mmol PO4 m
-2 

and 2360 ± 630 mmol Si(OH)4 m
-2

 (Table 2), resulting in 

Si(OH)4:NO3 deficit ratios of 2.0 ± 0.4 mmol mmol
-1

 and NO3:PO4 deficit ratios of 17 ± 1 
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mmol mmol
-1

 in this region (Table 2, Figure 3). 100 m averaged TDFe concentrations in this 

area were 0.14 ± 0.03 nM (Table 2, Figure 4). 

Due to the high variability within each bloom, no significant differences in nutrient 

concentrations or deficits were detected between the two study areas (Table 2). The ratios of 

Si(OH)4:NO3 deficits, however, were significantly lower in the 39°W area compared to the 

12°W bloom (t-test, t = 6.6, p <0.001, n = 35 + 26; Table 2, Figure 3), while the ratios of 

NO3:PO4 deficits were significantly higher at 39°W (t-test, t =15.4, p <0.001, n = 35 + 26). 

4. Discussion 

 

4.1. High variability of primary productivity in the APFZ  

Two large-scale diatom-dominated phytoplankton blooms in the Atlantic sector of the ACC 

were observed (Figure 1), both being located between 50°S and 52°S in the Antarctic Polar 

Frontal Zone (APFZ). Phytoplankton blooms are regularly observed in this region during 

spring and summer (e.g. Laubscher et al. 1993, Bathmann et al. 1997, Bracher et al. 1999, 

Tremblay et al. 2002). The occurrence of blooms in SO frontal zones has been associated with 

oceanographic frontal features such as jet streams, meanders and mesoscale eddies, which can 

lead to increased iron and silicate supply by mesoscale upwelling but also enhanced 

stratification due to cross-frontal overlayering (de Jong et al. 1998, Bracher et al. 1999, Strass 

et al. 2002a, Tremblay et al. 2002), thereby alleviating nutrient and light limitation for 

phytoplankton growth. In the Georgia Basin, bloom initialization is thought to be mainly 

driven by iron input from South Georgia, while further east more complex modes of iron 

supply generate a larger degree of spatial and temporal variability in productivity (Venables 

and Meredith 2009). 

Being a relatively productive area within the otherwise HNLC (high-nutrient low-

chlorophyll) region, the APFZ has been the destination of several research cruises (e.g. 

Bracher et al. 1999, Strass et al. 2002c, Tremblay et al. 2002, Korb and Whitehouse 2004). 

Estimates of primary productivity in the APFZ vary between 100 and 6000 mg C m
-2

 d
-1

 

(Mitchell and Holm-Hansen 1991, Bracher et al. 1999, Moore and Abbott 2000, Strass et al. 

2002b, Tremblay et al. 2002, Hiscock et al. 2003, Vaillancourt et al. 2003, Korb and 

Whitehouse 2004, Park et al. 2010), with the highest values being observed in the vicinity of 

land masses. The values observed in the present study are highly variable (about 160 - 3020 

mg C m
-2

 d
-1

; Table 1), but fall within the previously reported range. Antarctic phytoplankton 

productivity in this region has been reported to exhibit strong spatial (Veth et al. 1992, Arrigo 

et al. 1998), seasonal (Smith et al. 2000, Hiscock et al. 2003) and inter-annual variations 
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(Clarke and Leakey 1996, Park et al. 2010). Sporadic and patchy sampling during research 

cruises makes it therefore difficult to estimate the specific productivity in this region. These 

sampling opportunities are nonetheless useful to investigate the variability of productivity.  

During sampling in the 12°W bloom, one station in the initial centre of the bloom was 

investigated over a two-week period (Figure 1, Table 1). Primary productivity estimates at 

this central sampling station varied between 1050 and 2820 mg C m
-2

 d
-1

 (Table 1). These 

values are in the same range as reported by Jochem et al. (1995), but considerably higher than 

previous estimates for this region (Bracher at al. 1999, Strass et al. 2002b, Tremblay et al. 

2002, Korb and Whitehouse 2004). The observed temporal variability, which was somewhat 

lower than the spatial variability in the 12°W region (800 – 2820 mg C m
-2

 d
-1

, Table 1), 

probably reflects a combination of the changes in light availability due to cloud cover 

(between 5 and 20 mol photons m
-2

 d
-1

; Table 1) as well as the movement of water masses 

(Strass et al. this issue). The developmental phase of the phytoplankton bloom was also an 

important factor as primary production decreased over time (Table 1). During the 

investigation of the 39°W bloom, emphasis was put on the spatial variability in productivity 

(Figure 1, Table 1). In this bloom, primary productivity varied slightly more compared to the 

first area (570 - 3020 mg C m
-2

 d
-1

; Table 1). This may be due to the higher spatial coverage, 

but also temporal aspects and the more dynamic currents play a role in this area (Strass et al. 

this issue). Nonetheless, even at three consecutive stations sampled on the same day 

(PS79/168-70) and within half a degree distance to each other, primary productivity varied 

between 790 and 2220 mg C m
-2

 d
-1

 (Table 1), demonstrating significant small-scale 

variability in the 39°W bloom area (Leach et al. this issue).  

The high spatial and temporal variability emphasises once more the difficulties in 

estimating the productivity in this highly dynamic region (Abbott et al. 2000). Even though 

satellite Chl a estimates have drawbacks compared to in-situ measurements (Schlitzer 2002, 

Korb and Whitehouse 2004, Whitehouse et al. 2008), they provide higher spatial and temporal 

coverage of phytoplankton biomass at mesoscale resolution. The satellite Chl a from the 

MERIS Polymer-Chl-product used in this study has been validated globally and regionally 

within the current ESA Climate Change Initiative for Ocean colour and was chosen as the 

best algorithm for MERIS data processing (Müller et al. 2015). Also in the current study, the 

quality of the satellite Chl a data (r
2
 = 0.67, bias = 0.17 mg m

-3 
compared to in-situ 

measurements) is sufficient to analyse the development of the two phytoplankton blooms at 

the surface. As satellite Chl a data only cover the ocean’s first optical depth, estimates on 

primary productivity can only be derived using a model that incorporates satellite-based 
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estimates of Chl a, sea surface temperature and PAR to reconstruct productivity over the 

entire mixed layer (e.g. Antoine and Morel 1996). Shipboard Chl a and primary productivity 

data are therefore necessary in order to verify the accuracy of satellite-derived products and to 

give information on the layers below the first optical depth. 
14

C-based estimates tend to 

overestimate primary productivity due to the exclusion of loss terms such as sinking or 

grazing as well as biases in applied irradiances (e.g. Gall et al. 2001). Nonetheless, this 

method can be used to investigate the underlying mechanisms for the patterns observed in 

satellite-derived maps.  

 

4.2. Patterns in primary productivity do not correlate with MLDs 

In the following, the two blooms are compared based on their general characteristics rather 

than investigating differences between single stations because relationships with the 

environmental conditions have to be considered on a wider scale, especially in such a highly 

dynamic region as the ACC.  

In terms of depth-integrated primary productivity, no significant differences between 

the two blooms were observed during our visit (1750 ± 750 versus 1370 ± 830 mg C m
-2

 d
-1

, 

t-test: t = 1.0, p = 0.315; Tables 1 and 2). Similar rates of primary productivity were achieved 

even though MLDs were significantly deeper in the 12°W compared to the 39°W bloom (71 ± 

14 versus 35 ± 13 m, t-test: t = 6.0, p <0.001; Table 2). Hence, despite spending different 

proportions of the day in the deep low-light environment, phytoplankton communities of both 

blooms established similar primary productivity (Figure 5A; linear regression: r
2
 = 0.208, p = 

0.05). This finding is somewhat surprising, as earlier studies suggested that the alleviation 

from light limitation through shoaling MLDs is a key determinant of bloom development and 

productivity in the open SO (Sambrotto and Mace 2000, van Oijen et al. 2004, de Baar et al. 

2005). In the current study, depth-integrated Chl a concentrations were positively correlated 

with MLD over the entire study area (Figure 5B). POC:Chl a ratios were similar in both 

blooms (Table 2), indicating that Chl a as well as biomass build-up was not light limited in 

MLDs up to 90 m (Figure 5A; linear regression: r
2 

0.568, p = 0.0002). In fact, depth-

integrated primary productivity was best correlated with depth-integrated Chl a concentrations 

(Figure 5C; linear regression: r
2 
= 0.718, p < 0.0001). Hence, phytoplankton cells were overall 

able to acclimate to different light regimes and sustained similar depth-integrated primary 

productivity at different MLDs.  

It should be kept in mind, however, that the controlling role of light may be 

particularly important early in the growing season when deep surface mixing occurs, light 
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availability is limited, and phytoplankton biomass is low (Bracher et al. 1999, Franck et al. 

2000, Smith et al. 2000, Landry et al. 2002, Llort et al. 2015). The effects of light might 

explain the earlier onset of the 39°W bloom (e.g. by stratification of the upper mixed layer), 

while the constant iron supply from South Georgia could have caused its longer duration. The 

light regime at the beginning of the growing season therefore may play an important role in 

modulating bloom dynamics by changing the rate and duration of biomass accumulation 

during the build-up phase of the bloom. Even though primary productivity did not differ 

between blooms, the depth-integrated photosynthetic efficiencies derived from Chl a-specific 

carbon fixation (NPPChl a) were higher in the 39°W bloom compared to the 12°W bloom area 

(t-test, t = 2.5, p = 0.027). In the more deeply mixed 12°W bloom stations, lower NPPChl a-

values indicate that phytoplankton photosynthesis was less efficient (Behrenfeld et al. 2008), 

possibly due to a combination of lower iron availability and deeper mixing regimes. 

Integrated over the water column, however, this did not lead to lower productivity than in the 

39°W bloom.  

 

4.3. Nutrient deficits indicate differences in iron availability over the growing season 

During the growing season, phytoplankton take up and export nutrients to a certain degree as 

part of particulate organic matter, which can be expressed as nutrient deficits or depletions 

(Le Corre and Minas 1983, Jennings et al. 1984; Table 2). These proxies for net community 

production as well as their ratios differed between the two bloom areas (Figure 3). While the 

ratios of Si(OH)4:NO3 deficits were significantly higher in the 12°W compared to the 39°W 

bloom area (t-test, t = 6.6, p <0.001), the opposite trend was observed with respect to the 

NO3:PO4 deficit ratios (t-test: t = 15.4, p <0.001). As phytoplankton need iron for the 

assimilation of nitrate (and to a lesser degree of phosphate), the absence of iron leads to 

lowered uptake capacities (de Baar et al. 1997, Hutchins and Bruland 1998). While more 

generally, also taxonomic differences (e.g. diatom vs. flagellate dominated phytoplankton 

assemblages) affect nutrient deficit ratios, no such differences were observed in this study. 

And while shallow nitrification has been shown to influence SO nitrate concentrations in 

winter, it does not seem to influence nutrient concentrations and deficits in summer (Smart et 

al. 2015, cf. nitrate profiles in Figure 2). Our results therefore indicate differences in the 

nutrient assimilation histories of the two diatom-dominated phytoplankton assemblages, 

which is likely due to differences in magnitude and dynamics of iron supply in the two 

regions (i.e. higher iron input in the 39°W bloom area).  
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Drifter buoy trajectories indicate that water masses in the 39°W sampling region, 

which originate from the South Georgia shelf (Meredith et al. 2003) and most likely receives 

a higher and steadier supply of iron and other trace metals (Korb and Whitehouse 2004, 

Nielsdóttir et al. 2012, Borrione and Schlitzer 2013, Strass et al. this issue). In the area around 

12°W, however, trace metal supply is thought to be restricted to deep-mixing during winter 

(Venables and Meredith, 2009), even though lateral transport could also play a role. During 

the time of sampling, iron measurements in the upper 100 m of the water column yielded 

similarly low dissolved (0.1-0.2 µmol m
-3

; Figure 5) and leachable particulate iron 

concentrations (0.2 - 0.8 µmol m
-3

) in both areas (Table 2; Laglera et al. 2013, L. Laglera, 

unpubl. results), indicating iron depletion in both blooms. Given the development and 

intensity of the blooms as inferred from satellite data, iron concentrations must have been 

much higher at the onset of the blooms, yet they were already depleted by phytoplankton 

activity and particle scavenging at the time of sampling. Despite potentially large differences 

in iron availability and supply, surface silicate concentrations were similarly low in both areas 

and could potentially limit diatom growth (Figure 2; Nelson et al. 2001). Furthermore, 

nutrient deficits were also similar even though phytoplankton accumulation started earlier in 

the 39°W area (this study; Borrione and Schlitzer 2013). These similarities of the two blooms 

can partly be explained by the lower Si(OH)4:NO3 assimilation ratios at 39°W (Table 2), but 

may also suggest differences in the intensity of nutrient cycling, export and grazing pressure 

between the two systems. 

 

4.4. From bottom-up towards top-down controls 

Nutrient deficits can be used to estimate season-integrated net community production and are 

thus a proxy for new production on an annual basis (Jennings et al. 1984, Strass and Woods 

1991, Hoppema et al. 2000, Whitehouse et al. 2012). Production rates calculated from nutrient 

deficits, however, can potentially be biased by altered nutrient concentrations due to vertical 

or lateral mixing and advection, alternative nutrient sources (e.g. ammonium), as well as 

changes in stoichiometry of organic matter (Jennings et al. 1984, Hoppema et al. 2007, 

Whitehouse et al. 2012). In agreement with Laubscher et al. (1993), slightly stronger nutrient 

depletion in the 39°W region co-occurred with higher photosynthetic efficiencies compared to 

12°W (Table 2). This could indicate a better acclimation to their environment in the former 

bloom, potentially resulting from higher and steadier iron supply as well as easier 

photoacclimation in shallower mixed layers. The estimates of primary productivity and 

POC:PON as well as POC:Chl a ratios (Table 1 and 2), however, were in a similar range for 
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both blooms. Furthermore, nutrient deficits, though somewhat lower in the 12°W bloom 

region, were not remarkably different between regions (Figure 3, Table 2). This is surprising, 

particularly in view of the almost two months earlier onset of the bloom in the Georgia Basin.  

 This apparent contradiction could have been caused by lower export efficiencies in the 

39°W bloom. Shipboard carbonate chemistry measurements, however, revealed higher 

deficits in dissolved inorganic carbon (DIC) and a stronger CO2 uptake from the atmosphere 

in the 39°W compared to the 12°W bloom area (Jones et al. this issue). Therefore, the 

mismatch between nutrient deficits and bloom dynamics (as observed via satellites) was more 

likely caused by the highly dynamic currents in the 39°W area (Strass et al. this issue), which 

may have led to an underestimation of seasonal nutrient deficits due to higher lateral nutrient 

input (Oschlies 2002). Furthermore, net productivity may have been overestimated to 

different degrees in both blooms because loss terms such as grazing tend to be underestimated 

in 
14

C-based measurements (e.g. Gall et al. 2001).  

 Recent field-, satellite- and model-based studies have highlighted the thus-far 

underestimated importance of top-down control mechanisms for phytoplankton bloom 

dynamics (e.g. Behrenfeld and Boss 2014, Llort et al. 2015). As the average zooplankton 

biomass in the South Georgia area is larger than anywhere else in the Southern Ocean 

(Atkinson et al. 2001), we speculate that during the time of sampling, top-down control was 

more strongly developed in the 39°W compared to the 12°W bloom area. Zooplankton 

sampling during our cruise showed that, despite high spatial variability, the zooplankton 

community around 39°W was in a more progressed state of development compared to the 

12°W bloom area. In the latter, the proportion of small organisms and early developmental 

stages was higher (E. Pakomov and B. Hunt, unpubl. data). A potentially lower grazing 

pressure in the 12°W bloom could also be explained by a lower probability for predator-prey 

encounters in deeper MLDs (Behrenfeld 2010). In fact, this dilution effect on grazing rates 

might have contributed to the positive correlation between biomass and MLD found 

throughout our study (Figure 5B).   

As the control of phytoplankton bloom dynamics in the ACC can shift from bottom-up 

to mainly top-down within a few weeks (Abbott et al. 2000, Llort et al. 2015), also a slightly 

earlier bloom development at 39°W could have led to our observations. Diatom-dominated 

blooms, as observed in this study (C. Klaas, unpubl. results), are mainly grazed by larger 

zooplankton. One can therefore assume that the usual time lag between bloom and grazer 

development (Smetacek et al. 2004) was still allowing phytoplankton biomass build-up in the 

12°W area, while grazers already imposed a strong control on the 39°W bloom during the 
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time of sampling. Satellite Chl a maps of the two bloom areas indeed show that the 39°W 

bloom developed around 8 weeks earlier than the 12°W bloom. We thus conclude that, 

despite both being in the apex phase, we visited the two areas at different stages of the bloom 

development.  

 

 

 

5. Conclusions and biogeochemical implications 

The results of this study suggest that a combination of different drivers strongly affect 

primary productivity in the SO. Bottom-up processes control the rate of build-up of a bloom, 

while top-down processes seem to be more important for determining the phytoplankton 

standing stock at the late bloom stage, i.e. when sampling took place (Figure 6). In contrast to 

earlier suggestions (van Oijen et al. 2004, de Baar et al. 2005), we did not observe significant 

light limitation of phytoplankton communities in two highly productive open-ocean areas of 

the Atlantic sector of the SO. Our results indeed indicate that, despite MLDs being deeper 

than 90 m, this does not necessarily prevent the development of phytoplankton blooms in the 

APFZ. Instead, iron supply seems to be the bottom-up process playing a pivotal role, 

particularly for determining bloom development and its potential duration, but also by 

modulating the light-use efficiency of phytoplankton (Smetacek et al. 2012, Behrenfeld and 

Milligan 2013). Considering the time scales of the individual measurements, we were thus 

able to explain the observed patterns by differences in iron availability and grazing pressure.  
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Figure captions 

  

Figure 1: Satellite-based Chl a maps - Mean Chl a concentrations (mg m
-3

) during February 

2012 derived from the satellite MERIS Polymer product. Stars indicate sampling locations 

during the ANT-XXVIII/3 cruise. Detailed view on the 39°W bloom north of South Georgia 

(B) and the 12°W bloom (C) with circles indicating station positions where Chl a 

concentrations were measured in-situ; red circle indicates the time-series station.  

 

Figure 2: Average nutrient profiles – Concentrations of nitrate (A), nitrite (B), phosphate (C) 

and silicate (D) in the top 500 m from the 12°W bloom (open symbols) and the 39°W bloom 

north of South Georgia (filled symbols). 

 

 

Figure 3: Nutrient deficit ratios – Deficit ratios for Si(OH)4:NO3 versus NO3:PO4 [mol mol
-1

] 

for all stations in the 12°W bloom (open symbols) and the 39°W bloom (filled symbols). 

 

  

Figure 4: Average total dissolved iron (TDFe) profiles for all stations sampled in the 12°W 

bloom (n=8; open symbols) and the 39°W bloom (n=2; filled symbols). 

 

 

Figure 5: Relationships between net primary production, mixed layer depth and Chl a – 

Depth-integrated NPP versus MLD (A), Chl a concentrations versus MLD (B) and NPP 

versus Chl a concentrations (C) for all stations in the 12°W bloom (open circles) and the 

39°W bloom (filled circles) as well as the outstation (triangle). Lines indicate linear 

regression of all data. 

 

Figure 6: Schematic overview  - Similarities of and differences between the 39°W (A) and the 

12°W bloom (B) in terms of MLDs, nutrient concentrations and deficits, NPP and pCO2 as 

well as Chl a and zooplankton standing stocks. 

Table 1: 100 m depth-integrated Chl a standing stocks [mg m
-2

], primary productivity NPP 

[mg C m
-2

 d
-1

], photosynthetic efficiency NPPChl a [mg C (mg Chl a)
-1

 d
-1

], total PAR during 
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on-deck incubations [mol photons m
-2

 d
-1

]. Star symbol denotes central station in 12°W 

bloom. 

Bloom 

area 

 

Station # 

 

Date 

 

Longitud

e [°W] 

Latitud

e [°S] 

ML

D              

[m] 

Chl 

a                       

[m

g 

m
-

2
] 

PAR        

[mol 

photon

s m
-2

 d
-

1
] 

NPP                   

[mg 

C m
-

2
 d

-

1
] 

NPPCh

l a                                 

[mg C 

(mg 

Chl a)
-

1
 d

-1
] 

Outstation PS79/085-03 

26.01.1

2   8.00 52.00 
30 

9 14.45 161 17.6 

12°W  PS79/086-02 

29.01.1

2 11.99 52.00 87 180 11.27 

258

7 14.4 

 

PS79/091-

05* 

03.02.1

2 12.67 51.21 56 166 16.40 

281

6 17.0 

 

PS79/114-

01* 

08.02.1

2 12.67 51.20 78 143 18.75 

244

7 17.1 

 

PS79/128-

10* 

12.02.1

2 12.65 51.21 89 117 13.80 

166

9 14.2 

 

PS79/136-

08* 

14.02.1

2 12.66 51.20 55 85 17.03 

105

0 12.3 

 

PS79/137-07 

15.02.1

2 12.17 51.04 84 136   8.68 

138

0 10.1 

 

PS79/138-02 

15.02.1

2 12.49 51.11 65 88   5.65 

102

0 11.5 

 

PS79/139-03 

15.02.1

2 12.99 51.00 57 52   6.01 796 15.4 

 

PS79/140-

12* 

17.02.1

2 12.66 51.19 68 115 19.31 

199

8 17.3 

39°W  PS79/147-01 

25.02.1

2 37.01 49.60 28 54 15.58 n.d. n.d. 

 

PS79/149-01 

25.02.1

2 36.98 48.80 12 25 13.17 573 22.7 

 

PS79/155-01 

26.02.1

2 37.59 50.81 23 60.   5.28 769 12.8 

 

PS79/160-01 

27.02.1

2 38.80 50.40 42 n.d.   5.27 640 n.d. 

 

PS79/165-05 

28.02.1

2 39.40 49.60 40 89 17.29 

164

4 18.4 

 

PS79/168-01 

29.02.1

2 38.76 48.80 43 73 20.29 

105

2 14.4 

 

PS79/169-01 

29.02.1

2 38.80 49.20 44 39 19.06 786 20.3 

 

PS79/170-01 

29.02.1

2 38.80 49.60 53 129 19.61 

222

0 16.1 
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PS79/174-09 

01.03.1

2 38.31 49.64 39 100 17.76 

302

3 30.3 

 

PS79/175-01 

03.03.1

2 39.39 50.80 30 79 19.49 

157

5 20.0 

  

Table 2: Comparison of phytoplankton biomass, productivity and POC:PON ratios as well as 

average 10-60 m nutrient concentrations, nutrient deficits and average deficit concentrations 

as well as deficit ratios and 100 m depth-averaged TDFe concentrations for the two bloom 

areas investigated. Values denote average (± 1 s.d.). 

 

 

 

 

Parameter 12°W bloom area 39°W bloom  

Chl a [mg Chl a m
-2

] 120 ±   41 (n=9) 63 ±29 (n=9) 

Net Primary Productivity [mg 

C m
-2

 d
-1

] 1751 ± 747 (n=9) 1365 ±832 (n=10) 

NPPChl a  [mg C (mg Chl a)
-1

 

d
-1

] 14 ± 3 (n=9) 19 ±5 (n=8) 

POC:PON [mol mol
-1

] 6.3 ± 0.6 (n=25) 5.9 ±0.5 (n=24) 

POC:Chl a [g:g] 0.03 ±0.01 (n=8) 0.04 ±0.02 (n=5) 

PAR [mol photons m
-2

 d
-1

] 13 ± 5 (n=9) 15 ±6 (n=9) 

MLD [m] 71 ± 14 (n=10) 35 ±13 (n=10) 

       

NO3 [mmol m
-3

] 19.9 ± 0.5 (n=35) 16.3 ±1.8 (n=26) 

PO4 [mmol m
-3

] 1.3 ± 0.1 (n=35) 1.2 ±0.1 (n=26) 

Si(OH)4 [mmol m
-3

] 4.5 ± 3.1 (n=35) 2.2 ±1.3 (n=26) 

NO3 deficit concentration 

[mmol m
-3

] 9.1 ±0.9 (n=35) 10.2 ±2.6 (n=26) 

PO4 deficit concentration 

[mmol m
-3

] 0.6 ±0.1 (n=35) 0.6 ±0.2 (n=26) 

Si(OH)4 deficit concentration 

[mmol m
-3

] 22.6 ±2.5 (n=35) 19.7 ±5.3 (n=26) 

NO3 deficit [mmol m
-2

] 1087 ±108 (n=35) 1219 ±307 (n=26) 

PO4 deficit [mmol m
-2

] 75 ±    7 (n=35) 68 ±  18 (n=26) 

Si(OH)4 deficit [mmol m
-2

] 2712 ±303 (n=35) 2359 ± 631 (n=26) 

NO3:PO4 deficit [mol mol
-1

] 14.4 ± 0.9 (n=35) 17.9 ± 0.9 (n=26) 

Si(OH)4:NO3 deficit [mol mol
-

1
] 2.5 ± 0.3 (n=35) 2.0 ± 0.4 (n=26) 

TDFe [nM] 0.12 ± 0.03 (n=48) 0.14 ± 0.03 (n=11) 
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