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Abstract

Based on an analysis in the frequency domain of the governing equation of oxygen dynamics in aquatic

systems, we derive a new method for estimating gross primary production (GPP) from oxygen time series.

The central result of this article is a relation between time averaged GPP and the amplitude of the diel har-

monic in an oxygen time series. We call this relation the Fourier method for estimating GPP. To assess the

performance and accuracy of the method, we generate synthetic oxygen time series with a series of gradually

more complex models, and compare the result with simulated GPP. We demonstrate that the method is

applicable in systems with a range of rates of mixing, air–water exchange and primary production. We also

apply the new method to oxygen time series from the Scheldt estuary (Belgium) and compare it with
14C-based GPP measurements. We demonstrate the Fourier method is particularly suited for estimating GPP

in estuarine and coastal systems where tidal advection has a large imprint in observed oxygen concentra-

tions. As such it enlarges the number of systems where GPP can be estimated from in situ oxygen concentra-

tions. By shifting the focus to the frequency domain, we also gain some useful insights on the effect of

observational error and of stochastic drivers of oxygen dynamics on metabolic estimates derived from oxygen

time series.

Accurate rate estimates of whole ecosystem metabolism

are crucial for our understanding of food web dynamics and

biogeochemical cycling in aquatic ecosystems. Starting with

the seminal work of Odum (1956), time series of in situ oxy-

gen concentrations have been used to infer rates of gross pri-

mary production (GPP) and community respiration (CR) in

natural waters (Staehr et al. 2010, 2012). This so-called diel

oxygen method (also often referred to as the Odum method)

tracks the oxygen concentration at a specific water depth

over a 24 h cycle, and calculates GPP from the rate of change

of oxygen during daylight hours, while adding the rate of

community respiration determined at night (Howarth and

Michaels 2000). The diel oxygen method has two main

advantages over methods that rely on the ex situ incubation

of water samples, such as the light-dark oxygen method

(Riley 1939), 14C-incorporation (Steemann Nielsen 1951) and
18O-labeling (Grande et al. 1989). First, “bottle effects” are

avoided: GPP and CR rates are obtained at ambient light

fields, and natural levels of turbulence, nutrients and graz-

ing; such conditions are hard to mimic in bottle incubation

experiments. Second, upscaling bottle incubation GPP rates

to depth integrated production depends on a range of

assumptions about the in situ light field, and mixing of the

water body (Swaney et al. 1999; Chen et al. 2000; Howarth

and Michaels 2000; Staehr et al. 2010; Westberry et al.

2012).

There is, however, one major challenge associated with

the in situ diel oxygen method: oxygen concentrations are

not only affected by primary production and respiration but

also by turbulent mixing, advective transport, and air–water

exchange. Consequently, the effect of these transport proc-

esses on the rate of change of oxygen needs to be properly

constrained, before one can confidently estimate GPP and

CR. Mathematically, the diel oxygen method represents an

inverse modeling problem, whereby GPP and CR are forcing

functions in a differential equation that describes the oxygen

mass balance of the aquatic system. These forcing functions

can be constants or can be parameterized functions of

observed incident irradiance and/or water temperature.

GPP and CR are determined by fitting this model to the

available oxygen time series. When additional transport

processes are included, the number of model parameters*Correspondence: tom.cox@uantwerpen.be
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increases, with each additional parameter introducing a new

source of uncertainty. Therefore, the diel oxygen method

works best in simple hydrodynamic settings where the influ-

ence of transport processes on the oxygen dynamics is small.

The typical example is a closed pond system, where GPP and

CR attain high values and are roughly equal, so oxygen gra-

dients near the air–water interface are reduced and the

resulting atmospheric exchange of oxygen is small (Marino

and Howarth 1993). Yet in open systems with substantial gas

exchange, estimates of ecosystem metabolism critically

depend on the rate of reaeration, and the resulting GPP and

CR values are highly sensitive to reaeration parameteriza-

tions (Tobias et al. 2009). Similarly, the diel oxygen method

runs into trouble when advection and dispersion processes

strongly influence the oxygen concentration, as small errors

in the parameterization of these transport processes can lead

to order-of-magnitude errors in resulting metabolic rates

(Kemp and Boynton 1980).

In recent years, a number of extensions and refinements

of the diel oxygen method have been adopted, so that the

method performs better in aquatic systems with a strong

imprint of transport processes. A first issue concerns the

atmospheric exchange of oxygen, which can show strong

temporal fluctuations, as a result of varying wind stress and

associated changes in surface layer turbulence. Many recent

studies calculate gas exchange rates from observed wind

speed (Cole et al. 2000; Gelda and Effler 2002; Lauster et al.

2006; Tsai et al. 2008; Staehr et al. 2010; Coloso et al. 2011;

Van de Bogert et al. 2012; Solomon et al. 2013). However,

empirical reaeration parameterizations (e.g., the piston veloc-

ity as a function of wind speed) are dependent on the water

body and local hydrodynamics, and so, it is difficult to deter-

mine a priori the piston velocity for a given water body

(Tobias et al. 2009; Holtgrieve et al. 2010). To better con-

strain atmospheric oxygen exchange, one can include the

reaeration rate as part of the inverse modeling problem,

rather than fixing its parameter value a priori. This approach

was employed by Ciavatta et al. (2008) to estimate GPP in

the lagoon of Venice from a 3-yr time series of O2 concentra-

tions measured at 30 min intervals. Respiration and reaera-

tion rates were estimated from O2 data collected during

night-time, while GPP data was subsequently estimated from

O2 data during the following day-time. To even better con-

strain atmospheric gas exchange, Holtgrieve et al. (2010)

advocate the incorporation of a dual mass balance approach

for the isotopes of dissolved oxygen (d18O2O2). Using a

Bayesian inverse modeling approach, this method was suc-

cessfully applied to a short (�24h) data series of South Sas-

katchewan River (Saskatoon, Canada). A second problem

concerns the application of in situ diel techniques to systems

in which advective transport has a strong impact on the oxy-

gen dynamics. This is particularly relevant in rivers with

complex flow patterns, or estuaries and coastal zones, where

the water flow changes direction over a tidal cycle. One solu-

tion is to implement the in situ diel technique at multiple

stations, and simply average the station results (Howarth

et al. 1992). A more refined multistation approach was used

by Swaney et al. (1999) to estimate GPP in the Hudson river,

whereby O2 concentrations were linearly regressed across sta-

tions as a function of depth, salinity and time. A more elabo-

rate approach consists of the construction multidimensional

oxygen mass balances. Vallino et al. (2005) used a 1D

advection-dispersion model of the Parker River (Massachu-

sets) to estimate GPP based on oxygen concentrations meas-

ured during high speed transects near dawn and dusk over a

2-d period.

Finally, arrays of oxygen sensors are increasingly deployed

in systems with vertical or horizontal gradients [e.g., Gelda

and Effler (2002); Coloso et al. (2008); Sadro et al. (2011);

Champenois and Borges (2012); Van de Bogert et al. (2012);

Obrador et al. (2014)]. For example, in clear, eutrophic,

stratified lakes considerable photosynthesis can take place in

the hypolimnion and the metalimnion. In one case study,

Obrador et al. (2014) found that up to 20% of GPP can take

place in the metalimnion. In such conditions any diel oxy-

gen method will underestimate total GPP when applied to

epilimnion O2 time series only. The effect of stratification

interacts with the trophic state of the system. Indeed, in oli-

gotrophic systems, photosynthesis will be nutrient limited

over a (large) part of the water column. When nutrient input

and regeneration can be assumed independent of depth, also

GPP would be independent of depth. Indeed, based on O2

depth profiles taken in an oligotrophic lake at 2 h sampling

interval, Sadro et al. (2011) concluded that single depth

measurements are sufficient for metabolism estimates in

such conditions. Horizontal homogeniety is even more

important when diel oxygen methods are based on single

sensor deployments. Van de Bogert et al. (2012) convinc-

ingly demonstrated that the assumption of horizontal

homogeniety is often not met in lake ecosystems. Based on

two case studies they found that single sensor derived GPP

estimates varied over more than an order of magnitude

between different locations.

Here, we examine a novel strategy to apply the diel oxy-

gen method to aquatic systems that have a strong imprint of

transport processes. The central idea is that different proc-

esses operate on different time scales, and so, they each will

induce characteristic temporal fluctuations in the O2 concen-

tration. We start from the assumption that primary produc-

tion is the dominant process that induces a 24 h periodicity

in the oxygen signal—other processes will have their imprint

at other frequencies. This calls for signal analysis in the fre-

quency domain, whereby the oxygen signal is decomposed

into a sum of individual frequency components. Kester et al.

(1996) already demonstrated that the spectral analysis of

oxygen time series data can provide relevant information on

the different processes that affect the oxygen dynamics in

natural waters. More recently, Coloso et al. (2008) and
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Langman et al. (2010) applied wavelet techniques to separate

the O2-dynamics at different time scales. Here, we elaborate

this idea by combining the diel oxygen method with spectral

analysis. This results in a new Fourier-based method to esti-

mate GPP from a time series of in situ oxygen sensor data.

The principal difference with previous Odum-type methods

is that our model analysis takes place in the frequency

domain rather than the time domain. To test the accuracy

and reliability of the method, we first verify the method

with synthetic oxygen data generated by two separate bio-

geochemical models. Subsequently, we apply the method to

a measured oxygen time series from an estuary and compare

the resulting GPP values with primary production estimates

based on 14C-incorporation.

Material and methods

Theoretical background

Consider the typical situation where a single oxygen sen-

sor is positioned in a given water body at water depth ds.

This sensor generates a time series of the oxygen concentra-

tions over a time period T at regular intervals Dt (Fig. 1). The

mass balance for oxygen over a suitable control volume sur-

rounding the sensor can be written as:

dO2ðtÞ
dt

5 GPPðtÞ2CRðtÞ1 1

V

ð
@V

FðtÞ � dS (1)

In this, O2 denotes the average oxygen concentration in

the control volume, GPP and CR are respectively the

volume-averaged gross primary production and community

respiration, V represents the volume. The last term is a sur-

face integral that integrates the flux F due to advection and

diffusion across the boundary of the control volume. Note

that this mass balance statement does not adopt any simpli-

fying assumptions: it is generally valid, even for systems that

are not homogeneously mixed.

The above differential equation specifies the oxygen mass

balance in the time domain. An entirely equivalent descrip-

tion is possible in the frequency domain by taking the Fou-

rier transform

ixFðO2ÞðxÞ5FðGPPÞðxÞ2FðCRÞðxÞ1 1

V

ð
@V

FðFÞðxÞ � dS (2)

In this, Fðf ÞðxÞ denotes the Fourier transform of the func-

tion f(t), x is the angular frequency, and i represents the

imaginary unit [see Folland (1992) and Bloomfield (2000) for

details on Fourier transforms]. When f ðtÞ is a time varying

signal, the Fourier transform decomposes this signal into dif-

ferent periodic components, whereby jFðf ÞðxÞj is the ampli-

tude of the periodic component with angular frequency x. In

essence, the transformed mass balance specifies how strongly

the various processes (on the right-hand side) contribute to

the rate of change of oxygen (the term on the left-hand

side) at any given frequency.

The central idea in our analysis is that gross primary pro-

duction is the dominant process that causes diurnal varia-

tions in the oxygen concentration. Therefore, we specifically

evaluate Eq. 2 at the diurnal frequency x152p rad d21. In

addition, we can further simplify Eq. 2 based on three

assumptions.

1. We assume that respiration does not induce substantial

oxygen fluctuations at the diurnal frequency x1. Note

that in reality respiration somtimes does exhibit diurnal

patterns: higher water temperatures during daytime will

induce diurnal fluctuations in bacterial activity; light sen-

sitivity of nitrifying bacteria can induce diurnal fluctua-

tions in nitrification rates (Guerrero and Jones 1996); and

respiration by autotrophs can be higher during daytime

(Markager and Sand-Jensen 1989). From oxygen data

alone, the effect of higher oxygen consumption rates dur-

ing day-time cannot be distinguished from lower gross

primary production rates, and neglecting this effect will,

hence, result in an underestimation of gross primary pro-

duction. However, this underestimation is generally

assumed to be small and in nearly all applications of the

diel oxygen method diurnal fluctuations in community

respiration are neglected (Staehr et al. 2010).

2. We assume that fluxes through the boundary of the con-

trol volume do not show any systematic diurnal fluctua-

tions. This is not a trivial assumption. Diurnal

fluctuations in oxygen concentration induced by primary

production will also induce diurnal fluctuations in atmos-

pheric exchange. Also, when horizontal oxygen gradients

are present in estuarine and coastal systems, the diurnal

component of the tides will induce diurnal fluctuations in

the horizontal oxygen fluxes. Horizontal gradients in

Oxygen sensor

Sensor
depth

CR(z, t)
Mixing

z
d

0
Fatm

Fsed
Fhor

Fhor

GPP(z,t)

Fig. 1. A typical setup. The average oxygen concentration in a certain

control volume (grey area) is determined by the balance of production
(GPP), consumption (CR) and the fluxes through the boundaries of the

volume. The distribution of the oxygen concentration within the control
volume is also determined by mixing dynamics.A sensor measures the
oxygen concentration at certain depth.
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primary production will have similar effects. The impor-

tance of diurnal fluctuations in boundary fluxes, and ther

impact on the GPP estimate, will be evaluated by means

of a theroretical analysis (for air–water exchange) and by

the model simulations below.

3. The water body is homogenously mixed and concentra-

tion gradients are annihilated. This way, oxygen concen-

trations measured by a single sensor will be represenative

for the volume averaged oxygen concentrations. This

assumption of homogeneity underlies most in situ diel

oxygen methods (Staehr et al. 2010). When it is not met,

time series of volume averaged oxygen concentrations can

be estimated with an array of sensors.

Based on the above assumptions [1] and [2], we can sim-

plify Eq. 9 as:

ix1FðO2Þðx1Þ5FðGPPÞðx1Þ (3)

Taking the modulus and introducing the shorthand nota-

tion Af 5jFðf Þðx1Þj for the amplitude at the diurnal

frequency:

x1AO2
� AGPP (4)

The quantity AO2
represents the Fourier amplitude at the

diurnal frequency of the volume-averaged oxygen signal,

which can be directly determined from oxygen sensor

recordings (assuming that the sensor truly records the

volume-averaged oxygen signal). The quantity AGPP is the

Fourier amplitude of gross primary production at the diurnal

frequency. This quantity in itself is not a meaningful ecolog-

ical parameter. To be useful, AGPP needs to be linked to the

time-averaged value of GPP over some time period T. To this

end, we need an explicit model of how GPP varies over a

daily cycle. For simplicity, we assume here that the daily

fluctuating GPP follows a truncated sinus function, with a

smoothly varying production during daylight and no pro-

duction at night (Fig. 10). For a truncated sinusoid, an exact

relation exists between its time-averaged value and its

Fourier-transformed amplitude at diurnal frequency (see

Appendix). If we apply this relation to GPP, and combine

this with Eq. 9, we arrive at the following approximation of

time averaged gross production

GPPðtÞ � 2x1
sinh2hcosh

h2
1

2
sin2h

AO2 (5)

The parameter h5pfDL, with fDL the relative fraction of

daylight hours over a 24 h period (Fig. 10). This parameter

can be determined from observed incident light or alterna-

tively from the theoretical day length at a given Julian day

and a given position on the globe (Anonymous 2011). The

quantity x1 denotes the diurnal frequency as introduced

above. When the fraction of daylight hours fDL decreases,

the factor in front of AO2
decreases, and so the time-

averaged GPP also decreases. The factor in front of AO2
varies

between 0.5 and 0.8 if fDL ranges between 30% and 70%.

Note that if we would approximate GPP by a nontruncated

sinusoid, fDL51 and this factor equals unity.

Equation 5 forms the central result of this article. It will

be applied in the next sections to both synthetic and field

data. We will refer to the associated procedure as the Fourier

method for estimating GPP.

Impact of air–water exchange

Can we neglect diurnal fluctuations in air–water

exchange? To this end, we consider a horizontally homoge-

neous water column, where lateral fluxes and bottom fluxes

(at the sediment interface) show no diurnal fluctuations. The

classical rate expression for atmospheric exchange flux is

given by:

Fatm5kðO2
sat2O2ðz50ÞÞ (6)

where k is the piston velocity and O2
sat the saturation con-

centration of a water body in equilibrium with the atmos-

phere, and O2ðz50Þ the oxygen concentration at the air–

water interface. If we include this air–water flux, Eq. 2 eval-

uated at the diurnal frequency then reduces to

ix1FðO2Þðx1Þ1
k

d
FðO2ðz50ÞÞðx1Þ5FðGPPÞðx1Þ (7)

where we also assumed that diurnal variability in the piston

velocity due to wind speed variability and temperature

induced diurnal fluctuation in oxygen saturation are negligi-

ble. The left-hand side of this equation depends on the oxy-

gen concentration at the air–water interface, and this is

dependent on the mixing dynamics of the water body.

When mixing is fast and the water column can be consid-

ered perfectly mixed, the concentration at this interface will

equal the depth averaged oxygen concentration, and so:

ix11
k

d

� �
FðO2Þðx1Þ5FðGPPÞðx1Þ (8)

Taking the modulus, we, hence, obtain:

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

k

x1d

� �2
s

AO2
5AGPP (9)

The term k
x1d reflects the dampening of the oxygen varia-

tions in the water column, due to atmospheric exchange.

Equation 9 gives a first order correction to account for this

dampening. This correction is often small. Indeed, consider

a shallow 5 m deep lake with relatively low turbulence (low

piston velocity k 5 0.5 m d21), we have k
x1d � 0:016, and the

resulting correction in Eq. 9 is smaller than 0:02%. For an

estuarine or coastal system of 10 m depth, with a high piston

velocity (k 5 3.5 m d21), the correction factor amounts to
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0.3%, which is still small. Note that these results are based

on the assumption of a fully mixed water column, and

should be considered as minimal estimates. In reality water

columns are not perfectly mixed and atmospheric exchange

will affect the upper water layers more than the deeper

layers. The upper layer is also where primary production pro-

duction takes place, and hence, oxygen concentration fluctu-

ations are greatest. Therefore, in systems that are not

perfectly mixed, the dampening-effect of atmospheric

exchange will be larger than calculated above. The effect is

will be assessed in more detail in the model simulations

below.

When the dampening effect due to air–water exchange is

included, formula 5 for GPP extends to:

GPPðtÞ � 2x1
sinh2hcosh

h2
1

2
sin2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

k

2pd

� �2
s

AO2 (10)

Signal processing

To calculate the Fourier amplitude AO2
from such a time

series, we implemented some data preprocessing steps. These

processing steps are not specific to the present application

but are generally applied when numerically calculating Fou-

rier transforms from finite length time series (Bloomfield

2000). First, the oxygen time series is confined to an integer

number of days. Second, longer trends are removed with a

moving average filter. A moving average filter is, however,

not perfect: while removing the longer-term trends, it will

also affect the shorter term fluctuations to some extent. To

compensate for this, a correction factor can be applied, based

on the frequency response of the moving average filter (Fol-

land 1992; Bloomfield 2000).

Hðx;NÞ5 1

N

12expð2ixNÞ
12expð2ixÞ (11)

where N is the filter length. At the diurnal frequency x1, the

Fourier amplitude AO2
5FðO2Þðx1Þ will be attenuated by the

factor j12Hðx1;NÞj as a result of the moving average filter.

To correct for this, we multiplied the Fourier amplitude

obtained from filtered time series with the inverse of this

attenuation factor.

The common approach to isolate a periodic component

with known frequency from a composite signal is to perform

a least-squares fit a sinusoid with that frequency and

unknown phase and amplitude to the time series (Bloom-

field 2000). For Fourier frequencies, the solution of the least-

squares fit is identical to the corresponding component of

the Fourier transform of the time series (Bloomfield 2000).

By limiting the time series to an integer number of days, the

diurnal frequency becomes a Fourier frequency and, thus, we

calculate AO2
directly from the definition of the Fourier

transform as

AO2
5
XL

n51

expð2ix1tnÞO2ðtnÞ
�����

����� (12)

where L is the length of the time series, and tn are the sam-

pling times. The Fourier method, thus, does not make use of

the fast fourier transform (FFT). Only for plotting the spectra

in this manuscript, FFT was applied to the preprocessed time

series. All data processing was performed in R (R Develop-

ment Core Team 2006).

Model simulations to assess the simplifying assumptions

In comparison to the classical diel oxygen method, two

additional assumptions are crucial in the derivation of the

Fourier method. First, the truncated sinusoid approximation

requires that the relation between time averaged GPP and

the Fourier amplitude is approximately the same as for a

truncated sinusoid. Second, diurnal fluctuations in fluxes

through the boundaries of the water body are assumed to be

negligible. We assess these assumptions by analysing a set of

three, gradually more complex models of GPP and oxygen

dynamics. We first study the behavior of an idealized pond

model with real incident light in a perfectly mixed water col-

umn with constant algal biomass, where we assume GPP can

be observed directly. This allows for a first assessment of the

truncated sinusoid approximation. Next we analyse two

dynamic models: the first one describes a water body with

no appreciable lateral transport of oxygen, representative for

a lake or the surface layer of the ocean, where vertical turbu-

lence and air–water exchange are the dominant transport

processes. The second describes a typical estuarine situation,

characterized by substantial horizontal gradients in the O2

concentration. The next sections describe these models in

detail; full model equations are given in Table 1. The

dynamic models generate time series of oxygen concentra-

tions. The temporal resolution was kept similar as in typical

field recordings of oxygen (Dt510 min resolution). These

synthetic oxygen data were then supplied to the Fourier

method and treated in a identical way as field sensor data.

The resulting Fourier-based estimate of the GPP was then

compared to the true GPP as obtained from the model simu-

lation. This procedure allowed to systematically test the

underlying assumptions of the Fourier method.

Idealized pond model

In general, depth integrated GPP is a nonlinear function

of the light field in the water column. This light field follows

an irregular pattern over time, and so will GPP. Within a sin-

gle day the light field fluctuates as a results of changing

weather conditions and turbidity variations that affect the

light availability in the water column. These will lead to fluc-

tuations in photosynthetic activity. Changing weather con-

ditions also induce variability between consecutive days of

the incident irradiance. In the idealized pond model we

assume a Platt-type response of photosynthesis to irradiance

characterized by a maximal photosynthetic rate Pm and a

Cox et al. A novel approach in the frequency domain to estimate GPP
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light saturation parameter Em5Pm=a (Jassby and Platt 1976).

Furthermore we assume light extinction with water depth z

is described by the exponential Lambert-Beer law using a

fixed light attenuation coefficient kd. The model is forced

with observed time varying surface irradiance E0(t) (see

below). Finally, the algal biomass B is kept constant. This

strong simplification is relaxed in the subsequent dynamic

models.

With this model, we calculated 14-d long time series of

depth-averaged GPP (assumed to be directly observable) from

observed incident irradiance. We did so for each subset of 14

consecutive days (351 subsets) in a full year of hourly irradi-

ance data recorded in 2009 on the roof of NIOZ-Yerseke (Nl.)

using a Licor LI-190 SA cosine sensor. We determined the

Fourier amplitude at the diel frequency of each of these GPP

time series, from which the estimate of time averaged GPP

was calculated using formula 23 in the Appendix. Compar-

ing these estimates with true time averaged GPP effectively

tests to what extent the truncated sinusoid assumption

holds.

The difference between true time averaged GPP and the

estimate from the Fourier-amplitude at the diel frequency

depends on the nonlinearity of the response. In the idealized

pond model,this nonlinearity is determined by the parame-

ters Em and kd. We repeated the above procedure for Em 5 50,

100, 250, 500 lmol photons m22s21 and for kd 5 0.1, 1, 2

and 100 m21. Note that, when assuming a Lambert–Beer

exponential light attenuation in the water column, the

depth integrated GPP scales with the light attenuation coeffi-

cient kd as long as the mixing depth of the system is higher

than the light penetration depth. In that case, the upper

limit of the integral can be set to 1, and we can substitute

the dummy integration variable z by ~z5kdz. Consequently,

at large values of kd relative to the system depth, the relative

bias is independent of kd. GPP also scales with B, assumed

here constant in time. Thus, also the value of B does not

affect the relative bias.

Open water model

The open water model dynamically simulates oxygen and

algal biomass in a vertical water column. This relaxes the

assumption of constant biomass. A finite vertical mixing rate

allows for concentrations gradients in the vertical. Air–water

exchange is implemented to generate a flux accross the

upper boundary of the model domain. We still assume that

oxygen fluxes at the lower boundary (e.g., due to sediment

oxygen uptake) and lateral boundaries can be ignored.

The model is implemented as a one-dimensional reactive

transport model that incorporates two state variables, O2

and B. The water column has a total depth d510 m, and the

coordinate z represents the distance from the air–water inter-

face. The model is integrated on an equidistant grid with dis-

tance between grid points Dz50:25 m.

Oxygen is produced by primary production (GPP), and

consumed by respiration (CR). Oxygen and algal biomass are

transported throughout the vertical by turbulent mixing

(vertical diffusion constant D). Primary production is mod-

elled via a Platt-type photosynthesis-irradiance relationship.

The light attenuation with depth is described by the expo-

nential Lambert–Beer law, using a fixed attenuation coeffi-

cient kd.

The exchange of oxygen with the atmosphere is imple-

mented via the standard rate expression, that is, the degree

of O2 undersaturation times the piston velocity k. At the bot-

tom of the water column, the oxygen flux vanishes (benthic

consumption is neglected). Similarly, the algal fluxes are

zero at the upper and lower boundary.

The model was forced with observed surface irradiance

E0(t) as in the idealized pond model. The model simulation

output consisted of depth profiles of oxygen, algal biomass

and volumetric GPP through time. From the model output

depth averaged oxygen time series were calculated. Similarly,

recordings of a virtual oxygen sensor situated at depth ds

were obtained by extracting the corresponding O2 output

from the simulation output. From these oxygen time series,

we calculated the GPP by the Fourier method (average GPP

over moving 14 d intervals). At the same time, we calculated

the true GPP values by suitably averaging the simulated GPP

rate over the depth of the model domain and the associated

14 d period.

We assessed the effect of neglecting diurnal fluctuations

in air–water exchange when the water column is not per-

fectly mixed. From the model output, we calculated the rela-

tive underestimation x1AO2=AGPP21. We calculated this

underestimation with incident irradiance observed in the

first two weeks of June. These weeks have most sunshine,

and consequently primary production is highest. During this

period vertical oxygen gradients will be highest, and, thus,

also the effect of imperfect mixing on air–water exchange.

For the same reason, we fixed the light attenuation coeffi-

cient to a large value of 10 m21.

Diurnal fluctuations in air–water exchange are influenced

by the rate of exchange (piston velocity) and mixing (turbu-

lent diffusion coefficient). Therefore, we ran the model over

a suitable range of piston velocities (0.5, 3.5, and 5 m d21)

and turbulent diffusion coefficients (1022, 5.1023, and 1023

m2 s21). These span a range from lakes with low wind speeds

and reduced turbulence to estuaries and coasts where higher

wind speeds and water currents significantly increase the pis-

ton velocity and turbulence (Borges et al. 2004a, 2004b;

Staehr et al. 2010).

Estuary model

The estuary model is of comparable biogeochemical com-

plexity as the open water model, but relaxes different

assumptions. As a result of the tidal energy dynamics, it is

assumed that vertical mixing is intense, so that all solutes
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are mixed homeneously over the water column at all times.

However, the lateral exchange of oxygen is considered

important, giving rise to concentration gradients in the hori-

zontal. Air–water exchange is explicitly incorporated, while

oxygen fluxes across the lower boundary are ignored (no sed-

imentary oxygen consumption). In such an estuarine setting,

oxygen recordings at a fixed location have an important

imprint of the tidal oscilation of water masses passing by the

sensor.

The estuary model is implemented as a one-dimensional

reactive transport model, which simulates a stretch of length

L, subject to tidal advection (streamwise velocity v), and dis-

persion (streamwise turbulent diffusifvity Dx). Lateral

exchange is assumed negligible. In addition to oxygen and

Table 1. Balance equations, process rates, boundary conditions and forcing functions for the models with which synthetic oxygen
time series were generated. The open water and estuary model inherit the rate formulation of GPP and forcing function from the
idealized pond model

Idealized pond model

Process rate

Gross primary production

GPP(t) 5 B
d lðtÞ

lðtÞ 5

ðd

0

l z; tð Þdz

l z; tð Þ 5 Pm 12exp 2
aE z;tð Þ

Pm

� �� �
E z; tð Þ 5 E0ðtÞexp 2kdzð Þ

Forcing functions

E0(t) : Incident irradiance (hourly observations)

Open water model

Balance equations
@
@t O2 z; tð Þ 5 GPP z; tð Þ2CR z; tð Þ1 @

@z D @
@z O2 z; tð Þ

� 	
@
@t B z; tð Þ 5 C : O2 GPP z; tð Þ2CR z; tð Þð Þ1 @

@z D @
@z B z; tð Þ

� 	
Process rates

Gross primary production

GPP(z, t) 5 l z; tð ÞB z; tð Þ
Community respiration

CR(z, t) 5 RmB(z, t)

Boundary conditions

2D @
@z O2 z; tð Þjz50 5 k Osat

2 2O2 0; tð Þ
� 	

2D @
@z O2 z; tð Þjz5d 5 0

2D @
@z B z; tð Þjz50;z5d 5 0

Estuary model

Balance equations
@
@t O2 x;tð Þ 5 GPPðx; tÞ2CRðx; tÞ2rODUODUðx; tÞ1FAðtÞ=d1 @

@x Dx
@
@x O2ðx; tÞ

� 	
2v @

@x O2ðx; tÞ
@
@t Bðx;tÞ 5 C : O2 GPP x; tð Þ2CR x; tð Þ1 @

@x Dx
@
@x B x; tð Þ

� 	� 	
2v @

@x B x; tð Þ
@
@t ODU x; tð Þ 5 2rODUODU1 @

@x Dx
@
@x ODU x; tð Þ

� 	
2v @

@x ODU x; tð Þ
Process rates

Gross primary production

GPP(x, t) 5 l ðtÞB x; tð Þ
Community respiration

CR(x, t) 5 RmB x; tð Þ
Boundary conditions

ODU(0, t) 5 ODUup

@
@x ODU x; tð Þjx5L 5 0

O2 0; tð Þ 5 O
up
2

@
@x O2 x; tð Þjx5L 5 0

B(0, t) 5 Bup

@
@x Bðx; tÞjx5L 5 0
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algal biomass, the model includes a reduced compound (the

oxygen demand unit [ODU]) as an additional state variable.

This formulation provides a generic way to account for any

bacterial and chemical oxygen consumption in the water

(Soetaert et al. (1996). The removal of oxygen through the

oxidation of ODU is modeled as a first order process in the

ODU concentration. Primary production, respiration, and

the incident light forcing are implemented similarly as in

the open water model. A 100 d spin-up period was used to

obtain proper initial conditions for the state-vectors of O2, B

and ODU along the x-axis.

The model simulation output consisted of transect pro-

files of oxygen, algal biomass, ODU and areal GPP through

time. Solute transport in the estuary is modeled in a refer-

ence frame moving with the tides. Consequently, a sensor

located at a fixed geographical position will oscillate hori-

zontally in this reference frame. Therefore, the output of the

model is resampled with a virtual, horizontally oscillating

sensor. The resampling procedure is described in detail in

the Appendix.

The resulting oxygen data corresponds to what a sensor

would record in a real estuarine setting where water masses

are moving along the sensor with the tides. From this oxy-

gen time series, we calculated the GPP by the Fourier

method (average GPP over moving 14 d intervals). The GPP

rates were resampled in an identical way, from which true

time averaged GPP was calculated.

The estuarine model explicitly accounts for the effect of

lateral transport on the GPP estimates. To see how impor-

tant these are, we can estimate the error made by neglecting

diel fluctuations in horizontal fluxes. These may arise from

the diurnal component of the tides in the presence of hori-

zontal oxygen gradient or from horizontal gradients in pri-

mary production. From the model output, we can

specifically calculate the relative contribution of the advec-

tive term 2v @O2

@x to this error. By calculating the Fourier

transform of this term, it is possible to correct the Fourier-

based GPP for diel fluctuations in advective flux. We did

this for each simulation. To evaluate this simulation result,

we compared it with a partial approximation of the Fourier

amplitude of the advective term, based on in situ time

series of salinity and concentration gradients of oxygen and

salinity (the full details of the procedure are given in the

Appendix).

Parameter values implemented in the model simulations

are based on the site where the field data were collected

(Schelde estuary—see below). The full model equations are

found in Table 1, while the values of parameters that were

fixed in all simulations can be found in Table 2. The models

where numerically integrated with a standard solver from

the R-package deSolve, making use of the upstream weighted

differencing schemes for the transport equations as defined

in the package ReacTran (Soetaert et al. 2010; Soetaert and

Meysman 2011). R scripts are available on request.

Comparison to field data

Oxygen time series data were collected at a fixed geo-

graphical location (Kruibeke: 51o1003300N, 4o1903200O) in the

upper brackish part of the Schelde estuary (Belgium). The

average tidal amplitude at this site is 5.3 m, the mean depth

of the water column is about 9.3 m. Tidal currents are strong:

maximal water velocity during an average tidal cycle is 1.2–

1.3 m s21. Tidal excursion at this location is estimated 10–

20 km. The oxygen concentration features strong horizontal

gradients in this part of the estuary due to intense minerali-

zation and nitrification (Van Damme et al. 2005; Soetaert

et al. 2006).

In 2010, O2 concentrations were recorded from a pontoon

with three equivalent sensor configurations (Fig. 9): a Hydro-

lab Datasonde multiprobe logger mounted with a Clark type

sensor and a YSI 6600ADV multiparameter sonde mounted

with either a Clark type sensor or an optical sensor (ROX,

YSI). Oxygen was recorded at a constant depth of 0.75 m

below the water surface, over periods of 10–30 d, with a sam-

pling interval of 10 min.
14C-incubation measurements of primary production were

conducted on water samples taken shipboard in the central

part of the river at the location of the pontoon. Samples

were incubated for 2 h. Dark bottle incubations were used to

correct for chemosynthetic processes. Maximum photosyn-

thetic rate Pm and photosynthetic efficiency a were deter-

mined from Eilers–Peeters curves fitted to observed

photosynthesis-irradiance data couples (Eilers and Peeters

1988). Depth-integrated primary production was calculated

using hourly incident irradiance. Light attenuation is highly

variable near the study site (Desmit et al. 2005). At slack

tide, suspended sediments settle down quickly causing a

short period low light attenuation, while high peaks in light

attenuation are often observed. Therefore, we chose not to

use observed light attenuation coefficient during sampling,

Table 2. Process parameters and boundary conditions that
were fixed throughout this study. Variable parameters are dis-
cussed in the text

Osat
2 5 250 mmol m23

Rm 5 0.25 d21

C:O2 5 1 mmol C (mmol O2)21

C:Chl 5 20 mg C (mg Chl)21

rODU 5 .05 d21

v 2160 m d21

Dx 5 8.64 106 m2 d21

d 5 10 m

ODUup 5 200 mmol O2 m23

Bup 5 10 mg Chl m23

O
up
2 5 100 mmol O2 m23
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but we set kd to a typical value of 4:5m21. This avoids unre-

alistic high or low production estimates in cases that sam-

pling was performed during peak periods of light

attenuation.

Production between sampling days was interpolated using

measured irradiance data and assuming that other parame-

ters (Chlorophyll a [Chl a], photosynthetic parameters) did

not change during the calculation interval. Hourly irradiance

data was measured with the Licor LI-190 SA cosine sensor at

the roof of the NIOZ institute (see above). For further details

on sampling procedures, materials and methods see Krom-

kamp and Peene (1995).

Results

Idealized pond model

Figure 2 shows the relative difference between the trun-

cated sinusoid approximation and the 14 d average of depth

averaged GPP, calculated with idealized pond model. The fig-

ure was generated with parameter values k 5 2 m21, Em 5 250

lmol photons m22s21 and d 5 10 m. The relative bias

between true GPP and Fourier based GPP is calculated as

bias5100 3 ðGPPFourier2GPPtrueÞ=GPPtrue (13)

The truncated sinusoid approximation overestimates real

GPP with 3 6 3.4%, and there is a weak seasonality: in winter

months both the upward bias and the variability are slightly

larger.

Subsequently, we performed a sensitivity analysis, chang-

ing the light saturation parameter Em and light attenuation

factor O2. The values for Em span a range observed in open

oceans (Sarthou et al. 2005), coastal zones (Shaw and Purdie

2001), estuaries (Harding et al. 1986; Kromkamp and Peene

1995) and, lakes (Fahnenstiel et al. 1989). The kd-values

range from clear water (kd50.1 m21) to extremely turbid

(kd5100 m21). Note that the light attenuation factor and the

water depth do not feature as independent parameters in the

GPP-equation (See Table 1). In the simulations, we, hence,

fixed the water depth at 10 m and only varied kd.

The results of this sensitivity analysis are shown in Table

3. In all but one combination of parameter values, the bias is

less than 10%. When kd > 2 m21, which is the case in many

coastal and estuarine systems, the bias is at most 5% in abso-

lute value. The results in Table 3 are identical for kd 5 2 m21

and kd 5 100 m21. This illustrates the fact that the relative

difference is unaffected by kd as long as the mixing depth of

the system is larger than the light penetration depth.

Open water model

From here on we will focus our attention to coastal and

estuarine systems where classical diel oxygen methods are

often inapplicable. With the vertical water column model,

we repeated the above procedure to calculate the relative
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Fig. 2. Depth averaged GPP and truncated sinusoid approximation, cal-

culated with the idealized pond model for all subsets of 14 consecutive
days of observed irradiance (top panel). Relative error (bottom panel)

Table 3. Relative difference between truncated sinusoid
approximation and 14 d average of GPP calculated with the
idealized pond model. Water depth 10 m. Average and standard
deviation calculated for all consecutive 14 d intervals in 2009.
Units Em: lmol photons m22s21; kd : m 21

kd

Em 0.1 1 2 100

50 213 6 9% 29 6 8% 23 6 5% 23 6 5%

100 28 6 8% 24 6 6% 20.6 6 4% 20.6 6 4%

250 22 6 5% 1 6 4% 3 6 4% 3 6 4%

500 2 6 4% 4 6 4% 5 6 4% 5 6 4%
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difference between the truncated sinusoid approximation

and the 14 d average of depth averaged GPP. Figure 3 shows

results from the simulations with depth 5 10 m, vertical tur-

bulent diffusivity 5 1022 m2s21 and light attenu-

ation 5 4:5 m21. With these parameter settings the Fourier

method, applied to depth averaged simulated oxygen con-

centrations, accurately estimates the true GPP (bias of

0.462.5%.) Also here, a weak seasonality is observed: in win-

ter months both the upward bias and the variability are

slightly larger (Fig. 3).

From the model output, we also calculated the effect of

the truncated sinusoid approximation, where now algal bio-

mass is not constant but dynamically simulated. Interest-

ingly, bias and random error amount to 2.662.8% and are

lower than calculated from the idealized pond model with

fixed biomass in the previous section. Or: dynamically simu-

lated GPP in a vertical water column behaves more like a

truncated sinusoid than depth integrated GPP with constant

biomass. Note also that the bias in the Fourier method, on

average 0.4%, is lower than the one introduced by the sinu-

soid approximation which is on average 2:6%. This can

partly be ascribed to the effect of air–water exchange damp-

ing the oxygen signal; indeed, this damping decreases the

amplitude of diel oscilations in oxygen and, therefore,

decreases the bias in the Fourier method.

The results of the model simulation for different piston

velocities and vertical mixing rates are shown in Table 4. In

the turbid water simulations (k510 m21), the underestima-

tion ranges from 0.19% in the fastest mixing system with

lowest piston velocity to 31% in the slowest mixing system

with highest piston velocity. Note that the combination of

high piston velocity and low vertical mixing rate (or vice

versa) is rather unphysical. The highest piston velocities are

representative for systems with high wind speeds and water

currents, where vertical mixing will also be high. Remind

also that the light attenuation coefficient O2 and the light

forcing were chosen such to have maximal underestimation.

Underestimation is much lower in the clear water simula-

tions (k51 m23). Underestimation now ranges from 0.098%

to 16%, with the lowest vertical turbulent diffusivity in the

clear water simulation a factor hundred lower than in the

turbid water simulations. Even for the fastest mixing system,

the simulated dampening is significantly larger than the the-

oretical correction factor (Eq. 9). For example, for a piston

velocity of 3.5 m s21 and a depth of 10 m this theoretical

correction factor is only 0.16%: a factor 10 lower than the

turbid water simulation result and a factor 5 lower in the

clear water simulation both with D 5 1022 m2 s21.

The above analysis assumes that we have an ideal sensor,

or a sensor array, which truly records the average oxygen

concentration in the model domain (and, hence, the oxygen
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Fig. 3. Simulated GPP and Fourier method applied to O2-series from
the vertical water column model. The model was forced with all subsets

of 14 consecutive days of observed irradiance (top). Relative mismatch
between average GPP and Fourier estimate (bottom).

Table 4. Underestimation of GPP due to neglecting diurnal
fluctuations in air–water exchange as estimated with the vertical
water column model, for different values of vertical turbulent
diffusion D and piston velocity k. Water depth was set to 10 m.
The model was forced with incident irradiance observed in the
first two weeks of June 2009. Units D: m2 s21; k: m d21; kd :
m21

k

D 0.5 3.5 5

kd 5 10 1022 20.19% 21.4% 22.1%

5.1023 20.37% 22.6% 23.8%

1023 21.4% 29.3% 213%

1024 23.8% 224% 231%

kd 5 1 1022 20.098% 20.82% 21.3%

5.1023 20.18% 21.4% 22.1%

1023 20.53% 23.9% 25.7%

1024 20.34% 24.1% 26.4%

1026 20.75% 212% 216%
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signal is not dependent on the depth location of the sensor).

Clearly, if one deploys a single sensor in a field situation,

this sensor will not necessarily record the average oxygen

concentration of the control volume. The degree to which

the sensor signal will match the depth-averaged oxygen con-

centration will depend on the sensor’s position in the water

column, the vertical gradient in GPP and on the amount of

turbulent mixing.

The water column model allows us to quantify this mis-

match by applying the Fourier method to model output at

different depths. This emulates the application of the Fourier

method to the oxygen signal of a sensor fixed at those

depths. Figure 4 shows the relative difference between true

simulated GPP and the Fourier method estimate, for differ-

ent turbulent diffusivities in a high vertical gradient situa-

tion (kd510 m21; k55 m d21; light forcing first two weeks of

June).

For all mixing intensities, the Fourier method overesti-

mates depth averaged GPP when it is applied to oxygen

concentrations from the upper water layer, while it underes-

timates GPP at deeper depths. However, the underestimation

when the sensor is fixed deep in the water column is always

lower than the overestimation when it is fixed at shallower

depths. For strongly mixed systems (D 5 1 3 1022 m2 s21), the

vertical dependence of GPP estimates is very small, with less

than 5% overestimation when the sensor is fixed in the

upper meter of the water column, and less than 1% underes-

timation in the deepest part of the water column. For the

weakly mixed system (D 5 531023 m2 s21) the overestima-

tion in the upper meter can be up to 15%, though it reduces

quickly to below 5%, when the sensor is positioned below

2 m of water depth. The underestimation for deeper sesnor

positionings reamins lower than 3%. When the mixing

intensity is further decreased to D 5 1023 m2 s21 the mis-

match becomes large, with an overestimation of over 100%

in the upper meter, and an underestimation of almost 30%

in the deepest parts. Note that this depth dependency of the

GPP estimate is not specific for the Fourier method, but

applies to all diel oxygen methods based on a zero-

dimensional mass balance. Our results, hence, imply that a

correct sensor positioning is crucial in diel oxygen methods

based on single depth measurements, especially in weakly

mixed systems. Alternatively, depth integrated O2-concentra-

tions could be calculated from simultaneous observations at

different depths with a sensor array.

Estuarine model

The water column simulations indicate that many estua-

rine and coastal systems have a vertical mixing intensity

that is large enough to assume that vertical mixing is instan-

taneous. In such systems, the oxygen dynamics can be realis-

tically simulated with the one-dimensional estuarine model

presented above. Figure 5 (top panel) shows the resampled

output of that model, forced with observed irradiance from

6 June to 3 July and resampled with velocities from the same

period. The major pattern in this time series is the tidal

oscillation of the concentrations of both oxygen and algal

biomass. This pattern is so strong that it almost completely

masks the diel fluctuations caused by primary production. As

a simple illustration of the power of the Fourier transform in

separating the diurnal component of a signal from compo-

nents with other periodicities, the bottom panel shows the

Fourier amplitudes of the time series. In this figure, the diel

fluctuations clearly show up as a peak at 1 cycle per day.

Figure 6 shows the time average of resampled gross pri-

mary production for all 14-d long simulations and the result

of applying the Fourier method to the corresponding

resampled oxygen time series. The overall correspondence is

very good, but the bias is relatively large during months

with low primary production, and a seasonal trend in the

bias is apparent. In absolute terms, the bias ranges from

about 226.2 to 23.7 mmol O2 m22 d21. The average bias

throughout the year was 0.6 mmol O2 m22 d21, standard

deviation 9.5 mmol O2 m22 d21. During April to September

(the months where GPP is highest), the average bias was

% deviation from depth averaged GPP
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Fig. 4. Simulated depth profile of the relative difference of GPP esti-

mates from single depth dissolved oxygen recordings. Simulations were
performed with the vertical water column model with different turbulent
diffusivities. To assure a high vertical gradient, the light attenuation coef-

fient was set te kd 5 10 m21, piston velocity k 5 5 m d21 and incident
irradiance was taken from the first two weeks of June.

Cox et al. A novel approach in the frequency domain to estimate GPP

539



25.1 mmol O2 m22 d21, standard deviation 7.7 mmol O2

m22 d21. In relative terms, the bias on the Fourier method

calculated from all simulations from April to September is

27:3619:8%. Put differently, about 75% of GPP-estimates in

April–September lie within a band of 225% to 1 5% of true

average GPP. In winter months, when production is low, the

diurnal fluctuations induced by primary production are

sometimes orders of magnitude lower than the ones induced

by other simulated processes or artefacts induced by signal

processing.

From the resampled GPP time series, we can compare the

truncated sinusoid approximation with the time average of

resampled GPP. The truncated sinusoid approximation over-

estimates GPP by 0:360:7 mmol O2 m22 d21, or in relative

terms 1:761:2%.

The bias of the Fourier-based GPP estimate largely results

from the effect of the horizontal advective fluxes induced by

the tides. Indeed when calculated in the reference frame

moving with the tides, the absolute error from April to Sep-

tember is only 0:561:4 mmol O2 m22 d21. From the model

output, we can easily calculate the Fourier amplitude of the

advective transport term, and, therefore, its effect on the

Fourier amplitude of the oxygen signal. If we correct for this

contribution, the absolute error from April to September is

reduced to 1:261:4 mmol m22 d21, demonstrating that the

error originates from the advective fluxes rather than disper-

sive fluxes, other processes or signal processing artefacts.

At this point, it is instructive to compare the Fourier

method with a classic bookkeeping approach, senso Cole

et al. (2000). Figure 7 shows the correlation between
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simulated GPP and GPP estimated with the Fourier method

(left) and the bookkeeping approach (right). The piston

velocity was assumed to be known exactly in the bookkeep-

ing approach. The top panels show the results when both

methods are applied to O2 time series obtained in the mov-

ing reference frame, as if the sensor would follow the tides

perfectly. Slope and intercept are, respectively, 1.0 and 0.1

for the Fourier method (r2 > 0:99) and 1.1 and 2 0.1 for the

bookkeeping method (r2 > 0:99). Apparently, with the cur-

rent simulation settings, the bookeeping method overesti-

mates true GPP. The bookkeeping method does not account

for horizontal turbulent fluxes and for oxygen demand proc-

esses, therefore, it is not surprising that it misses GPP, even

though air–water exchange was assumed to be perfectly

known. The bottom panels show the results when both

methods are applied in a fixed reference frame. There, the

bookkeeping method goes completely wrong. This is not sur-

prising, since no correction for advective fluxes has been per-

formed at all. However, such correction has neither been

applied for the Fourier method. The left pane presents the

same results as Fig. 6, but now as a correlation plot between

simulated and estimated GPP. Slope and intercept are respec-

tively 0.8 and 0.7 (r250:94).

Field data

At the field sampling location, the oxygen concentration

shows a strong gradient along the estuary axis. Therefore,

the dominant periodicity in the field data oxygen time series

results from the tidal movement of water masses. Figure

8a,c. show typical 14-d excerpts of recorded oxygen

0 5 10 15 20

0
5

10
15

20

GPP simulated

G
P

P
 e

st
im

at
ed

Fourier method

0 5 10 15 20

0
5

10
15

20
25

GPP simulated

G
P

P
 e

st
im

at
ed

Bookkeeping method

0 5 10 15 20

−
20

0
10

20
30

40

GPP simulated

G
P

P
 e

st
im

at
ed

Fourier method

0 5 10 15 20

−
20

0
10

20
30

40

GPP simulated

G
P

P
 e

st
im

at
ed

Bookkeeping method

  A. Sensor moving with the tides

  B. Fixed sensor

Fig. 7. Comparison of the Fourier method with the bookkeeping method applied to simulated O2-series in the moving reference frame (top) and in

the fixed reference frame (bottom). Lines have slope 5 1 and intercept 5 0.
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concentrations in winter and summer periods. The most

prominent periodic constituent of the tides is the semi-

diurnal M2 component with a period of 12 h 25 m. This M2

component is directly observed in the oxygen signal. Note

that in winter, the amplitude of the tidal oscillation in the

O2 concentration is much smaller than in summer, due to

the smaller longitudinal gradient of oxygen in winter.

The associated Fourier transforms of these winter and

summer time series are shown in Figure 8b,d. The tidal oscil-

lations show up as marked peaks at a frequency of slightly

less than two cycles per day. The peak at low frequencies (0–

0.5 cycles per day) results from longer-term trends in the

oxygen signal. The main difference between both Fourier

transforms is the appearance of a peak at 1 cycle per day in

the summer series, resulting from primary production. In the

time domain graphs (Fig. 8c), this effect of primary produc-

tion is hard to distinguish by visual inspection, while in the

Fourier transform (Fig. 8d) it is readily apparent.

Note that the Fourier transform of the summer time series

is comparable to the transform of the estuarine model
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Fig. 8. Typical 14-day excerpts of dissolved oxygen time series in Winter and Summer. Oscillations in the time domain (a. and c.) show up as peaks

in the frequency domain (b. and d).

Cox et al. A novel approach in the frequency domain to estimate GPP

542



output presented in Fig. 5. The similarity of the magnitude

of the semi-diurnal peak indicates that the simulated hori-

zontal gradient in oxygen concentration is representative for

the field situation. For its part, the similarity of the diurnal

peak indicates that simulated gross primary production is

also comparable to the field situation.

Figure 9 shows all available oxygen time series in 2010 at

the study site (top panel), and the comparison of Fourier

method based and 14C-based GPP estimates (bottom panel).

The volume-specific Fourier-estimate of GPP was converted

to area-specific GPP by multiplying with the average water

depth near the field station (9.2 m). A photosynthetic qoeffi-

cient (PQ) of 1.3 was used to convert the oxygen based GPP

values to carbon units, corresponding to the theoretical PQ

when carbohydrate production uses nitrate as a nitrogen

source (Williams et al. 1979; Gazeau et al. 2007). A point by

point comparison of the two methods is not possible since

the sampling periods do not match exactly. But overall, GPP

estimates with the Fourier method and from 14C incubations

are in the same order of magnitude and display the same

seasonality. However, GPP estimated with the Fourier

method is consistently larger than estimates from 14C incu-

bations. The highest discrepancy is observed in Spring 2010

(April–May observations).

As outlined in the methods section, an estimate of the mag-

nitude of the bias resulting from the diel component of the

tides can be obtained from combining continuous salinity

data with observed salinity and oxygen profiles along the estu-

arine gradient. We calculated the bias on the 11 continuous

time series of more than 10 d, amounting on average 2

4.4 mmol C m22 d 21, with standard deviation 15.6 mmol C

m22 d 21. The full range of bias was 2 43 to 9.5 mmol C m22 d
21. There was no seasonality. These estimates are in the same

order of magnitude as the estuarine simulation results. These

results are rough estimates of the effect of the tides. Therefore,

we did not correct the Fourier estimates with the estimated

bias, but we did add indicative error bars on the Fourier esti-

mates in Fig. 9. These error bars were set equal to the observed

standard deviation (15.6 mmol C m22 d21).

Both daily and averaged 14C-based GPP estimates are

shown in Fig. 9. The daily production data appear as distin-

guished clouds on the plot. This illustrates the effect of

assuming that factors such as kd, Chl a, and photosynthetic

parameters do not change during the interval for which the

average is calculated (based on observed irradiance data).

Discussion

Comparison of Fourier method and 14C incubation

Compared to bottle methods, diel oxygen methods gener-

ally result in higher GPP estimates (Kemp and Boynton

1980; Swaney et al.1999). This discrepancy is attributed to

limitations of bottle incubation methods. Swaney et al.

(1999) list as main limitations of bottle methods: reduced

turbulence, unnatural light fields, respiration of 14C-labeled

organic matter, and altered grazer communities. These prob-

lems may be particularly intense in turbid and deeply mixed

estuaries: for example, Kemp and Boynton (1980) found that

GPP estimates from bottle methods in Chesapeake Bay were

a factor 1.5–4 lower than values obtained from diel oxygen

method. Westberry et al. (2012) found that bottle methods

consistently underestimated photosynthesis by 20–40% in

oligotrophic oceans. After a detailed analysis of the potential

explanations, they concluded that the exact physiological

nature of the underestimate was yet to be demonstrated.

Note that in our case study, benthic production is negligible
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Fig. 9. Dissolved oxygen data (top) and comparison of the Fourier

method estimate of daily primary production rates (GPP) and results
from 14C incubation (bottom). Horizontal bars on Fourier method esti-
mates represent the length of the dissolved oxygen time series used.

Vertical bars are estimated standard deviation of the effect of diurnal
components in the tides, based on observed gradients. Black dots repre-
sent the days on which photosynthetic parameters were determined

with the 14C method. Horizontal bars on 14C-based GPP estimate repre-
sent the time range on which observed photosynthetic parameters were

used to calculate GPP (14C-based estimate). Vertical bars represent the
variability in the 14C-based estimates within this time range, due to inci-
dent light variability.
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compared to pelagic production, both due to high turbidity

levels and the small area of tidal flats (steep slopes due to

embankments). However, in systems where benthic produc-

tion is significant and not accounted for, benthic production

would also contribute to the mismatch between 14C and diel

oxygen methods.

GPP estimates also vary substantially between different bot-

tle methods. Gazeau et al. (2007) compared three different

incubation methods to estimate GPP in the Scheldt estuary:

the oxygen light-dark method (O2-LD), 14C incorporation and
18O labeling. They concluded that the O2-LD technique is

expected to give higher rates than the 14C method mainly

because of (1) possible respiration of 14C labeled organic mat-

ter in the cell to an extent that depends on incubation time,

(2) stoichiometric relationships between O2 and CO2 (PQ)

(which depends on the nature of the nitrogen substrate and of

the organic carbon product), and (3) possible excretion of

DO14C. In the Scheldt estuary they observed an increase in

the ratio between O2-LD and 14C GPP-estimates with decreas-

ing salinity. Remarkably, at their most upstream station,

which is less than 10 km from our study site, this ratio was

about 6.

Another major source of uncertainty impinging on 14C-

based GPP estimates is the need for an estimate of the light

attenuation coefficient kd. In the turbid Scheldt estuary, kd is

known to be a highly variable parameter with both within

day and day to day variability (Desmit et al. 2005). A point

measurement of kd, which is commonly used for calculation

of depth integrated production (Kromkamp and Peene 2005),

is not reliable. Therfore, we calculated depth integrated pro-

duction with a typical value of kd54:5m21. For sure, this will

underestimate light availability during some periods, while

overestimating it for others. At this study site, the only reli-

able option to account for the real light availability would be

to continuously measure kd, for example, making use of two

PAR-sensors seperated by a known distance.

Algal biomass (Chl a) and photosynthetic parameters (a,

Pm) are assumed constant between measurements of photo-

synthetic parameters (typically 2 weeks to 1 month). This

explains the jumps between clouds of day-to-day GPP esti-

mates (Fig. 9). Linearly interpolation of these parameters

between consecutive sampling times could improve the GPP

estimate, altough still this would be an approximation.

Finally, the calculation of depth integrated production from

bottle methods requires a fair amount of data manipulation

(depth integration, time interpolation), with data from dif-

ferent sources (incident irradiance, Chl a, light attenuation,

photosynthetic parameters, channel bathymetry). As any of

those data can only be determined with a certain accuracy,

such data manipulation easily leads to uncertainty

accumulation.

Like other diel oxygen methods, the Fourier method is

not plagued by the variability in kd or other parameters, nor

does it need to be integrated over depth. On the contrary: it

is based on oxygen concentrations which inherently inte-

grate the gross primary production over the real light field,

biomass and photosynthetic parameters and, when mixing is

fast enough, over the water column. From the field dataset,

we conclude that the Fourier method estimate of GPP is in

the same order of magnitude and displays the same seasonal-

ity as the results from the bottle incubation. The difference

between both methods is in line with results from other

studies that compare in situ with bottle methods and with

the performance of 14C incubations at the study site.

Accuracy of the Fourier method in estuarine systems

Our analysis of the performance of the Fourier method on

synthetic O2-series sheds light on the accuracy of the Fourier

method and the validity of its assumptions at the study site.

For turbid estuarine systems (k > 2 m21), where the light sat-

uration parameter is typically Em5250lmol photons m22s21,

the difference between the truncated sinusoid approxima-

tion and true GPP calculated with the idealized pond model

was 364%. Interestingly, this difference decreases when bio-

mass was dynamically simulated, both in the open water

model and the estuary model. There the difference was 2:66

2:8% and 1:661:2%, respectively. Thus, in an estuarine or

coastal setting the simulation results indicate that the

time [d]

a

A

DL

210 t1

0

Fig. 10. When gross production is assumed a truncated sinusoid

GPP(t) 5 maxð0;a1bcosðxtÞÞ, the parameters a and b are related to the
relative fraction of light hours during the day (fDL 5 DL/24h). From the
figure: the number of daylight hours DL 5 2t1, with bcosðxt1Þ1a50.

Therefore, pfDL 5 cos21ð2a=bÞ.
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truncated sinusoid approximation leads to a slightly upward

biassed GPP estimate (1.7% to 3%), with a random error of

1.2 to 4%.

This upward bias is partly offset by the downward bias

introduced by neglecting diurnal fluctuations in air–water

exchange. Simulation results from the open water model

indicate that with a water depth of 10 m, and a typical estua-

rine vertical mixing coefficient of 1022 m2s21, the maximal

error made by neglecting this damping is small (1.4%). This

can be considered an upper limit as it was obtained by set-

ting the light attenuation coefficient to a large value of

10 m21, and choosing the period with highest incident irra-

diance. Still, although this simulation was done with a finite

mixing rate, this assumes that we can observe the true depth

averaged oxygen concentration. At the field location oxygen

was recorded at a constant depth of 0.75 m. At this depth,

the open water model simulates 3.8% to 11.8% overestima-

tion when vertical turbulent diffusivities decrease from 1022

to 5.1023 m2s21. Tidal currents are very high at the field

location, with maximal currents during a tidal cycle often

1.2 m s21 or more. Consequently, the vertical mixing coeffi-

cient at the field location often be larger than 1022 m2s21.

This, combined with parameter values that assure maximal

gradients, suggests that the simulated 3.8% overestimation

in the open water model set an upper limit on the bias due

to air–water exchange.

Thus, it seems that at our Scheldt estuary field site, the

largest source of error results from from diurnal fluctuations

in horizontal fluxes. Both the estuarine model simulations as

the observations-based error estimate indicate a slight down-

ward bias: 2 5.7 mmol O2 m22 d 21 based on observations,

and 0.6 (full year average) to 2 5.1 (April–September aver-

age) mmol O2 m22 d 21 based on the simulations. Standard

deviation is 20.3, 9.5, and 7.7 mmol O2 m22 d 21, respec-

tively. This means, among others, that the Fourier method

when applied to the study site will be inaccurate in Autumn

and Winter months when production is expected to be of

the same order or less than the effect of diurnal fluctiations

in horizontal fluxes.

Our simulations also shed some light on the sources of

the diurnal fluctuations in horizontal fluxes. A priori, we

anticipated that a horizontal gradient in GPP causing a diur-

nal changing horizontal gradient in O2 concentrations

would lead to diurnal pattern in horizontal dispersive flux.

However, the simulation results indicate that this effect is a

factor 10 lower than the effect of diurnal fluxes in advective

fluxes: the error on the GPP estimate in the moving refer-

ence frame was only 0:561:4 mmol O2 m22 d21 compared

to 25:167:7 mmol O2 m22 d21 in the moving reference

frame. For its part, the diurnal fluctuations in advective

fluxes can have two origins: they can be true diurnal har-

monics of the tide, or they can result from leakage of other

harmonics. The two most important tidal harmonics with

close to diurnal frequency are the K1 and O1 lunar diurnals

with respective period of about 23.9 h and 25.8 h. Neither of

them correspond to Fourier frequencies in times series of 14

d and a 10 min sampling interval. Therefore, although their

amplitudes are relatively low (about 3% and 5% of the semi-

diurnal M1 near the study site) their presence will certainly

leak into the closeby diurnal Fourier frequency. On the con-

trary, the semi-diurnal M1-component of the tide is located

much farther away, but the estimate of the diurnal ampli-

tude could still be affected by leakage due to the large ampli-

tude of M1. The magnitude the diel fluctuations in advective

fluxes depend both on the horizontal gradient in oxygen

concentration and on the relative magnitude of the tidal

harmonics, both of which are system dependent. Therefore,

the bias and error calculated with the estuary model are

indicative for the case study site, but cannot be generally

applied to other systems.

There are two common approaches to reduce the effect of

leakage: removing the components that cause the leakage

and tapering (Bloomfield 2000). Since the frequencies of

tidal harmonics are well-known we anticipate that the first

approach could result in an improvement of the Fourier

method in estuarine and coastal systems. The second

approach, tapering, has a more complicated effect. Indeed,

athough it is an elegant leakage reduction strategy, the Fou-

rier method averages GPP over the length of the O2 time

series, and tapering the series would favour daily cycles in

the middle of the series over those at the end. Thus, it

should be carefully examined how it affects the time interval

for which the Fourier estimate is representative.

As a side remark: we have chosen to answer pragmatic

questions with our simulation studies: How good does the

Fourier method perform when O2 time series of 14 d are

available? What is the impact of seasonality on this perform-

ance? This motivated our choice for running 14-d windows.

We have restricted ourselves to the quantification of stand-

ard error and relative error (both full year and May–Septem-

ber estimates for the estuarine simulations), and a

visualisation of residuals to indicate seasonality and give an

idea of the stationarity of variance of these residuals. Obvi-

ously, there is considerable autocorrelation in consecutive

14-d averages of GPP, and a similar autocorrelation would be

found in correct estimates of GPP. As a result, it is likely that

the difference between real GPP and the Fourier estimate of

GPP has more structure (e.g., autocorrelation) than what is

presented in the manuscript. The full analysis of this error

structure and also of the impact of leakage reduction on the

accuracy of the Fourier method is beyond the scope of the

current manuscript.

Combined, for conditions at the field side, the upward

biases of the truncated sinusoid assumption and of the single

depth measurements, and the downward biases of neglecting

air–water exchange and neglecting the advective fluxes can-

cel out to a large extent. Neglecting diel fluctuations in

advective tidal fluxes is by far the largest source of random
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error on the Fourier estimate. The simulations indicate that

the error on the method is relatively small. Given the inher-

ent limitations of 14C-incubations, in particular the effect of

high DO14C production and of the highly variable light

attenuation in turbid Scheldt estuary, this suggests that at

the study site the Fourier method gives a more accurate esti-

mate of GPP than the bottle incubations.

Stochastic drivers and observational error

The simulations were aimed at investigating the effect of

the simplifying assumptions on the GPP estimate. By choos-

ing appropriate parameter settings, we could evaluate the

validity of the assumptions in different environmental set-

tings. This resulted in valuable insight in the applicability of

the method in a range of aquatic systems (see also below).

This approach does not account for the impact of stochastic

drivers and observational error on the method’s accuracy,

but we can use some theoretical results to assess them. First,

the presence of a random error without autocorrelation and

with variance r2 on the O2 observations will be spread over

all frequencies and, hence, also the diurnal frequency. The

resulting estimates of the Fourier amplitudes are unbiassed,

and their variance is given by 2r2=n, with n the number of

data points (Bloomfield 2000). Taking the square root of the

variance as the typical difference between true and observed

AO2
we can estimate the corresponding error on the estimate

of GPP with Eq. 5. We can compare this with the simulation

results of Batt and Carpenter (2012) who investigated the

accuracy of different diel oxygen methods in the presence of

stochastic drivers and observational noise. They simulated

the effect of observational noise with variance 1 to 500

(mmolO2 m23)2 on simulated 6 d long O2-series with a time

step of 4 minutes (n 5 2160), generated with a model that

was forced with observed PAR from May 2010. We calculated

the relative fraction of daylight for this time period as

fDL 5 0.67 (Anonymous 2011). Substituting the square root

of the expected variance on the Fourier amplitude into Eq.

5, the typical difference between true GPP and observed GPP

amounts to 0.3-6.5 mmolO2 m23 d21. These values are very

similar to the values that Batt and Carpenter (2012) obtained

using a Kalman filter to estimate GPP suggesting that the

Fourier method performs equally well in the presence of

observational noise. This contrasts to their results with the

bookkeeping method applied to unfiltered O2-series which is

much more sensitive to observational noise. However, this

does not surprise us as differencing is a high pass filter.

Thus, low-pass filtering the raw O2 time series before calcu-

lating differences for the bookkeeping method amounts to

common good practice.

By shifting the focus to the frequency domain we also

gain some useful insights on the effect of stochastic drivers

of O2 dynamics. The derivation of the Fourier method and

the simulation we performed assumed only deterministic

processes in the O2 dynamics. However, the central Eq. 5

also applies when the power of nondeterministic (or stochas-

tic) process influencing O2 dynamics in the vicinity of the

diurnal frequency can be assumed negligible. This assump-

tion is not trivial, as any process with a continuous spectrum

would have power in all frequencies, and, thus, also the

diurnal frequency. This effect is not restricted to the Fourier

method: indeed stochastic processes with power around the

diel frequency would affect any instance of the diel oxygen

method. It is difficult, and without any further assusmptions

impossible, to filter out its effect on the metabolic estimate.

This is nicely illustrated by Batt and Carpenter (2012) for the

simplest form of stochastically driven O2-dynamics, that is, a

random process error term added to the discretized verion of

5. This is equivalent to the addition of a random walk or

Brownian noise to the O2 time series. The power spectrum

for Brownian noise is known to equal r2=ðnx2Þ, with r2 the

variance of the random process error. We can estimate the

typical effect of the presence of random process error to the

estimate of AO2
as the square root of this power spectrum

evaluated at the diurnal frequency. On substitution in Eq. 5,

we have an estimate of the typical difference between true

and observed GPP, similar as with the observational error

above. Doing this for variances applied by Batt and Carpen-

ter (2012) (0.1, 0.5, 1, 5, 50 and 100 mmolO2 m23), the cal-

culated typical differences amount to 3.7, 8.3, 11.7, 26.2,

82.9 and 117.3 mmolO2 m23 d21. This very close to their

simulated difference for the bookkeeping method (Fig. 2 in

their manuscript). As Batt and Carpenter (2012) illustrate, it

is almost impossible to filter out the contribution of process

error to the diurnal frequency: even when assuming the

exact model by which the data was generated, the linear

model and Kalman filter estimates of GPP improved only

marginally. In this respect the Fourier method does not per-

form better or worse than other diel oxygen methods, just as

it does not resolve the problem of other deterministic proc-

esses with diurnal fluctuations, for example, community

respiration.

Note that the observational error does not occur in our

consideration in the frequency domain. Thus, we not only

correctly explain the expected error on the GPP estimate

introduced by a random process error, this also explains why

it is invariant under changes of the observational error [see

figs. 2–4 of Batt and Carpenter (2012)]. This result clearly

demonstrates the power of shifting the attention towards

the frequency domain. A full treatment of how other nonde-

terministic drivers of O2-dynamics affect diel oxygen meth-

ods is out of the scope of this manuscript, but we believe

that further analysis will contribute to a increased under-

standing of how the different scales of the deterministic and

nondeterministic parts of O2-dynamics affect estimates of

metabolism. This is a topic that has not received a lot of

attention [see, however, Langman et al. (2010); Coloso et al.

(2011)].
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Model error

The assessment of bias and error of the Fourier method

we provided, is based on synthetic oxygen data. Thus,

strictly speaking, the presented results on bias and error are

specific to the models that were used to generate the O2-

series, and, thus, to those real-world systems that are

adequately represented by them. Every inverse modeling

problem (and, thus, every flavour of the diel oxygen

method) is affected to a certain extent by such model error

(i.e., the uncertainty associated by the choice of mathemati-

cal formulation). It is important to note that the Fourier

method is not dependent on the choice of models we used

to generate synthetic oxygen data. Rather, apart from the

assumption that only GPP causes diurnal fluctuations in O2,

the critical mathematical assumption of the Fourier method

is truncated sinusoid approximation for the relation between

time averaged GPP and its diurnal amplitude over the same

period. This is a less critical assumption than made by all

other inverse methods: although almost never explicitely

acknowledged (Hanson et al. (2008) providing a notable

exception), such inverse methods implicitely assume that

the real world behaves normally around a predetermined set

of equations. A detailed investigation of the effect of differ-

ent model formulations on the assessment of the accuracy of

the Fourier method is also beyond the scope of this

manuscript.

Applicability of the Fourier method to other aquatic

systems

Although the biogeochemical models inherently represent

an idealization of reality, we can draw some general conclu-

sions from the simulations. The results obtained with differ-

ent parameterizations of the idealized pond model indicate

that for many real-world systems the truncated sinusoid

approximation is a robust assumption. In particular, in sys-

tems with the light extinction kd � 1 and light saturation

parameter Em � 100, the GPP-estimate will be biased by at

most 5% and the random error on a 14 d period will be of

the same order of magnitude (Table 3). Conversely, the bias

and error is largest when kd � 1 or Em � 100. These condi-

tions are typical for many clear lakes and the open ocean. In

those systems the truncated sinusoid assumption introduces

a downward bias of up to 13% and an error of 9%. Photo-

synthesis in those systems is saturated over a (large) part of

the water column for a (large) part of the day and, thus, the

time evolution of GPP over a day will not behave as a trun-

cated sinusoid. A similar situation will occur in nutrient lim-

ited systems where the maximal rate of production in a

(large) part of the water column is determined by the rate of

nutrient input and regeneration rather than by light avail-

ability. It could be possible in both light saturated and nutri-

ent limited systems to find an alternative to the truncated

sinusoid that better fits the evulotion of GPP over a day, and

derive a more appropriate relation between AGPP and time

averaged GPP. However, this would involve further assump-

tions, to be evaluated case by case.

The open water model simulations indicate that the

dampening of diurnal fluctuations in depth averaged O2

concentration due to air–water exchange are often small.

With a vertical turbulent diffusivity D � 5:1023, light attenu-

ation coefficient kd510 m21 and piston velocities ranging

from 0.5 to 5 m d21, the bias introduced by neglecting air–

water exchange correction is 0.2–3.8%(Table 4). These simu-

lation settings are typical for maximal vertical gradients in

turbid estuarine and coastal environments where tidal cur-

rents and overlying winds induce strong mixing and high

piston velocities. The clear water simulations (kd � 1 m21)

indicate that with a piston velocity of 0.5 m d21 and turbu-

lent diffusivities as low as 1026 m2 s21, the underestimation

of GPP due to neglecting air–water exchange is only 0.75%.

Thus, also in clear lakes and the open ocean the dampening

due to air–water exchange will often be negligible, resulting

in a downward bias of the GPP estimate of only a few per-

cent. Note that all simulations assumed a water colum of

10m depth. In shallower systems, the impact of neglecting

air–water exchange will be larger, in deeper systems it will be

smaller.

The above analysis of the truncated sinusoid assumption

and of the effect of air–water exchange assumed that the

depth averaged O2 concentration is known. When depth gra-

dients persist due to stratification, the assumption of instan-

taneous mixing is violated, and, thus, the Fourier method, as

any other diel oxygen method, will underestimate total GPP

when applied to epilimnion O2 time series only. In such

cases, depth averaged GPP can be readily estimated with the

Fourier method by applying it to the depth averaged O2 con-

centration calculated from a sensor array. Our model simula-

tions show that also in water columns with a more simple

vertical structure (a constant turbulent diffusivity through-

out the water column), a correct positioning of sensors is

crucial and a multisensor approach might be preferable. The

simulations with intermediate mixing rates (D55

1023m2s21) suggest that the Fourier method can overesti-

mate true GPP with up to 15% when applied to oxygen data

from the upper meter of the water column. In the lower part

of the water column, the Fourier method underestimates

true GPP, but the difference is smaller. The effect of vertical

mixing and air–water exchange need careful examination in

every new environment where the Fourier method is to be

applied. Without prior knowledge of the mixing properties,

and without the possibility of deploying a sensor array, a

good approach would be to put the sensor halfway the

mixed layer depth.

Alternatively, both in the case of horizontal or vertical

gradients, one could try to estimate the transport associated

with the observed gradients [e.g., Kemp and Boynton

(1980)]. Also when GPP estimates at different depth are

derived from a sensor array, the fluxes between adjacent
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water layers need to be estimated, for example, from

observed vertical O2 gradients. This requires an estimate of

the turbulent diffusivity or other assumptions about the

transport in the system. Estimating gradients from concen-

tration differences magnifies error on the observations (dif-

ferencing is a high pass filter). Because of the extra

assumptions needed to constrain those fluxes, and due to

the amplification of observation error, the deduced biologi-

cal rates are prone to large error. In relatively stable lake sys-

tems these errors might not be prohibitive and indeed this

approach is often used [e.g., Sadro et al. (2011); Obrador

et al. (2014)]. But particularly in estuarine and coastal sys-

tems it is not recommended (Kemp and Boynton 1980). In

the frequency domain this problem is again one of estimat-

ing diurnal fluctuations, but now in the vertical fluxes

between different water layers. Estimating those fluctuations

cannot be done without further assumptions about mixing

processes. In this respect the Fourier method would not per-

form better or worse than any other diel oxygen method

when vertical gradients are present. But how this could be

done in the frequency domain is not a trivial question: addi-

tional mathematical treatment in the frequency domain is

needed to assess whether and how the Fourier method can

be adapted and whether it would perform better or worse

than multisensor approaches in the time-domain.

Even more difficult would be the mathematical treatment

in the presence of horizontal gradients in a 2D setting. Indeed,

Van de Bogert et al. (2012) convincingly demonstrated that

the assumption of horizontal homogeniety is often not met in

lake ecosystems. Based on two case studies they found that

single sensor derived GPP estimates varied over more than an

order of magnitude between different locations. As made

explicit in the theoretical derivation of the method, its appli-

cation on single sensor data would yield a GPP estimate spe-

cific for a certain control volume around the sensor, and only

in the absence of diurnal fluctuations in the fluxes through

the boundaries of that volume. The latter assumption is vio-

lated in systems with finite mixing between regions with dif-

ferent productivity. Implicitely, however, this assumption was

made by Van de Bogert et al. (2012). Since they did not

account for fluxes between locations, they probably underesti-

mated GPP at the highest productive sites and overestimated

GPP at the lowest productive site. In order for the Fourier

method to give reliable whole system GPP estimates in the

presence of this type of horizontal variability, the method

could be applied to a system-averaged O2 time-series (This is

entirely similar to the situation whith vertical gradients).

In estuaries and coastal systems with strong horizontal

gradients and advective fluxes related to the tides, we have

demonstrated the merits of the Fourier method. Particularly

in those systems, the in situ diel oxygen method is prone to

large error. Therefore, they are among the systems where the

practical advantages of bottle methods outweigh their limita-

tions, and are still often used for estimating GPP and ecosys-

tem metabolism (Gazeau et al. 2007). The workaround

proposed by Swaney et al. (1999) is based on intensive sam-

pling cruises along a transect (4 cruises spread over 2 d for

each production estimate), and is based on a first order

approximation that estimates GPP from a linear regression of

oxygen against salinity, depth and time. Also, a correction

for air–water exchange was needed. Vallino et al. (2005) used

a method based on assimilation of dissolved oxygen data in

a full transport-reaction model. But also there, spatially dis-

tributed dissolved oxygen data is necessary and the resulting

GPP estimates strongly depend on the reliability of other

components of the model. Two major reasons make diel

oxygen methods difficult to apply in estuarine and coastal

systems: 1. the tidal signal dominates O2 time series and 2.

gas transfer is high and difficult to correctly estimate. Based

on the simulation results and the case study, we conclude

that the Fourier method circumvents these problems to a

large extent. Importantly, our simulation results indicate

that the large vertical mixing intensities, large light attenua-

tion and high light saturation parameter typical for estuarine

and coastal phytoplankton communities make estuaries and

coastal systems particularly suited for application of the Fou-

rier approach. This makes the method a new and powerful

tool for estimating GPP in estuarine and coastal systems, and

as such enlarges the number of systems where GPP can be

estimated from in situ oxygen concentrations. This is partic-

ularly relevant at a time when deployment of continuous

measurement devices is on the rise in a diversity of aquatic

systems. In systems where the method give appropriate

results, it has the potential for automation and for real-time

and quasi-continuous observation of GPP. With its reliance

on just one data-source and clear data processing procedure

the method is a major contribution to GPP estimation.

APPENDIX

Characteristics of the truncated sinusoid

Consider the truncated sinusoid (Fig. 10)

f ðtÞ5maxð0; a1bcosðx1tÞÞ (14)

This is a periodic function with period T52p=x1. The

average value of this function is calculated as

1

T

ðT

0

f ðtÞdt 5
b

p
sinðhÞ2hcosðhÞð Þ (15)

with h 5 cos21ð2a=bÞ (16)

Like any periodic function, the truncated sinusoid can be

developed as a Fourier series. Since f(t) is an even function,

the sine terms of the Fourier series vanish and we have

f ðtÞ5 a0

2
1
X1
n51

ancosðnx1tÞ (17)
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with coefficients an given by

an5
2

T

ðT=2

2T=2

f ðtÞcosðnx1tÞdt (18)

Specifically, for n 5 1 this gives

a15
b

p
h2

1

2
sinð2hÞ

� �
(19)

Accordingly, the Fourier transform of the truncated sinu-

soid is given by

Fðf ÞðxÞ5 a0

2
dðxÞ1

X1
n51

an

2
ðdðx2nx1Þ1dðx1nx1ÞÞ (20)

with d the Dirac delta distribution. In particular

Fðf Þðx1Þ5
a1

2
dð0Þ (21)

When we now implicitely assume that we always work

with a discrete Fourier transform of sampled time series, we

can neglect the Dirac delta and write

AT5jFðf Þðx1Þj5
a1

2
(22)

Eliminating b from (15) and (19) we derive the formula to

calculate the mean f ðtÞ from AT as

f ðtÞ52AT
sinðhÞ2hcosðhÞ

h2
1

2
sinð2hÞ

(23)

When f(t) should represent GPP, it must be zero during

the night and this implies the following relation between h
and the relative fraction of light hours (fDL) during a 24h

period (Fig. 10).

cos21ð2a=bÞ5h5pfDL (24)

Resampling the estuarine model

For the resampling, we make use of a one year long veloc-

ity time series vðtÞ generated by a one-dimensional hydrody-

namic model of the Schelde estuary. We assume that this

velocity is constant along the estuarine axis for the model

domain over which the sensor is oscillating. The oscillating

location of this sensor can then be calculated from this

velocity time series as

xðtÞ5x02

ðt

0

vðsÞds (25)

where x0 is an arbitray location in the moving reference

frame. As with the light forcing, this resampling is per-

formed with each subset of 14 consecutive days of velocity

data. The main advantage of this resampling approach is

that we avoid the need for a computationally demanding

tidally resolved reactive-transport model.

Contribution of lateral advection

A partial approximation of the contribution of lateral

advection to diel fluctuations in the oxygen signal can be

obtained from observed time series of salinity and observa-

tions of the spatial gradient of oxygen and salinity. We

derive such approximation by starting from the transport

equation of salinity (S) in a system with constant geometry

@S

@t
52v

@S

@x
1
@

@x
D
@S

@x
(26)

where v is the water current and D is the dispersion coeffi-

cient. We can always write v as the sum of an average veloc-

ity and the velocity fluctuation due to the tide vt . We

assume that the average horizontal advection is in equilib-

rium with dispersion. Then the salinity gradient is constant,

and the time evolution of salinity is the result of this gradi-

ent being moved back and forth with the tide, or

@S

@t
52vt

@S

@x
(27)

The Fourier-transform of this equation reads

ixFðSÞ52FðvtÞ
@S

@x
(28)

This equation allows us to estimate the Fourier-amplitude

of vt based on a salinity time series and the observation of

the salinity gradient. Combining this with observations of

the oxygen gradient, we can estimate the Fourier-amplitude

of the advective term of oxygen transport as

2FðvtÞ
@O2

@x
5ixFðSÞ

@O2

@x
@S
@x

(29)

This is an approximation of the error made by neglecting

horizontal fluxes because it does not take into account diur-

nal fluctuations in the oxygen gradient. Also, the accuracy

of spatial derivatives calculated from observations is limited,

and determined by the spatial resolution of observations.

Nevertheless, it will give an indication of the order of magni-

tude of the error associated with neglecting horizontal fluxes

in a real-world estuarine situation.
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