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In our seasonal world, animals face a variety of environmental
conditions in the course of the year. To cope with such
seasonality, animals may be phenotypically flexible, but some
phenotypic traits are fixed. If fixed phenotypic traits are
functionally linked to resource use, then animals should
redistribute in response to seasonally changing resources,
leading to a ‘phenotype-limited’ distribution. Here, we
examine this possibility for a shorebird, the bar-tailed
godwit (Limosa lapponica; a long-billed and sexually dimorphic
shorebird), that has to reach buried prey with a probing bill
of fixed length. The main prey of female bar-tailed godwits
is buried deeper in winter than in summer. Using sightings
of individually marked females, we found that in winter only
longer-billed individuals remained in the Dutch Wadden Sea,
while the shorter-billed individuals moved away to an estuary
with a more benign climate such as the Wash. Although
longer-billed individuals have the widest range of options in
winter and could therefore be selected for, counterselection
may occur during the breeding season on the tundra, where
surface-living prey may be captured more easily with shorter
bills. Phenotype-limited distributions could be a widespread
phenomenon and, when associated with assortative migration
and mating, it may act as a precursor of phenotypic evolution.

1. Introduction
Most organisms on the Earth live in seasonal environments
with respect to climate and food [1]. The ability of individuals
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to reversibly change phenotype in response to a change in environmental conditions is called phenotypic
flexibility [2,3]. Animals making adjustments in digestive organ size to cope with different prey types
or prey quality represent a well-known example of (often seasonally structured) phenotypic flexibility
(e.g. [4–6]). However, some aspects of the phenotype are essentially inflexible. Traits such as bill length
in birds that show determined growth are hardly flexible [7,8]. Bill morphology is a strong predictor of
foraging niche (e.g. [9–15]), and may lead to phenotype-related differences in diet [16,17]. In addition, in
response to environmental change, animals can show behavioural responses such as changes in foraging
time (e.g. [18,19]), diet [20,21], or the movement to sites where good food may be more favourable
(e.g. [22–24]).

Intra-population variation in dietary optima, and temporal and spatial variation in the abundance or
availability of different prey is known for many species of fish, amphibians, insects, mammals and birds
[25]. Body size, dominance, prior residency or food availability appear to be responsible for individual
differences in migratory tendencies within populations [26]. Food availability is relatively easy to
quantify in intertidal areas [27], and non-breeding shorebirds provide a good system for correlating
distribution of animals with their food resources (e.g. [28–30]). Non-breeding shorebirds in temperate
zones mostly feed on benthic prey that tends to bury deeper in winter than in summer (e.g. [31,32]).
Although burying depth may be ultimately determined by climatic factors, the seasonal rhythm of
burying depth for a certain location appears a response to changes in day length rather than changes
in seawater temperature, at least in the case of polychaetes [32]. With seasonally changing fractions of
benthic prey burying beyond the bill lengths of most shorebird species (e.g. [33,34]), the part of the
population for which too high a proportion of prey has become inaccessible should move elsewhere.
This could lead to ‘phenotype-limited’ forager distributions, a term that was first used to predict spatial
distributions of individuals differing in dominance [35].

Bar-tailed godwits (Limosa lapponica) are sexually dimorphic migratory shorebirds, with females
having 25% longer bills than males and mainly feeding on deep burying lugworms (a polychaete worm,
Arenicola marina), while the shorter-billed males mainly forage on shallow-buried prey [36,37]. Among
the available benthic prey items, seasonal variation in burying depth is largest in lugworms [32], so
the potential for a phenotype-limited distribution should be most pronounced in female godwits. In
addition, there is considerable variation in bill length within the sexes [38–40]. Although the larger sex
(females) should incur lower energetic costs per unit body mass, the differential distribution between
the sexes is best explained by sex-specific prey availability [41]. We therefore hypothesized that this
differential distribution could be extended to individuals within a sex and tested whether phenotype-
limited distributions in female bar-tailed godwits exist. Individuals with shorter bills are predicted [42]
to (i) move to more favourable wintering sites (i.e. areas with prey buried less deeply) and/or (ii) switch
to prey items that are buried less deeply to sustain their minimum intake requirement.

Females with longer bills would be able to reach a larger fraction of the available biomass compared
with shorter-billed individuals. This idea is shown in figure 1. We explored the possibility of a phenotype-
limited distribution by analysing the monthly distribution in bill lengths using long-term datasets of
measured and marked non-breeding females in the Dutch Wadden Sea and in the Wash, UK. To estimate
how intake rates depend on prey burying depth, and to predict the observed seasonal changes in diet
composition [37], we used generally applicable functional response parameters [44].

2. Material and methods
2.1. Study species
The bar-tailed godwit is a sexually dimorphic long-distance migratory shorebird, of which two
subspecies are identified along the East-Atlantic flyway [45]. The subspecies L. l. taymyrensis mainly
winters in West Africa, breeds in northern Siberia and uses the Wadden Sea area twice a year
as a refuelling site. The L. l. lapponica subspecies winters in Northwestern Europe and breeds in
northern Scandinavia [40,46]. To explore the possibility of a phenotype-limited distribution, we initially
distinguished between the subspecies, as the taymyrensis subspecies has on average a shorter bill
length than the nominate lapponica subspecies [40,45], with considerable overlap in morphometrics. The
subspecies occur together in the Dutch Wadden Sea during six months of the year (April–October) [40].
During this period, they would encounter similar environmental conditions in the Dutch Wadden Sea,
and therefore all females with known bill lengths from known and unknown sub-specific identity were
included in the analyses.



3

rsos.royalsocietypublishing.org
R.Soc.opensci.2:150073

................................................

bill length (mm)

av
ai

la
bl

e 
 b

io
m

as
s 

(g
 A

FD
M

 m
–2

)

130 140 150 160 170 180 190

0

6

12

18
su

m
m

er
 

w
in

te
r

summer

winter

min required IR 
0.48 mg s–1

min. required IR 
0.36 mg s–1

re
la

tiv
e 

fr
eq

ue
nc

y

0.2

0.2
lugworm burying
depth (mm) 

head + bill length
(mm)

80 90 100 110 120 130 140

Figure 1. Conceptualmodel of available lugwormbiomass in relation tobill lengthof femalebar-tailedgodwits in theDutchWaddenSea.
Upper panel shows the distribution of individual lugworm burying depths, measured in 1981/1982 (corrected for accessibility; i.e. 40 mm
subtracted), and separated for summer (April–September) and winter (October–March). From this, the availability in relation to bill
length can be deduced (lower panel, in which upper axis expresses head+ bill). In summer, available biomass increases steeply as a
function of bill length (due to the shallower burying depth), while minimum required intake rate (IR; 0.36 mg AFDM s−1) is relatively
low. Therefore, almost all individuals (more than 92 mm bill) are able to reach their minimum requirement foraging only on lugworms.
In winter, available biomass only increases at longer bills and, furthermore, minimum requirement is relatively high (due to higher
maintenance costs [43]). Shorter-billed females cannot acquire their minimum requirement and are predicted to leave this wintering
site or shift their diet towards more accessible prey. Minimum requirements were calculated as follows: minimum requirement=
(DEEseason/e)/Tf , where e is a lugworm’s energy content (22 kJ g−1 AFDM) [32], the required daily energy expenditure DEE per season
was set at 2.4 × BMR inwinter and 1.8 × BMR in summer [43], daily foraging time Tf was assumed to be 12 h for both seasons (i.e. 50%
[43]), assuming an assimilation efficiency of 80% [43]. The photos on the right exemplify the ability of female bar-tailed godwits to reach
depths beyond the bill length. Original photos by Dave Montreuil.

2.2. Sightings and catches of marked individuals
Birds were caught with ‘wilsternets’ [47] or mist nets at various locations throughout the Dutch Wadden
Sea area. Before release, length of bill (exposed culmen, from tip of bill to base of feathers), wing (flattened
and straightened), tarsus and mass were measured using standard methods [48]. Captures (n = 2433)
and sightings of marked individual females in the Dutch Wadden Sea (n = 4069) were analysed over the
period from capture up to May 2014 to assess bill length distributions per month. The 4069 sightings were
based on 1541 individuals, of which 864 individuals were sighted multiple times (i.e. different months
and/or years). They were all included in the analysis, as the analyses with and without multiple sightings
did not differ, while the repeated presence of an individual is considered indicative of a preference to
reside at a site. Full details on number of birds caught and sighted per month and year are given in
table 1. To compare bill length distributions with another major non-breeding site, biometric data were
obtained from the Wash Wader Ringing Group in the UK. Here, bar-tailed godwits have been caught on
the Wash with both cannon nets and mist nets [49]. The data for 1693 female bar-tailed godwits were
collected in 1994–2011.
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Table 1. Overview of numbers of female bar-tailed godwits caught and sighted in the Dutch Wadden Sea, by year and by month. Note
that individuals may be sighted more than once in the same month.

year no. caught no. sightings month no. caught no. sightings
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2001 94 8 Jan 0 9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2002 99 10 Feb 9 28
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2003 287 162 Mar 18 122
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2004 149 146 Apr 117 237
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2005 126 206 May 2057 2504
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2006 180 276 June 0 38
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2007 133 379 July 39 190
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2008 79 172 Aug 90 641
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2009 211 360 Sep 60 234
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2010 262 425 Oct 38 42
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2011 332 658 Nov 5 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2012 257 588 Dec 0 14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2013 224 486
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2014 0 193
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Although seasonal differences in bill length distributions have been reported in several bird species,
differential bill wear was held responsible for this variation (e.g. [50–52]). For shorebirds, it is known that
the rhamphotheca, the horny covering of a bird’s bill, constantly grows at the base of the bill. Despite
this growth, the bill wears and within individual variation appears to be negligible (less than 1 mm;
[7]). Indeed, recaptures (more than 1 year interval) of marked bar-tailed godwits show no evidence
of intra-individual variation in bill length (F1,12 = 936.5, R2 = 0.99, p < 0.001; slope = 0.95 s.e. 0.03 and
intercept = 4.5 s.e. 2.6).

2.3. Prey availability
The burying depth, density and length of lugworms was measured each month in the eastern part of
the Dutch Wadden Sea along the mainland coast of the province of Friesland (53◦25′ N, 6◦04′ E) during
two consecutive years (1980/1981) [32]; the principal investigator (L. Zwarts) ensured that the original
raw data became available for later analysis. Burying depth was measured as the distance between the
surface and the deepest point of their U-shaped burrow [32]. As lugworms will be captured as their tail
resides in one of their vertical shafts, while their body is in the bottom of the U-shaped burrow [53], we
subtracted 40 mm (i.e. half of the mean length of lugworms; n = 205) from each depth measurement, to
represent availability.

2.4. Predicting intake rates
To examine whether the predicted energy intake rate (PEIR) was related to lugworm burying depth, we
averaged monthly prey burying depths (n = 205) and predicted intake rates throughout the year based
on functional response parameters [44]. Note that the bill lengths of the birds used in the published
experiment (91.4, 93.7, 94.6, 98.5 and 99.5 mm, respectively) coincided with population averages (mean =
96.2 ± 0.06 s.e, n = 2433), and no effects of bill length were detected. For these reasons, PEIR should
fairly represent population averages. By using the slope and intercept of a linear model of the searching
efficiency on prey burying depth [44], we here estimated depth i specific searching efficiency ai. Searching
efficiency was independent of prey length and density [44]. Handling time Th was independent of prey
burying depth and constant for prey density but increased with prey length [44]. Therefore, we here
used the intercept and slope from a linear model of handling time against prey length to estimate length-
specific handling times [44]. The month-specific predicted energy intake rate (PEIRm) was calculated
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using the following equation:

PEIRm =
ij∑

ij

(aiNijmej)

(1 + aiNijmThj)
, (2.1)

where N is the mean density (# m−2) for depth i, prey length j and month m, as measured by Zwarts &
Wanink [32], and e the ash-free dry mass (AFDM (mg); i.e. energetic value) per individual prey using
the length–AFDM relation (e.g. [36,54]). Next, we evaluated the mean monthly energetic contribution of
lugworms to the year-round diet based on field observations (n = 76) [36,37,55] and dropping analyses
(n = 240) [54].

2.5. Statistical analyses
Monthly lugworm burying depth and monthly bill length distributions (with and without subspecies
differentiation) were explored using linear and quadratic models. In the linear (null) model, prey
burying depth or bill length did not depend on month. The alternative (quadratic) model was evaluated
using model selection methods and ranked using Akaike Information Criterion (AIC), and the model
was considered to be substantially better when the AIC value was at least two points lower when
compared with the other model [56]. To assess the proportion of available prey in relation to bill
length, the empirical cumulative distribution function (ECDF [57]) was plotted for females captured or
sighted in summer (April–September) and winter (October–March). All analyses were conducted using
R v. 3.0.1 [58].

3. Results
Burying depth of lugworms varied predictably throughout the year (figure 2a). Lugworms bury deepest
during winter (F2,202 = 5.03, R2 = 0.05, p = 0.007). The bill length distribution of both subspecies showed
comparable seasonal trends (F3,1087 = 28.06, R2 = 0.07, p < 0.001; figure 2b). The mean bill length of the
lapponica subspecies showed a decrease in length from January towards spring and summer, whereas
from August onwards bill length increased again. As expected, bill lengths of taymyrensis females
were shorter than of lapponica (p < 0.001), though this subspecies showed the same pattern during
the seven months they occurred in the Dutch Wadden Sea (figure 2b). Not surprisingly then, the bill
length distribution of all sighted individuals with known bill lengths showed a strong seasonal trend
(F2,6105 = 95.45, R2 = 0.03, p < 0.001; figure 2c). That shorter-billed females may have moved from the
Dutch Wadden Sea towards the Wash was indicated by the inverse relationship of monthly bill length
distributions in the course of the non-breeding season (F2,1690 = 11.81, R2 = 0.013, p < 0.001 figure 2d).
The disappearance of the shorter-billed females from the Dutch Wadden Sea was also indicated by the
negative relationship between the mean bill lengths of the Wash and the Dutch Wadden Sea (F1,7 = 8.53,
R2 = 0.49, p = 0.020; figure 3).

In winter, a longer bill is needed to access the same proportion of prey available as in summer
(figure 4), which is the likely explanation for the positive correlation between mean monthly burying
depth and mean bill length (F1,10 = 15.20, R2 = 0.60, p = 0.003; figure 5a). There was a clear negative
correlation between burying depth of lugworms and predicted intake rate (PEIR), suggesting that in
winter some bar-tailed godwits would not be able to satisfy their minimum energy requirement by
foraging on lugworms only (F1,10 = 12.24, R2 = 0.55, p = 0.006; figure 5b). Indeed, individuals remaining
in the Dutch Wadden Sea in winter included prey other than lugworms in their diet; the energetic
contribution (% of AFDM) of lugworms was negatively correlated with lugworm burying depth
(F1,8 = 6.97, R2 = 0.40, p = 0.030; figure 5c).

4. Discussion
The vast majority of studies of changing resource landscapes and their use by animals has focused on
differences between species or sexes (e.g. [16,59–61]). However, it is the variation between individuals
that provides the raw material for evolutionary and ecological processes [62–64]. Here, we provide an
example of a seasonally changing phenotype-limited distribution in one species and in one sex.

Female bar-tailed godwits redistributed in accordance with the seasonal changes in availability of
their dominant prey. In winter, when lugworms are buried more deeply, individually marked shorter-
billed individuals were no longer seen in the Dutch Wadden Sea. One of the areas they moved to is
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probably the Wash, where during the winter months an increase in numbers has been observed [65].
Indeed, while shorter-billed individuals disappeared from the Wadden Sea during winter, there was
a build-up of such individuals in the Wash. This pattern is consistent with the finding that in the
climatically more benign Wash, benthic prey are buried less deeply than in the Dutch Wadden Sea [41].

The lugworm data were collected long before most of the data on bar-tailed godwits, and mean
seawater temperature increased over the last three decades by about 1.2◦C [66]. This increase in average
seawater temperature is unlikely to have biased our lugworm availability assessment because, in the
short term, burying depth appears unrelated to temperature, i.e. it has no effect on depth within
months [32].
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In addition to the increased burying depth of lugworms in the colder winter months, there is an
additional reason why lugworms will be more difficult to capture in these months. Bar-tailed godwits
rely on cast-formation (defaecation) to detect lugworms and in the colder and thus metabolically more
inactive winter months they produce fewer casts [34,53]. Together these two factors could result in
bar-tailed godwits failing to achieve their daily required intake when only eating lugworms. Therefore,
even the longer-billed individuals are predicted to add smaller, less profitable prey species to their diet.
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That a more varied diet was indeed observed in various places across coastal Europe [37,54] emphasizes
once more that sex-specific food availability is a main driver of winter distributions [64].

If the intake rate benefits accrued by longer-billed individuals result in long-term fitness benefits,
there should be directional selection for a longer bill. However, bar-tailed godwits breed on the tundra
where they feed mainly on surface and shallow-buried arthropods, also available to their shorter-billed
self-foraging chicks [67,68]. It has been suggested that shorter bill sizes may actually be advantageous
when feeding on such prey [69,70], suggesting that there may be selection for longer bills in winter and
shorter bills in summer.

After unpredictable extreme conditions such as prolonged drought or cold spells, some phenotypes
with particular body size values may die, while other phenotypes survive or even benefit from these
events. The available examples (e.g. [71–73]), however, pertain to resident or territorial birds that do not
move away. In most birds however, individuals often move, and as most benthic prey show seasonal
variations in burying depth [32], phenotype-limited distributions are likely to be found more in species
dependent on benthic prey. In fact, we predict that phenotype-limited distributions occur across a range
of taxa with reference to a range of traits.

5. Conclusion
By examining a fixed aspect of the phenotype (in our case bill length), we could show that female bar-
tailed godwits redistribute themselves across soft-sediment systems along the southern North Sea coast
in accordance with the seasonal changes in the availability of their dominant prey. Phenotype-limited
distributions could be widespread and, when associated with assortative migration and mating, they
may act as precursors of phenotypic evolution.
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