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Background 
 
Sand dredging in the North Sea causes not only the removal of organisms in dredged areas 

but also the release of large amounts of silt in the water column. This release of silt reduces 

light in the water column and leads to an increase in silt deposition. As a result, a decrease in 

food quality and quantity may occur. To evaluate the effects of increased silt concentrations 

and decreased primary production in the water for the benthic fauna, a research program was 

proposed, embedded in an extensive monitoring programme of RWS (National Institute for 

Waterways and Public Works of the Department of Infrastructure and Environment) and LaMER 

Foundation (a foundation of water constructors). In this research program, focus is put on the 

most common bivalve species along the Dutch coast, the razor clam Ensis directus. Two main 

questions are made:  

 What are the effects of silt increase in the water column and the resulting decrease in 

algal concentration on growth of E. directus? 

 When does food limitation occur as a result of changes in silt and algal concentrations? 

To answers these questions, several projects are currently running: a) development of a DEB 

(Dynamic Energy Budget) model for E. directus to predict growth in the field under different 

environmental conditions; b) growth of E. directus in the field in relation to environmental 

conditions; c) development and use of a shell position monitor which monitors the reaction of 

the shell (opening and closing of valves) in relation to environmental conditions, namely 

different concentrations of silt and algae; and d) adaptation of the DEB model to an ecosystem 

model including water, silt, algae and benthos. The study presented in this report falls under 

project a), which involves different tasks: 1) analysis of growth of E. directus in the field, 2) 

compilation of data from literature, 3) lab experiments and 4) development of a DEB model for 

E. directus. In this report we present results dealing with tasks 1) and 2). In task 1), the 

seasonality in shell growth lines of E. directus was validated using stable isotopes. To analyse 

growth in the field, accurate age determination is important. Data on growth in the field (age-

at-length relationships and Von Bertalanffy growth rates) is necessary for comparing DEB 

model predictions with field data. In task 2), a review of the available published and 

unpublished literature on growth, reproduction and physiology of E. directus was done with the 

aim of finding information useful for the estimation of DEB model parameters or for 

comparison of model predictions with field observations. The results of this study, together 

with the results of the lab experiments on growth, respiration and filtration rate, will be used 

to estimate the DEB parameters for E. directus. This particular report represents Part B2 and 

B4 of the evaluation programme Sand-mining (Ellerbroek et al. 2008). 
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1. Validation of the seasonality in shell growth lines in Ensis directus 

using stable isotopes - a method to accurately determine age and 

growth 
 

1.1. Introduction 

The shell of bivalves grows through deposition of successive layers of carbonate material. This 

calcification process in the shell is usually a seasonal event mainly related to temperature and 

food conditions, with highest calcification rates during spring-summer and lowest in autumn-

winter. The deposition of growth bands can usually be used to determine age, which is 

important for an accurate analysis of growth. However, since other varying environmental 

conditions could also influence the chemical composition of the shell, the seasonality of growth 

marks on the shell needs to be validated. For many species and areas such validation has been 

done. Growth marks identified as periodic features (e.g. annual lines) have been used to 

determine age, seasonality and growth rates of various bivalve species such as mussels 

Mytilus edulis, soft-shell clams Mya arenaria and the bivalve Spisula subtruncata (e.g. Rhoads 

and Lutz 1980, Richardson et al. 1993, Brousseau and Baglivo 1987, Maximovich and 

Guerassimova 2003, Cusson and Bourget 2005, Cardoso et. al 2007). This task aims to 

validate a method for accurate age determination of Ensis directus. Age and Von Bertalanffy 

growth rates are important life history characteristics used to compare output results of DEB 

modelling with field data. Therefore, accurate age determination is very important.  

A commonly used method for validation of the seasonality of growth bands in bivalve 

shells is the determination of oxygen and carbon isotope ratios (18O/16O and 13C/12C) along the 

longitudinal profile of the shell. The precipitation of calcium carbonate during shell formation is 

done in isotopic equilibrium with surrounding water and, therefore, mollusks shells record 

habitat conditions during growth (Wefer and Berger 1991). The ratio of stable oxygen isotopes 

(18O/16O, also referred to as δ18O) in the shell reflects the interaction of water temperature and 

water isotopic content (Epstein et al. 1953, Grossman and Ku 1986). Because water δ18O has 

an almost-linear relationship with salinity, the above relationship may also be understood in 

terms of salinity. In marine environments, water δ18O and salinity are generally assumed to be 

constant during the life of an organism, so changes in shell δ18O record mainly changes in 

water temperature, where higher δ18O (enriched in 18O) corresponds to colder water, and 

lower δ18O (depleted in 18O) indicates warmer water. In areas with variable salinity, it is 

important to know the relationship between water δ18O and salinity to be able to correctly 

analyse the δ18O record in the shell. 

Carbon stable isotope ratios (13C/12C, also referred to as δ13C) values in carbonate 

shell materials are influenced by metabolic factors and environmental conditions, and, 

therefore, the profiles of carbon isotope ratios in shells are less clear than oxygen isotope 

ratios (Wefer 1985, Kalish 1991). Early work suggested that skeletal carbon originates directly 

from dissolved inorganic carbon (DIC) in seawater (Mook and Vogel 1968, Killingley and 

Berger 1979, Arthur et al. 1983). Since the stable carbon isotopic composition of the DIC 
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(δ13CDIC) is related to salinity (Gillikin 2005), δ13C of the shell can give an insight into the 

salinity in which the shells grew. However, δ13CDIC is also influenced by anthropogenic carbon 

inputs, productivity, and respiration, which may mask the relationship between δ13CDIC and 

salinity (Gillikin 2005). Nevertheless, since metabolism is mostly related to temperature and 

food conditions, which vary usually in an annual cycle, a seasonal pattern for this isotope could 

be expected as well.  

Isotope ratio profiles can, therefore, be used to validate whether or not identified 

growth bands in the shell of bivalves are formed at regular (annual) intervals. This approach 

will be used in this study to identify the growth patterns of E. directus in the field. E. directus 

is a razor clam with an aragonitic shell (Kahler et al. 1976). A detailed analysis of the isotope 

ratios in the shell of this species will allow an identification of time of deposition of growth 

bands and will allow a separation of visual annual bands from those produced by non-annual 

events. 

 

1.2. Materials and Methods 

1.2.1. Selection of shells for analysis 

Shells for analysis were collected in the framework of the research program BWN (Buiding with 

Nature) and the Monitoring Programme of RWS LaMER, off the coast of Egmond aan Zee (Fig. 

1). This is an area with freshwater influence and therefore salinity is variable. Only shells with 

no damage on the valve were selected for analysis. 

 

 
Fig. 1. Map showing the locations where shell BWN1, BWN3 and BWN4 were sampled, off the 

coast of Egmong aan Zee. 

 

1.2.2. Preparation of shell blocks and valves 

For growth band analysis on the shell, shell length of the animals was measured, shells were 

opened and all soft parts removed. In each animal, the number of macroscopically visible 

external bands was recorded. Right valves were filled with epoxy resin so that they were 

strong enough to be drilled for isotope analysis of carbonate material. Left valves were placed 

face down in a plastic mould and embedded in epoxy resin. Once hardened, the blocks with 
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the left valves were sectioned longitudinally through the hinge, in the form of slices of about 5 

mm thick (Fig. 2). The surface of the cross-sections was then ground flat under successively 

finer grit (600, 800, 1200 and 4000 μm) and wet polished with commercial polishing 

compounds until adequate thickness and texture were reached. 

 

 

 
Fig. 2. Cross-section of an embedded E. directus shell from which an acetate peel is made. 

 

Photographs of polished sections were made under a binocular microscope. The 

number and position of internal bands were analysed and compared to the records for the 

external bands. Acetate peels of the shell-cross sections were prepared by submerging the 

polished shell sections in 1% HCl solution for about 20 seconds. By using this solution, the 

organic parts of the carbonate matrix are conserved and the carbonate parts are dissolved, 

resulting in a relief on the shell surface. This pattern was transferred to a 0.1 mm thick sheet 

of cellulose acetate by covering the shell surface with drops of acetone and laying the acetate 

sheet over it. Acetate peels were put on a microscope slide and pictures were taken under a 

microscope (Fig. 3a). From the composite pictures (Fig. 3b), the areas to be analysed for 

isotopic composition of calcium carbonate powder were selected. 

 

 

 
 

 
Fig. 3. Example of a photograph of an acetate peel section (a) and of a composite image (b). 
Image 2b was broadened to improve the visualization of the section. 
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1.2.3. Analysis of isotopic composition of calcium carbonate powder 

Prepared shell valves described previously were drilled to collect calcium carbonate powder for 

determination of carbon and oxygen isotopic composition. Up to know two shells of E. directus 

were drilled and analysed (two more are ready to be analysed). From each shell, calcium 

carbonate powder was sampled along the valve in a dorso-ventral series, following the growth 

lines, using a small dental drill (bit size 0.5 mm) in equally spaced (~1 mm) intervals (Fig. 4). 

The dental drill sampled each defined line independently and powder was collected from each 

line separately. Some lines did not result in enough powder for analysis and in that case two 

lines were pooled. Powder was analyzed for oxygen and carbon isotopic composition using a 

Thermo Finnigan MAT253 mass spectrometer coupled to a Kiel IV carbonate preparation 

device. The seasonal pattern in isotope profiles along the valve was then analyzed.  

 

 
Fig. 4. Lines drilled out on the valve of E. directus shell BWN4 (in green). 

 

1.3. Results 

1.3.1. Analysis of external and internal shell growth lines 

On the valve of shell BWN4, 1 line was considered to be a winter line as it was the only clearly 

visible line which could be followed along the shell (Fig. 5a). On the acetate peel of the section 

also 1 line was seen in the chondrophore and 1 coming out on the valve which could be 

followed from the hinge (Fig. 5b).  

 

 
 

 
Fig. 5. a) One line was considered to be a winter line on shell BWN4 (arrow); b) Composite 
image of the acetate peel of the cross-section of the valve of shell BWN4. For better 
visualization the image 4b was broadened. The red arrow indicates the line visible in the 
chondrophore; the white arrow shows the line visible in the cross-section of the valve. 

 

On the valve of shell BWN3, many lines could be seen by eye on the external side of 

the valve (Fig. 6a). However, only four lines were considered to be year lines (i.e. lines formed 

b)

a) 
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during winter) as they could be followed along the shell. These matched the lines observed in 

the cross-section and the chondrophore (Fig. 6b). 

 

 
 

 
Fig. 6. a) Lines visible by eye on the external part of the valve of shell BWN3 which were 
considered to be winter lines (arrows); b) Composite image of the acetate peel of the cross-
section of the valve of shell BWN3. For better visualization the image 5b was broadened. Red 
arrows indicate lines visible on the hinge, white arrows show lines visible on the valve. 
 

On the valve of shell BWN1, 4 lines were considered as winter lines (Fig. 7a). The 

same amount of lines was seen in the cross-section and chondrophore (Fig. 7b).  

 

 
 

 
Fig. 7. a) Lines visible by eye on the external part of the valve of shell BWN1 which were 
considered to be winter lines (arrows); b) Composite image of the acetate peel of the cross-
section of the valve of shell BWN1. For better visualization the image 6b was broadened. Red 
arrows indicate lines visible on the hinge, white arrows show lines visible on the valve. 

 

Micro-growth rings, which could for e.g. represent daily lines, were not observed in any 

of the shells. 

 

1.3.2. δ18O and δ13C profiles in shell BWN4 

In total, 238 lines have been drilled in shell BWN4 (Fig. 4). However, isotope determination 

was not possible for all lines since in some cases not enough powder could be collected. 

Therefore, some lines were pooled resulting in 221 data points of isotope data.  

a) 

b) 

a) 

b) 
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Oxygen isotope composition along the right valve of shell BWN4 is seen in Figure 8. 

Before drilling the shell, a drawing of the shell valve and the growth lines visible by eye was 

made and compared to the drawing of the internal shell lines visible in the acetate peel of the 

cross-section of the left valve. These were matched with the isotope profile (Fig. 8). There is a 

clear pattern in oxygen isotope ratios along the shell. Samples with high isotopic values 

(corresponding to low temperatures) were collected at a shell length of about 6.5 cm, nearby 

and on the growth line visible by eye and in the cross-section. This suggests that this growth 

line was formed during winter.  

BWN4 showed 2 spring/summer periods and 2 autumn/winter period, indicating that 

this shell is beginning its 3rd year of growth. Because it was collected in April 2010, the last 

isotope cycle cannot be from the current year but must be from 2009, indicating that the 

animal was born in 2008.  

 

 
Fig. 8. Oxygen isotope ratios (δ18O, ‰) along the shell of E. directus BWN4 (10.5 cm shell 
length, collected in April 2010) with drawings of cross-section and valve showing the position 
of the growth line. Note that the y-axis scale is inverted. 
 

The highest δ18O value (corresponding to the winter line) was of 1.88‰ and the 

lowest values (corresponding to the summer) were -1.44‰ in one year and -1.71‰ in the 

other year. What was considered a disturbance line corresponded to low isotope values 
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indicating that it was formed in spring, between January/February (coldest months) and April 

(collection date), when the shell was already growing. It is therefore not a winter line. 

Carbon isotope profile along the valve of BWN4 is seen in Figure 9, in combination with 

the drawings of valve and acetate peel. This profile does not seem to show any clear pattern 

as there are several periods of decrease in carbon isotopes which do not show any 

straightforward relationship with the growth line. The lowest isotopic value occurred at about 

2.5 cm shell length, increasing gradually up to about 6 cm, after which values stayed relatively 

constant except for two low isotopic values at around 6.5 and 8.5 cm shell length. 

A significant but very weak positive relationship was found between δ13CS and δ18OS in 

shell BWN4 (Regression, r2= 0.01; p = 0.05). 

 

 

 
Fig. 9. Carbon isotope ratios (δ13C, ‰) along the shell of BWN4 (10.5 cm shell length, 
collected in April 2010) with drawings of cross-section and valve showing the position of the 
growth line. Note that the y-axis scale is inverted. 
 

1.3.3. δ18O and δ13C profiles in shell BWN3 

In shell BWN3, 240 lines have been drilled (Fig. 10). Isotope determination was possible for all 

lines, except for 3 lines which gave unreliable isotope values.  
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Fig. 10. Lines drilled out on the valve of shell BWN3. 

 

δ18O along the right valve of shell BWN3 is seen in Figure 11. There is a clear pattern 

in δ18O along the shell. Samples with high isotopic values (corresponding to low temperatures) 

were collected at shell lengths of 5.3, 8.5, 9.5 and 10.3 cm. These high values corresponded 

to areas where a year growth line was seen to occur on the valve and in the cross-section. The 

isotope results support the idea that these lines were formed during winter.  

 

 
Fig. 11. Oxygen isotope ratios (δ18O, ‰) along the shell of E. directus BWN3 (10.8 cm shell 
length, collected in April 2010) with drawings of cross-section and valve showing the position 
of the growth lines considered to be year lines (solid lines). Lines visible on the shell surface 
which were not considered to be year lines are also shown (broken lines). Note that the y-axis 
scale is inverted. 

 

BWN3 showed 5 spring/summer periods and 5 autumn/winter periods, although the 

last one (2009/2010) is not captured in the isotope profile. Since it was collected in spring 

2010, back calculating the year of birth indicates that it is a shell from the year class of 2005. 
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Growth during the year of 2010 is not yet visible in the shell. δ18O values varied between 

1.1‰ (winter line of the 4th year) -1.4‰ (summer line of the 4th year). 

δ13C profile along the valve of BWN3 is seen in Figure 12, in combination with the 

drawings of valve and acetate peel. Although during the first year of life δ13C seems to follow a 

similar pattern as δ18O, the variability is very large and along the rest of the shell no clear 

pattern is seen. The lowest δ13C value occurred at was -2.5‰ and occurred at a shell length 

of about 4 cm while the highest value was -0.5‰ and occurred at a size of about 8 cm.  

A significant but very weak negative relationship was found between δ13CS and δ18OS in 

shell BWN3 (Regression, r2= 0.05; p <0.001). 

 

 
Fig. 12. Carbon isotope ratios (δ13C, ‰) along the shell of E. directus BWN3 (10.8 cm shell 
length, collected in April 2010) with drawings of cross-section and valve showing the position 
of the growth lines considered to be year lines (solid lines). Lines visible on the shell surface 
which were not considered to be year lines are also shown (broken lines). Note that the y-axis 
scale is inverted. 
 

1.3.4. δ18O and δ13C profiles in shell BWN1 

In total, 312 lines have been drilled in shell BWN1 (Fig. 13). Isotope determination was 

possible for all lines. 
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Fig. 13. Lines drilled out on the valve of shell BWN1. 

 

Similar to the other shells, there is a clear pattern in δ18O along the shell BWN1 (Fig. 

14). Samples with high isotopic values corresponded to areas where a year growth line 

occurred and were collected at shell lengths of 5.1, 9.2, 10.8 and 12.3 cm. High values are 

also observed at the shell edge, just before sampling date, and therefore, the last isotope 

cycle must be from 2009.  

 
Fig. 14. Oxygen isotope ratios (δ18O, ‰) along the shell of E. directus BWN1 (13.7 cm shell 
length, collected in April 2010) with drawings of cross-section and valve showing the position 
of the growth lines considered to be year lines (solid lines). Lines visible on the shell surface 
which were not considered to be year lines are also shown (broken lines). Note that the y-axis 
scale is inverted. 
 

At the shell edge, a small darker area could also be seen by eye on the surface of the 

valve confirming that there is a growth line at the shell edge. Since high isotope values 

correspond to low temperatures, results suggest that year growth lines were formed during 

winter.  
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BWN1 showed 5 spring/summer periods and 4 autumn/winter periods. Since it was 

collected in spring 2010, back calculating the year of birth indicates that it is a shell from the 

year class of 2005. δ18O values varied between 1.7‰ (1st winter line) -0.8‰ (last summer). 

Other deeper lines observed on the valve were confirmed to be disturbance lines since they 

were not the result of growth stop in winter but they were formed in spring and summer.  

δ13C profile of shell BWN1 is shown in Figure 15. In three of the years, low values of 

δ13C appear to occur just after an annual growth line is observed. However, this does not seem 

the case in the last year and. Besides variability is quite large and two to three cycles of high 

and low values are seen within each year of growth. The lowest δ13C value (-2.3‰) occurred 

at shell lengths of 5.1 and 9.5 cm, while the highest value (-0.12 ‰) occurred just before 

collection date at a length of about 13.5 cm. 

 

 
Fig. 15. Carbon isotope ratios (δ13C, ‰) along the shell of E. directus BWN1 (13.7 cm shell 
length, collected in April 2010) with drawings of cross-section and valve showing the position 
of the growth lines considered to be year lines (solid lines). Lines visible on the shell surface 
which were not considered to be year lines are also shown (broken lines). Note that the y-axis 
scale is inverted. 

 

A significant but very weak negative relationship was found between δ13CS and δ18OS in 

shell BWN1 (Regression, r2= 0.01; p <0.001). 
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1.4. Discussion  

δ18O along the shell of E. directus showed periods of low values followed by periods of steep 

increase, suggesting seasonal variation. The most positive δ18OS values coincided with the 

growth lines considered as annual on the surface of the valve and in the cross-section. 

Therefore, these lines were considered to be annual growth lines formed due to periods of 

growth cessation. These growth cessations cause the narrow positive peaks in the isotopic 

record. Because high δ18O values correspond to low water temperatures, annual growth lines 

in the analysed E. directus indicate winter growth cessation. Since annual lines in the external 

surface of the valve were confirmed to be formed yearly (by isotope results), we can conclude 

that counting the annual lines on the valve leads to an accurate estimation of age and growth 

of an individual. Age and Von Bertalanffy growth rates are important life history characteristics 

used to compare output results of DEB modelling with field data.  

Being able to determine individual age from the analysis of the growth lines on the 

shell is a fast and non-destructive method to further estimate growth rates of populations in 

the field. However, reading the number of annual lines on the surface of the valve may not be 

as easy as it seems. In this study, we have considered annual lines dark and well-marked lines 

which could be followed along the shell. Analysing and counting annual lines should be done by 

an observer with experience in bivalve growth and analysis of shell lines, to be sure that 

annual lines are identified in a systematic and realistic way. Analysing shells collected along 

the year may help identifying annual lines as at a certain moment in the year (after winter, 

when the shell starts to grow again) a line should be seen to appear near the shell edge. 

Seeing how this line looks like may help identifying other lines as being annual or not. 

 
1.4.1. δ18O 

Overall, results showed that there is a relationship between stable oxygen isotope ratios and 

the formation of growth lines in E. directus. Such relationship has also been found in other 

bivalve species such as the sea scallop, Placopecten magellanicus (Krantz et al. 1984), the 

ocean quahog Artica islandica (Witbaard et al. 1994) and the Antarctic bivalve Laternula 

elliptica (Brey and Mackensen 1997). 

Nearby the sampling location, a distinct annual temperature cycle is observed, with 

mean temperatures fluctuating between 5 °C in February and 19 °C in August. Salinity 

variations are minimal, varying between 31.4‰ and 32.8‰, thus not exceeding 1.4‰ 

variability (Fig. 16). 



17 
 

 
Fig. 16. Mean water temperature (oC) and salinity (ppm) per month (Jan-Dec) off the coast of 
Noordwijk from 2000-2006 (obtained in http://live.waterbase.nl/). 

 

The expected maximum annual variation in shell δ18O (δ18Oshell) can be calculated 

using the equation for biogenic aragonite by Grossman and Ku (1986): 

 

1000 ln (α) = 2.559 (106T-2) + 0.715       [1]   

 

where T is temperature in Kelvin and α is the fractionation factor between water and aragonite 

described by the equation:  

 

α = (1000 + δ18OAragonite)/(1000 + δ18Owater)      [2] 

 

whereby δ18OAragonite is the δ18O of the shell (δ18Oshell) (VSMOW) and δ18Owater is the δ18O of the 

seawater (VSMOW). Because δ18Oshell values are usually reported relative to VPDB (Vienna Pee 

Dee belemnite), δ18Oshell values calculated in terms of VSMOW (Vienna Standard Mean Ocean 

Water) are converted to VPDB using the equation of Gonfiantini et al. (1995). 

Using the empirical relationship between water δ18O (δ18Owater) and salinity developed 

for North Atlantic waters (Ganssen unpublished in Witbaard et al. 1994) 

 

δ18Owater = -14.555 + 0.417 * salinity,       [3] 

 

the expected range of δ18Owater values during the year due to the variation in salinity can be 

calculated for the sampled area.  

Based on eq. [3], δ18Owater is expected to vary between -0.89‰ and -1.48‰ with an 

average of -1.19‰. At a constant temperature, this salinity variation is responsible for a 

0.59‰ variation in δ18Oshell (based on eq. [1]). While the expected annual variation in δ18Oshell 

due to the temperature differences observed in the studied area would be 3.1‰. The 
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observed maximum variation is between 3.5‰ in shell BWN4 and 2.5‰ in shells BWN3 and 

BWN1. The fact that in shells BWN3 and BWN1 maximum variation is lower than expected 

suggests that that carbonate is deposited during only a fraction of the annual temperature 

cycle. Higher observed variation than expected in shell BWN4 could be due to the fact that 

only mean temperature values are used or that temperature data are not representative of the 

location where this specimen was collected. Nevertheless, expected and observed variation 

values are very similar. 

The predicted water temperatures (Tδ18O) during shell growth can be estimated based 

on the measured δ18O values in the shell and on the observed δ18O in the water. Tδ18O were 

derived using eq. [1] solved for temperature, using the adjustment of Dettman et al. (1999) 

for correcting water δ18O VSMOW values to the VPDB scale: 

 

Tδ18O = 20.6 - 4.34 (δ18Oshell-(δ18Owater-0.27)),      [1] 

 

where Tδ18O (°C) is the predicted water temperature, δ18Oshell (‰) is the δ18O measured on the 

shell carbonate material and δ18Owater (‰) is the δ18O in the water where the shell grew. 

Because, at the moment, it was only possible to retrieve mean monthly salinity data, 

only the minimum and maximum predicted temperatures may be estimated and not a 

predicted profile of temperatures along the shell. To be able to predict water temperatures 

during shell growth δ18O in the water must be calculated first. This average water δ18O was 

then used to estimate predicted minimum and maximum temperatures experienced by the 

animal in the field. 

In shell BWN4, the mean minimum δ18Oshell value (considering the 2 years of growth) 

was around -1.5‰, while the maximum was 1.9‰. The reconstructed water temperatures 

using these values (eq. [1]) result in a mean maximum temperature of 21.0oC and a minimum 

temperature of 6.1oC. For shell BWN3, mean reconstructed temperatures were between 12.2 

and 19.0oC (mean minimum and maximum δ18Oshell values of -2.38 and 0.48‰, respectively). 

For shell BWN1, mean minimum and maximum δ18Oshell values were respectively -0.6 and 

1.03‰ and reconstructed temperatures between 9.8 and 16.8oC. Results are presented in 

Table 1. 

 

Table 1. Minimum and maximum measured δ18Oshell in each analysed E. directus and 
respective minimum and maximum predicted temperatures experienced during shell growth. 
 

            Minimum Maximum Minimum  Maximum  

Shell  δ18Oshell (‰) δ18Oshell (‰) Temperature (oC)

 Temperature(oC) 

BWN4  -1.5  1.9  6.1   21.0 

BWN3  -2.4  0.5  12.2   19.0 

BWN1  -0.6  1.0  9.8   16.8 
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The mean temperature cycle (2000-2006) varied between 5.2oC in February and 

19.3oC in August (Fig. 16). Maximum predicted temperatures in shells BWN4 and BWN3 are 

similar to the observed mean maximum temperature. However, mean maximum temperature 

retrieved from shell BWN1 is lower than the observed temperature (16.8 vs. 19.3oC). Shell 

BWN1 was collected in a different location, within the same area, which may have different 

environmental properties (in terms of depth and water current) than the location where the 

other shells were collected (see Fig.  1). Therefore, animals may have been exposed to 

different temperature or salinity cycles.  

The fact that in all shells minimum predicted temperatures are higher than observed 

suggests that carbonate is deposited during only a fraction of the annual temperature cycle. 

However, this minimum predicted temperature varied between shells and different years. 

Growth stop during winter may be influenced not only by temperature but also by food 

availability (Wefer 1985, Wefer and Berger 1991) and the combination of these two aspects 

may lead to year-to-year differences in growing period. The lowest reconstructed minimum 

temperature was 6.1oC, corresponding to the months March/April (Fig.16), suggesting that 

shell started to grow only after this period. At this time in the year, gonadal tissue is at its 

maximum and spawning takes place, after which growth in somatic tissue occurs (Cardoso et 

al. 2009a). This suggests that reproductive cycle may also influence the start of shell growth.  

In two of the studied shells (BWN4 and BWN1), an increase in δ18Oshell values was 

observed at the growing edge of the shell (just before sampling date in April). This supports 

the idea that shells growth in the area starts only in beginning of spring (March/April) and the 

high values observed at the edge are part of the annual growth line of the previous winter. In 

shell BWN1, a small dark area is visible at the edge supporting the existence of a growth line. 

However, since the shell edge is quite thin, the growing edge may be damaged and growth 

lines at the edge may be missed and will not be retrieved in isotope profiles. This is the case of 

the other two shells. This aspect must be considered when ageing shells by taking in account 

the collection date and the period of growth.  

 

1.4.2. δ13C 

The interpretation of δ13C is much more difficult than for δ18O mainly because the 

effect of temperature on δ13C values of aragonitic carbonate is uncertain. It is seems that 

temperature has a small effect or even no effect at all on δ13C values (Kalish 1991, Romanek 

et al. 1992) and that metabolism is much more important in determining variation in δ13C 

values (Wefer 1985, Wefer and Berger 1991). However, since metabolism is related to 

temperature and food, which also vary in an annual cycle, a seasonal pattern for this isotope 

could be expected as well. Because an increased metabolism leads to more negative δ13C in 

the shell (Lorrain et al. 2004), higher metabolic rates from either spawning or seasonally 

increased growth (caused by an increase in temperature and food supply) would also result in 

a more negative shell δ13C. Therefore, similarly as observed for δ18O, high δ13C values would 

correspond to lower temperatures. δ13C ratios in the analysed shells did not show clear 
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patterns. Results of δ13C values in bivalve shells are very variable. In some species, such as 

Lampsilis cardium, A. islandica and Crassostrea virginica, profiles follow a more or less 

sinusoidal trend similar to the seasonal variation of δ18O, suggesting that seasonal factors 

influence variation in δ13C (Witbaard et al. 1994, Surge et al. 2001, Goewert et al. 2007). 

Others do not show clear patterns and any apparent seasonality is lacking, as observed in 

Spisula sachalinensis and Mactra chinensis (Khim et al. 2000). For E. directus, δ13C ratios do 

not seem a suitable tool to validate growth lines. 

 

1.5. Conclusions 

Oxygen isotope ratios confirm that some of the lines observed on the surface and in the cross-

section of the valve of E. directus are formed during winter and can be considered annual 

growth lines. By visual analysis of the lines in the valve and cross-section, annual growth lines 

are marked lines which can be followed from the hinge or chondrophore to the ventral margin. 

If such lines are easily distinguishable by eye, then counting the growth lines on the valve is 

an accurate method to determine age in E. directus. 

In addition, daily temperature data from the area where the shells were sampled is 

available and will be retrieved in the near future. Temperature and isotope profiles can then be 

matched in order to add a detailed calendar axis to δ18Oshell values. Since the distance between 

sampled lines on the shell is known, knowing the time frame will also allow an estimation of 

growth rates. 
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2. Review of published and unpublished data on growth, reproduction 
and physiology of Ensis directus 
 

2.1. Introduction 

The American razor clam Ensis directus (Conrad, 1843) (also known as E. americanus Binney, 

1870) is a suspension-feeding bivalve, common along the Atlantic coast of North America, 

from Labrador (in Canada) to Florida (Abbot and Morris 2001). In European waters, it was first 

observed near the German North Sea coast in 1979 and it is thought to have been introduced 

in Europe shortly before by larval transport in ballast waters of ships that crossed the Atlantic 

(Von Cosel et al. 1982). Since then, E. directus has spread along the Wadden Sea and North 

Sea coasts, and is now found from France to Norway (including Britain) and the west coast of 

Sweden (Fig. 17; Beukema and Dekker 1995 and references therein, Hopkins 2001, Minchin 

and Eno 2002, Dauvin et al. 2007). 

 

 
Fig. 17. Distribution and spreading of E. directus in European waters (obtained from VLIZ Alien 
Species Consortium 2008). 
 

Both in its native area as well as in Europe, E. directus occupies low intertidal and 

shallow subtidal areas (Stanley 1970, Swennen et al. 1985, Beukema and Dekker 1995) 

although it also occurs in deeper subtidal areas (Von Cosel et al. 1982, Dörjes 1992, 

Kenchington et al. 1998, Armonies and Reise 1999, Daan and Mulder 2006, Dauvin et al. 

2007). The species shows a patchy distribution and appears to prefer sandy sediments with 

low silt content but it can also be found in mud and gravel (Stanley 1970, Von Cosel et al. 

1982, Dörjes 1992, Kenchington et al. 1998). It is most abundant in areas exposed to winds 

and currents, characterized by mobile and turbulent sediments (Drew 1907, Stanley 1970, 

Kenchington et al. 1998, Beukema and Dekker 1995). Such areas are usually poorly occupied 

by native macrozoobenthos (Beukema 1976, 1988; Swennen et al. 1985) and, therefore, may 

present an “empty” niche for E. directus. 
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In Dutch waters, the first well identified E. directus specimen was found in the Ems 

estuary in 1981 (Essink 1985), and by 1982 the species had spread to the western Dutch 

Wadden Sea (Beukema and Dekker 1995, Essink 1985). In 1984/85, the species was observed 

along the Dutch North Sea coast (Luczak et al. 1993). Rapid and successful invasion took place 

despite variable recruitment. High overwintering mortality and events of mass mortality are 

common phenomena in E. directus (Mühlenhardt-Siegel et al. 1983, Beukema and Dekker 

1995, Cadée et al. 1994, Armonies and Reise 1999). Nevertheless, due to the high 

reproductive capacity, E. directus has managed to build up a strong population in Dutch waters 

over the last decades (Dekker and Waasdorp 2007, Perdon and Goudswaard 2007). 

In this task, we aim to review available literature on growth, reproduction and 

physiology of E. directus necessary for the estimation of DEB model parameters or for 

comparison of model predictions with field observations.  

 

2.2. Reproductive cycle 

Not much information is available on the reproduction of E. directus. In the Dutch Wadden 

Sea, gametogenesis starts early in the year (January/February), along with the increase in 

seawater temperature, and reaches a maximum in spring (around April) (Cardoso et al. 

2009a). In autumn (September-November) the amount of gonads is close to 0 (Cardoso et al. 

2009a). Sexes are separate and fertilization occurs in the water column. In a field study in 

2001-2003, spawning occurred in April/May and individuals with developed gonads were on 

their second year of life (Cardoso et al. 2009a). The youngest individual with developing 

gonads (i.e. that reached puberty) was 1+ years old (Cardoso, unpubl. data). Since it was 

collected on the 9th May 2002, age in days was estimated to be 492 days, considering that 

birth was on the 1st of January (in this case in 2001). Considering the observation in the field 

in 2001-2003, when spawning occurred in April/May, this value can be corrected to a spawning 

date of 15th April, meaning that age would then be around 388 days. This individual was 48.41 

mm shell length and 86.22 mg ash-free dry weight (Cardoso, unpubl. data). In the German 

Bight, spawning occurred in the early eighties in March/April (Muhlenhardt-Siegel et al. 1983).  

In the Wadden Sea, settlement of the larvae was seen to occur around May/June 

(Beukema and Dekker 1995), after a pelagic phase of about 1 month (Loosanoff and Davies 

1963). Although in the northern German Wadden Sea Armonies (1996) registered several 

temporal pulses of spatfall, in the Dutch Wadden Sea two spawning periods were seen in 2002, 

a strong one in April/May and a weak one in August/September (Cardoso et al. 2009a). No 

other reports on E. directus spawning cycle in the Dutch Wadden Sea were found in literature. 

Studies on razor clams from other locations, describe patterns which vary between one spring 

event in E. siliqua, Solen marginatus and E. directus (Gaspar and Monteiro 1998, Kenchington 

et al. 1998, Fahy and Gaffney 2001, Remacha-Triviño and Anadón 2006), two spawning events 

in E. macha (Barón et al. 2004) and several spawning events over a long period in E. arcuatus 

(Darriba et al. 2004). Reproductive investment in terms of gonadal mass (for both males and 

females) in the Dutch Wadden Sea appeared to be only of 2.5% of gonads in relation to the 
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total body mass (Cardoso et al. 2009a). If only individuals with developed gonads are included 

this value slightly increases to 4 % (Cardoso et al. 2009a). Nevertheless, reproductive 

investment in E. directus in the Dutch Wadden Sea is much lower than the described for the 

razor clam E. arcuatus in Spain, in which about 1/3 of the body consisted of gonads during the 

reproductive period (Darriba et al. 2005). Growth and spatfall of most bivalve species living in 

the subtidal western Wadden Sea in 2002 were very low (e.g. Macoma balthica 8 ind.m-2 in 

2001 vs. 3 ind.m-2 in 2001, Cerastoderma edule 704 ind.m-2  in 2001 vs. 38 ind.m-2 in 2002, 

Mya arenaria 87 ind.m-2  in 2001 vs. 10 ind.m-2 in 2002 and E. directus 10 ind.m-2 in 2001 vs. 

0 ind.m-2 in 2002; Dekker et al. 2002, 2003), suggesting that the low reproductive investment 

of E. directus could have been the result of unfavourable environmental conditions in that 

year. If the weight of gonadal mass per volume shell is compared with data from other bivalve 

species of the Dutch Wadden Sea, values for E. directus are still very low. For the subtidal 

area, highest mean gonadal mass was around 0.02 mg ash-free dry mass (AFDM) per cm-3 

shell in E. directus while in Macoma balthica this value was about 2.3 mg AFDM.cm-3 and in 

Cerastoderma edule and Mya arenaria around 0.8 mg AFDM.cm-3 (Cardoso et al. 2007; 

Cardoso et al. 2009a,b). As stated above, reproductive investment of E. directus was around 

2.5% (gonadal ash-free dry mass relative to the total body ash-free dry mass) while in 

subtidal M. arenaria and C. edule it was around 12 and 10% respectively (Cardoso et al. 

2009b) 

Data on the reproductive cycle which are important for the DEB model are presented in 

Table 3. 

 

2.3. Eggs and larval stage 

During spawning, eggs (about 64-70 µm in diameter; Loosanoff and Davies 1963, 

Kenchington et al. 1998) and sperm are released into the water where fertilization occurs. In 

an experimental set up, D-stage (i.e. hatch, which is considered in the DEB model as moment 

of birth) occurred on average at a size of 136 µm after 5 days at 18 °C (Kenchington et al. 

1998). Larva reached the pediveliger stage and were ready to settle after 15-16 days at a size 

of about 245 µm (Kenchington et al. 1998). However, Loosanoff and Davies (1963) describe a 

larval stage of 1 month (at 15°C). A compilation of data on larval stage, important for the DEB 

model, is presented in Table 3. 

 

2.4. Growth 

Maximum age reported in literature for E. directus was 7 years (i.e. life span was around 2555 

days) (Armonies and Reise 1999), however, most individuals do not become older than 2-4 

years  (Armonies en Reise 1999, Wijsman et al. 2006). In the intertidal and subtidal western 

Wadden Sea, the maximum observed age was 6 years old, while in the coastal area the 

maximum observed age was 4 (Daan and Mulder 2006, Cardoso unpubl. data, Dekker unpubl. 

data).  In other razor clams, especially E. siliqua is known to reach much higher ages of 19-25 

years old (Fahy and Gaffney 2001, McKay 1992). 
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Maximum observed size was 17.1 cm in the intertidal of the western Wadden Sea 

(Dekker unpubl. data). The maximum size reported in Europe was 18.6 cm in German waters 

(corresponding to the 7 year-old individual, Armonies and Reise 1999) but the species can 

reach more than 20 cm in the western Atlantic coast (Kenchington et al. 1998). According to 

Lambert (1994), E. directus reaches a size of about 80 mm in two years and after 5 years it 

has around 150 mm. In the Dutch Wadden Sea, maximum observed weight was 1831 mg ash-

free dry mass (Cardoso personal observation).  

Unpublished data on growth of E. directus are shown in Figure 18 and Table 2. These 

data are from animals collected monthly in a subtidal area of the western Dutch Wadden Sea 

(53° 10′ N, 5° 22′ E), from November 2001 to January 2003. Note that the Wadden Sea is an 

area in which bivalves exhibit a reduced growth due to food limitation (Cardoso et al. 2006) 

and therefore growth of E. directus may be lower than described for other areas. Individuals 

were randomly collected with a ‘Reineck’ box corer (0.06 m2) in an area of 1–2 km2 at a water 

depth of about 2.5 m. In the laboratory, shell length of each individual was measured to the 

nearest 0.01 mm total length (range: 8.5–141.0 mm) and age was determined by analysing 

the external shell year marks.  

 

 
 

Fig. 18. Growth curve for E. directus in the subtidal Wadden Sea from 2001-2003 (Cardoso 
unpublished data). 
 

A Von Bertalanffy growth (VBG) curve was fitted to this dataset, according to the 

expression 

 

Lt = L∞ * (1−e−k*(t- t0)) 

 

where L∞ is the estimated maximum length (mm), k is the growth rate constant (d−1), t is age 

in days, t0 is the age at settlement and Lt is the observed length at age t. VBG parameters L∞, 

k and t0 were iteratively estimated using the software package SYSTAT (Wilkinson 1996). The 
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estimated VBG parameter L∞ (asymptotic length) resulted in a maximum length of 132.8±2.7 

mm, a growth rate constant of 0.002±0.0002 d−1 and a t0 of 189 days [corresponding to the 

beginning of June, which fits with the settlement period described by Beukema and Dekker 

(1995) and Cardoso et al. (2009)]. 

 

Table 2. Mean shell length with age for the subtidal Wadden Sea (Cardoso unpubl. data). Time 
(days) was derived assuming spawning (birth) occurred on the 1st of January. 
 

Time (d) Shell length (cm) Time (d) Shell length (cm) 

195 0.86 1017 10.07 
329 5.05 1018 10.30 
330 4.36 1059 10.65 
394 4.73 1060 11.42 
441 5.07 1061 9.51 
462 4.99 1081 11.77 
492 5.27 1082 10.93 
493 4.36 1108 11.81 
525 6.03 1109 11.45 
560 7.21 1124 9.46 
604 9.30 1125 11.79 
651 9.37 1172 12.03 
652 7.31 1174 10.05 
693 9.62 1193 11.75 
694 7.34 1195 10.36 
695 10.08 1223 12.16 
696 9.11 1224 10.62 
715 9.51 1256 11.78 
742 10.35 1335 12.62 
743 7.42 1383 9.69 
759 8.38 1425 13.47 
760 11.20 1473 12.02 
807 10.01 1489 10.57 
809 9.51 1490 11.60 
828 10.89 1537 12.09 
830 8.68 1558 12.54 
858 10.19 1560 9.87 
859 8.70 1588 11.90 
891 11.74 1700 12.61 
926 11.98 1789 13.39 
970 11.59   

 

Data on maximum life span (maximum observed age), ultimate length (maximum 

observed length), ultimate weight (maximum observed weight) and Von Bertalanffy growth 

rate, which are important for DEB modelling are compiled in Table 3. We use European values 
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because DEB modelling within this project is focusing in a European population of E. directus, 

and therefore life history characteristics of European populations are more useful for 

comparing DEB model predictions with field data. 

 

2.5. Physiology 

There is hardly any information on physiology of E. directus or other razor clams. Witbaard and 

Kamermans (2009) measured the filtration rate of E. directus under different algal 

concentrations and silt content in the water.  Filtration rate varied between 0.4 and 5.3 litres 

per hour (L/h), corresponding to 0.2 to 3 L/h per gram ash-free dry weight (g AFDW). Algal 

concentration did not have an effect on the filtration rate but higher silt content in the water 

column significantly decreased filtration rate. These results are similar to the ones found by 

Shumway and co-authors (1985), which found a filtration rate of 0.93 L/h/g AFW for E. 

directus.  

No data on respiration were found in literature for either E. directus or any other razor 

clam species. 

 

 

  

 

 

 

 

 

 

Table 3. Life-history parameters for E. directus .

Type Value Unit Remarks

Age at birth 5 d at 273+18 K, Kenchington et al. , 1998
Age at puberty 492 d at 273+12 K, Dutch Wadden Sea,

 Cardoso unpubl. data
Length at birth 0.0136 cm at 273+18 K, Kenchington et al. , 1998
Length at puberty 4.841 cm at 273+12 K, Dutch Wadden Sea,

 Cardoso unpubl.
Ultimate length 18.6 cm at 273+9.8 K, German Wadden Sea, 

Armonies and Reise 1999
Dry weight at puberty 0.086 g at 273+12 K, ash-free dry weight ,

 Dutch Wadden Sea, Cardoso unpubl. data 
Ultimate dry weight 1.831 g at 273+12 K, ash-free dry weight ,

 Dutch Wadden Sea, Cardoso unpubl. data 
V. Bertalanffy growth rate 0.002 1/d at 273+12 K, for an Lmax of 133 mm,

 Dutch Wadden Sea, Cardoso unpubl. data 
Life span 2555 d at 273+9.8 K, Sylt, German Wadden Sea, 

Armonies and Reise 1999
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2.6. Length-weight relationship of Ensis directus 

The relation between shell length and weight of shellfish is often described as an allometric 

relationship  

 

 

 

where, W is the weight, L is the shell length and a and b are constants.  

 

In this study the length-weight relationship was determined from data of E. directus 

that has been retrieved from the IMARES database. A total of 780 individuals collected in 

various cruises along the Dutch coast, were selected for analysis. From each individual, shell 

length (mm) and fresh weight (g) was measured. A power function was fitted to the data using 

the function nls() within the software package R. The results of the parameter estimations for 

a and b are presented in Table 4. 

 

Table 4. Parameter estimation of the length-weight relationship of E. directus. Parameters are 
estimated by non-linear regression.  

 Estimate Std. Error t value Pr (>|t|)     

a 9.010e-06   1.532e-06    5.882 6.06e-09 

b 3.099e+00   3.615e-02   85.727   < 2e-16 

 

This resulted in the following power function for the wet weight (g) of E. directus as a function 

of shell length (mm): 

 

9 10 .  

 

Additionally, we have used a quantile regression in order to fit the power function to 

the lower part of the data, i.e. the individuals with the lowest amount of gonads and reserves. 

It can be assumed that the body mass of these individuals consists mainly of structural tissue. 

The quantile regression has been performed with the function nlrq() within R. The value of tau 

was set to 0.05 indicating that 5 percent of the datapoints were below the resulting curve. The 

results of the parameter estimations for a and b are presented in 5.  

 

Table 5. Parameter estimation of the length-weight relationship for individuals with structural 
mass only. Parameters are estimated by non-linear quantile regression. 

 Estimate Std. Error t value Pr (>|t|)     

a 2.0e-5   1.0e-5     2.09079   0.03687 

b 2.84868   0.11418    24.94816   0.00000 

 



28 
 

This resulted in the following power function for the fresh weight (g) of E. directus as a 

function of shell length (mm): 

 

2.0 10 .  

 

According to the DEB theory the relation between the physical volume of an animal 

and its length is given by: 

 

 

 

where Vw is the volume of structural mass, Lw is the shell length and δM is the species-specific 

shape factor. 

Besides structural mass (muscle and shell), the total body mass is also composed of 

reserves (glycogen) and gonads. The latter components are influenced by condition and 

reproductive stage. Kooijman (2010) has estimated a shape factor of 0.187 for E. directus, 

based on data from Swennen et al. (1985). In Figure 19, the length-weight relationship is 

plotted based on a shape factor of 0.187, assuming a density of 1 g cm-3.  

 
Fig. 19. Length-weight relationship E. directus. Dots indicate measured data of 781 individuals. 
Black solid line represents the fitted power function through the data. The broken blue line 
indicates the results of the quantile regression. The broken red line is the curve based on a 
shape factor of 0.187. 
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As can be seen from the figure, the measured weight of all the organisms is higher 

than calculated with a shape factor of 0.187. The curve of the shape factor indicates the 

weight of the structural volume. The rest of the flesh weight is composed of reserves and, to a 

minor extent of gonads. The shape factor of 0.187 suggests that on average more than 50% 

of E. directus biomass is composed of gonads and reserves. 
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