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Abstract 

Analysis of sediments deposited at different latitudes around the world during the Palaeocene-

Eocene Thermal Maximum (PETM; ~56 Ma) have revealed a globally profound warming 

phase, regionally varying from 5 to 8 °C. Such records from Europe have not yet been 

obtained. We studied the variations in sea surface and continental mean annual air 

temperatures (SST and MAT, respectively) and the distribution patterns and stable carbon 

isotopes of higher plant-derived n-alkanes in two proximal PETM sections (Fur and Store 

Bælt, Denmark) from the epicontinental North Sea Basin. A negative carbon isotope 

excursion (CIE) of 4-7 ‰ was recorded in land plant-derived n-alkanes, similar to what has 

been observed for other PETM sections. However, differences observed between the two 

proximal sites suggest that local factors, such as regional vegetation and precipitation 

patterns, also influenced the CIE. The presence of S-bound isorenieratene derivatives at the 

onset of the PETM and increased organic carbon contents points to a rapid shift in 

depositional environment; from well-oxygenated to anoxic and sulfidic. These euxinic 

conditions are comparable with those during the PETM in the Arctic Ocean. SSTs inferred 

from TEX86 show relatively low temperatures followed by an increase of ~7 oC across the 

PETM. At the Fur section, a remarkably similar temperature record was obtained for MAT 

using the MBT’/CBT proxy. However, the MAT record of the Store Bælt section did not 

reveal this warming.  
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1. Introduction 

Climate conditions during the late Palaeocene and early Eocene were most likely the 

warmest of the Cenozoic Era (Zachos et al., 2001). Superimposed on the long-term Late 

Palaeocene – Early Eocene warming trend are transient intervals with rapid warming and 

environmental changes. The Palaeocene-Eocene Thermal Maximum (PETM, ~56 Ma) is the 

largest event and has been documented in sediments all over the world. Besides a major 

temperature increase, the PETM is characterized by other environmental and climate changes, 

such as the extinction of ca. 50% of benthic foraminiferal species (Sluijs et al., 2007a and 

references cited therein), and a decrease in water column oxygen concentrations in deep 

oceans, coastal settings and isolated basins (e.g. Sluijs et al., 2006 and 2014; Chun et al., 

2010; Nicolo et al., 2010). It is further associated with a massive release of 13C-depleted 

carbon to the oceans and atmosphere as reflected by a negative carbon isotope excursion 

(CIE) of >2.5 ‰ (e.g. Kennett and Stott, 1991; Schouten et al., 2007b; Sluijs et al., 2007a; 

McInerney and Wing, 2011).  

Deep sea sediments have recorded a surface ocean warming of 4 to 8 °C (Fig. 1), based on 

the Mg/Ca ratio and 18O composition of planktonic foraminifera (Kennett and Stott, 1991; 

Thomas et al., 2002; Tripati and Elderfield, 2005; Zachos et al., 2003). Unfortunately, these 

records are often affected by redeposition of secondary calcite during early diagenesis 

(Pearson et al., 2001; Schrag, 1999) and carbonate dissolution due to the vertical progradation 

of the lysocline (Stap et al., 2009; Zachos et al., 2005; Zeebe and Zachos, 2007). Furthermore, 

the decrease in seawater pH, associated with the massive release of carbon to the oceans, may 

have increased δ18O values causing a potential underestimation of PETM warming (Uchikawa 

and Zeebe, 2010).  

The distribution of archaeal and bacterial glycerol dialkyl glycerol tetraethers (GDGTs) 

can also be used to infer sea surface temperature (SST), using the TEX86 proxy (Schouten et 



al., 2002), and mean annual air temperature (MAT), using the MBT/CBT proxy (Weijers et 

al., 2007b; Peterse et al., 2012). So far, TEX86 palaeothermometry has been applied to a 

limited number of PETM sections (Hollis et al., 2012; Sluijs et al., 2006, 2007, 2011, 2014; 

Zachos et al., 2006) covering only a few locations worldwide, whereas a PETM MAT record 

based on the MBT/CBT proxy is available only for a single site located in the Arctic Ocean 

(Weijers et al., 2007a). The temperature records based on TEX86 show a similar extent of 

warming as those recorded by Mg/Ca and δ18O of foraminifera, i.e. 5-8 oC (Fig. 1). Arctic 

continental air temperatures inferred from MBT/CBT values increased by about 6 oC (Fig. 1; 

Weijers et al., 2007a). Temperature records of the New Jersey continental margin, as well as 

of southern high latitudes, show a somewhat larger warming than most other temperature 

records (Fig. 1). However, global coverage of the existing PETM temperature records is still 

relatively poor, limiting the understanding of the underlying mechanisms of heat transport that 

drive greenhouse climates, such as during the PETM (cf. Huber and Caballero, 2011). In 

addition, most records are based on a single location which prohibits an assessment of local 

variability compared to imposed global changes. Recently, Caballero and Huber (2013) were 

able to model the high Eocene temperatures, but with some significant regional data-model 

discrepancies, emphasizing the importance of improving regional temperature proxy 

coverage.  

In the eastern North Sea Basin, the PETM was previously identified by dinoflagellate 

stratigraphy and a 6-8 ‰ CIE in organic carbon (Heilmann-Clausen and Schmitz, 2000; 

Schmitz et al., 2004). Due to the close proximity to coastal areas it is likely that the 

sedimentary organic carbon contains large amounts of terrestrial organic matter, which may 

have a different stable carbon isotopic composition than marine organic matter (Bowen et al., 

2004; Schouten et al., 2007b; Smith et al., 2007; Sluijs and Dickens, 2012). The relatively 

large CIE in organic carbon, compared to that in foraminiferal calcite (Dickens, 2011, and 



references cited therein) may, therefore, be attributed to variations in the ratio of terrestrial to 

marine organic carbon (cf. Sluijs and Dickens, 2012). On the other hand, such a large CIE is 

also observed in land plant-derived n-alkanes at different PETM sites around the world (e.g. 

Handley et al., 2008; Pagani et al., 2006; Schouten et al., 2007b), and has led to the 

suggestion that the atmospheric CIE may have been larger than the generally accepted 2-3 ‰ 

recorded by marine calcite (Diefendorf et al., 2010; Handley et al., 2008, 2011; Pagani et al., 

2006).  

In this study, we present new organic geochemistry records from two nearby PETM 

sections in Denmark, situated in the eastern part of the North Sea Basin at the time of 

deposition (Fig. 2). We analysed the distribution of GDGTs to determine TEX86-derived sea 

water and MBT/CBT-derived continental air temperatures thereby providing, to the best of 

our knowledge, the first European temperature records across the PETM. The aim of our 

study is to gain insight into the regional climate response of the carbon cycle perturbations 

during the PETM at this latitude, contributing to an improved geographic coverage of 

temperature proxy data for the Late Palaeocene – Early Eocene greenhouse climate. In 

addition, we analysed the distribution and stable carbon isotopic composition of higher plant 

biomarkers to constrain the terrestrial CIE.  

 

2. Site descriptions and depositional setting 

In this study, we used sediments from two sections in Denmark covering the Palaeocene-

Eocene transition (Figs. 1 and 2). The study area is situated in the Norwegian-Danish Basin, a 

sub-basin of the larger, almost land-locked, epicontinental North Sea Basin. Water depths at 

the study sites during the late Palaeocene-early Eocene probably varied between upper 

bathyal and outer neritic (Heilmann-Clausen, 2006; Knox et al., 2010). Nearest coastlines 

were situated in southern Norway, northern Germany and in Sweden (Knox et al., 2010). Sea 



level changes in the basin were probably caused mainly by phases of thermal subsidence and 

uplift due to varying activity of the Iceland mantle plume, and the onset of sea-floor spreading 

between Greenland and the British Isles-Norway (Knox, 1996a; Knox et al., 2010). The 

sedimentary succession of the late Palaeocene-early Eocene in Denmark consists of mainly 

hemipelagic mudstones and a local diatomite. A lithostratigraphic subdivision and mapping is 

provided by Heilmann-Clausen et al. (1985). A prominent series of volcanic ash layers is 

present in the earliest Eocene sediments. The ashes are subdivided into a lower series given 

negative numbers, and an upper positive series (Bøggild, 1918).  

One of the sampled Palaeocene-Eocene sections was recovered in a core obtained from a 

borehole (D.G.I. 83101) drilled in 1983 in Store Bælt, the strait between the Danish islands 

Sjælland and Fyn. The position of the borehole is 55°N 21'N – 11° 05'E (Fig. 2). This section 

is one of the most continuous Palaeocene-Eocene records in Denmark (Nielsen et al., 1986). 

In this study, we analysed sediments of this core from 142.57 to 123.60 meters below sea 

floor (mbsf) covering 5 different lithological units. The late Palaeocene succession includes, 

in ascending order, the Holmehus Formation, the informal Østerrende Clay and the informal 

Glauconitic Silt unit (Nielsen et al., 1986). Above the latter unit follows the Ølst Formation, 

which belongs to the early Eocene (Heilmann-Clausen and Schmitz, 2000), and of which we 

only studied the lower part, i.e. the Haslund Member which corresponds to the negative 

numbered ash series of Bøggild (1918). The basal part of this member is referred to the 

informal Stolleklint Clay (Heilmann-Clausen, 1995). Our uppermost sample is from a level 

above the Stolleklint Clay (Figs. 3 and 4).  

The Holmehus Formation consists of hemipelagic non-calcareous mudstones, with an 

overall high degree of bioturbation (Nielsen et al., 1986). The common Zoophycos burrows 

suggest an upper bathyal depositional environment (Bottjer and Droser, 1992). The Holmehus 

Formation is gradually overlain by the informal Østerrende Clay, which was deposited in a 



more proximal setting, probably in somewhat shallower waters (Heilmann-Clausen, 1995; 

2006). The Østerrende Clay is sharply overlain by the Glauconitic Silt of latest Palaeocene 

age. This unit is characterized as a clayey, sandy silt; the silt and sand mainly consist of 

biogenic and authigenic grains (Nielsen et al., 1986). The Glauconitic Silt includes a fauna 

with primitive forms of agglutinated foraminifers (Laursen and King, 1999) and was most 

likely deposited under low sedimentation rates in an upper bathyal or outer neritic 

environment. There is a distinct transition between the Glauconitic Silt and the lowermost 

Eocene Stolleklint Clay, which consists of finely laminated, non-calcareous clay. The lower 

boundary of the Stolleklint Clay is marked by a sharp negative isotope shift in total organic 

carbon (TOC) of ~6 ‰ at the base of the Stolleklint Clay between 133.24 and 132.53 mbsf 

(Heilmann-Clausen and Schmitz, 2000; Schmitz et al., 2004), concomitant with a sudden 

dominance of the dinocyst genus Apectodinium (Nielsen et al., 1986) marking the onset 

PETM.  

The other studied section is a beach and cliff section at Stolleklint on the island Fur located 

in western Limfjorden, NW Denmark (Fig. 2; 56° 50' 28"N – 8° 59' 29"E). The lower part of 

this PETM section became exposed after a storm in 2005 and gave an opportunity for 

sampling across the Palaeocene/Eocene transition, which is placed at the base of the 

Stolleklint Clay. The Stolleklint Clay overlies a succession which can be correlated with the 

Østerrende Clay-Glauconitic Silt found in Store Bælt (Figs. 3 and 4). The preservation of an 

extremely fine lamination (Heilmann-Clausen, 2014) indicates a water depth deeper than 

storm wave base, probably outer neritic, 100-200 m. Like in Store Bælt, a sudden dominance 

of the dinocyst Apectodinium begins at the base of the Stolleklint Clay. Unfortunately, from 

~2.5 m above the base of the Stolleklint Clay an interval with an estimated thickness of 10-20 

m is partly unexposed and has been disturbed by the last glaciation. Above this interval follow 

undisturbed sediments representing the topmost ~3 m of the Stolleklint Clay, which are again 



overlain by the Fur Formation (Fig. 3 and 4). The latter is a clayey diatomite intercalated with 

volcanic ash layers (Pedersen, 1981 Pedersen and Surlyk, 1983; Pedersen et al., 2004). The 

boundary between the Stolleklint Clay and the Fur Formation is placed at the thick white ash 

layer -33 (Heilmann-Clausen et al., 1985). The dominance of Apectodinium spp. continues a 

short distance above ash -33, i.e., into the basal few meters of the Fur Formation (Heilmann-

Clausen, 1994). Previous results from two other sections in Denmark (Heilmann-Clausen and 

Schmitz, 2000; Schmitz et al., 2004) show that the dominance of Apectodinium closely 

corresponds to the CIE. The maximum of the CIE is, therefore, expected to be present in the 

glacially-disturbed interval. The top of the section here studied is at ash layer -17 in the lower 

part of the Fur Formation. Ash -17 is well above the zone with abundant Apectodinium 

(Heilmann-Clausen, 1994). Ash layer -17 was radiometrically dated at 55.12 ± 0.12 Ma 

(Storey et al., 2007). Dating the onset of the PETM is based on the extrapolation of the 

absolute age of this particular ash layer (Hilgen et al., 2010; Westerhold et al., 2009).  

 

3. Methods 

3.1 Bulk elemental and isotopic analysis 

Prior to analysis, sediment samples from Store Bælt and Fur were freeze-dried and ground 

to a fine powder, partially using pestle and mortar and partially by means of a bowl mill. For 

the analysis of the total organic carbon (TOC) content and the stable carbon isotopic 

composition of TOC (δ13CTOC), powdered sediment samples were acidified with 1M HCl for 

12 h to remove all carbonate from the sediment matrix. Ca. 1.0 mg of decalcified sediment 

was weighed into a tinfoil cup and subsequently analysed on a Flash elemental analyser 

coupled to a ThermoFisher Deltaplus mass spectrometer. The instruments were calibrated 

against in-house standards. Duplicate runs showed a reproducibility of 0.1 % for TOC content 

and 0.1 ‰ for δ13CTOC.  



 

3.2 Extraction and fractionation 

Total lipid extracts were obtained using a 9:1 (v/v) mixture of dichloromethane (DCM) and 

methanol (MeOH), at high temperature (100 ºC) and pressure (7.6 x 106 Pa) on a Dionex 

Accelerated Solvent Extractor (ASE). The extracts were then separated into an apolar and a 

polar fraction by means of column chromatography using an Al2O3 column and solvent 

mixtures of 9:1 (v/v) hexane:DCM, and 1:1 (v/v) DCM:MeOH, respectively. The apolar 

fractions were analysed for the distribution and stable carbon isotopic composition of land 

plant-derived n-alkanes. Prior to compound specific isotope analysis of n-alkanes, the 

unsaturated hydrocarbons were removed from the apolar fraction using a small column filled 

with Ag+-impregnated silica and hexane as eluent. The polar fractions were analysed for 

GDGTs. Finally, sulfur-bound isorenieratane was analysed by desulfurization of an aliquot of 

the total extract using Raney Nickel as described previously by Schoon et al. (2011). The 

desulfurized extract was separated into an apolar and polar fraction as described above. The 

apolar fraction was analysed for the concentration of sulfur-bound isorenieratane. 

 

3.3 GC, GC-MS and GC-irmMS analysis 

Apolar fractions were analyzed on a HP 6890 gas chromatograph (GC) and on a 

Thermofinnigan TRACE GC coupled to a Thermofinnigan DSQ quadropole mass 

spectrometer (GC/MS) for biomarker lipid identification. Compound specific carbon isotope 

analyses were performed on a Finnigan Delta V isotope ratio mass spectrometer (IRMS) 

coupled to an Agilent 6890 GC. All GC, GC-MS, and GC-IRMS conditions are the same as 

described in Schoon et al. (2011). All stable carbon isotope values are reported in the δ13C 

notation relative to the VPDB 13C standard. 

 



3.4. GDGT analysis 

Polar fractions were dissolved in a hexane:propanol (99:1, v/v) solution and filtered over a 

0.45 μm PTFE filter prior to analysis. Samples were analysed using high performance liquid 

chromatography/atmospheric pressure chemical ionization- mass spectrometry (HPLC/APCI-

MS) according to Schouten et al. (2007a). We calculated TEX86 values according to Schouten 

et al. (2002). Several calibrations have been proposed to estimate sea water temperatures. Liu 

et al. (2009) proposed to use a non-linear inverse function for TEX86: the 1/TEX86 ratio. This 

was later recalibrated by Kim et al. (2010), based on an extensive global core-top dataset. 

Kim et al. (2010) further used this extended dataset to develop two new SST calibrations: 

TEX86
H  and TEX86

L . The TEX86
L  equation differs from the TEX86

H
 equation, in that it excludes 

the crenarchaeol isomer, making it applicable for a temperature range that includes modern 

(sub)polar oceans with SST <15 °C. Application of the TEX86
H  to a PETM section in New 

Jersey led Kim et al. (2010) to recommend the use of this calibration for greenhouse worlds 

with SST >15 °C, whilst it is also correlated to a higher degree with SST than 1/TEX86. 

Therefore, TEX86
H  seems to be the most appropriate proxy to reconstruct temperature in this 

study. It has a calibration error of ±2.5 °C. 

MAT estimates were calculated using the revised global MBT’/CBT calibration of Peterse 

et al. (2012), based on the relative distribution of soil-derived branched GDGTs (Weijers et 

al., 2007b). Additionally, we calculated the BIT index (Hopmans et al., 2004), which is the 

ratio between soil-derived branched GDGTs and aquatic crenarchaeol, and is a measure for 

the relative input of soil organic matter in marine sediments. 

 

4. Results and Discussion 

4.1 Magnitude of the CIE during the PETM 



The TOC record of the Fur section shows overall low values (<0.6 %) for the Late Palaeocene 

sediments. At the onset of the CIE the TOC levels abruptly increase to up to 3.5 % (Fig. 3a). 

Coincident with this increase of TOC, a decrease of ~5 ‰ in δ13CTOC at the Fur section is 

recorded. Values for TOC content and δ13C composition of the Store Bælt section were 

previously reported by Heilmann-Clausen and Schmitz (2000) and Schmitz et al. (2004) and 

show a similar pattern as for the Fur section: TOC content increases from <0.6%  towards 

peak values of 5 % at 130.89 m depth (Fig. 3b), whereas the 13CTOC record of the Store Bælt 

section shows a decrease of ~6 ‰ between 132.53 and 133.24 mbsf (Figs. 3a and b). The 

13CTOC profiles of both Danish sections follow the general shape that is often found in many 

marine and continental PETM sections (Sluijs et al., 2007a and references cited therein), i.e. a 

rapid onset followed by a plateau and a gradual decrease (Figs. 3a and b), although the 

glacially disturbed interval in the PETM section at the Fur section (Fig. 3a) partially masks 

the plateau of the CIE.  

A CIE of 5-6 ‰ of the TOC falls into the range generally recorded worldwide, but is 

highly susceptible to variations in the ratio of terrestrial and marine derived organic matter 

(e.g. McInerney and Wing, 2011; Schouten et al., 2007b; Sluijs and Dickens, 2012). The 

distribution and stable carbon isotope values of long-chain n-alkanes were, therefore, also 

determined. Odd carbon numbered n-alkanes, generally in the range of 25 to 35 carbon atoms, 

are typically derived from epicuticular leaf waxes of higher land plants (Eglinton and 

Hamilton, 1967). Of the odd-carbon numbered n-alkanes, the C29 n-alkane is the most 

dominant in all sediments, followed by either the C27 or the C31 n-alkane. The carbon 

preference index (CPI) is a measurement to express the relative predominance of the odd-

numbered n-alkanes (Bray and Evans, 1961; Marzi et al., 1993). The CPI values around the 

CIE of the Store Bælt section (~1.8) are lower than those at the Fur section (2-3), but are 

overall mostly well above 1 (up to 3.5; Figs. 3a and b), indicating a dominance of terrestrial-



derived odd-numbered long-chain n-alkanes. However, we cannot exclude a potential 

contribution of marine-derived even-numbered long chain n-alkanes which would lower the 

CPI index.  

During the latest Palaeocene, n-alkane δ13C values fluctuate around -29.5 ‰ for the n-C27 

and n-C29 alkanes and around -30.5 ‰ for the n-C31 alkane for both sections (Figs. 3a and b). 

At the Fur section, the magnitude of the CIE in the n-alkanes ranges from 6.2 ‰ for the n-C27 

and n-C31 alkanes to 6.7 ‰ for the n-C29 alkane (Fig. 3a). For the Store Bælt section, the δ13C 

values of the n-C27, n-C29, and n-C31 alkanes decrease coincident with the CIE in TOC, by 5.7 

‰, 4.6 ‰, and 3.8 ‰ respectively (Fig. 3b). Most PETM sections record terrestrial CIEs in 

the range of 4-6 ‰ (e.g. McInerney and Wing, 2011), similar to that recorded for TOC and n-

alkanes at the Store Bælt section. The decrease in δ13C in the C27-C31 n-alkanes at the Fur 

section is 1-2 ‰ larger, and appears to slightly precede the CIE in TOC. The smaller CIE in 

the n-alkanes observed at the Store Bælt section compared to the Fur section could be 

explained by a larger input of marine-derived n-alkanes (Pagani et al., 2006), which have a 

smaller CIE compared to terrestrial n-alkanes. This is evident by the higher relative 

abundance of shorter-chain n-alkanes, such as n-C17, generally considered to derive from 

aquatic organisms (Han and Calvin, 1966), and also explains the relatively low CPI values at 

the Store Bælt section, indicating a more distal position of this location than the section at 

Fur.  

Recently, Schoon et al. (2013) used the δ13C values of crenarchaeol to reconstruct δ13C 

records of marine dissolved inorganic carbon (DIC) in the same PETM sections as studied 

here. The δ13C composition or crenarchaeol is thought be directly related to δ13C of the 

dissolved inorganic carbon with a constant offset of ~20‰ (Könneke et al., 2012). The ~3.6 

‰ CIE recorded for crenarchaeol in the eastern North Sea Basin thus suggests a CIE of 

marine DIC of similar magnitude, although care has to be taken as the isotope systematics and 



carbon metabolism of Thaumarchaeota and the impact of depth habitat of Thaumarchaeota on 

the 13C of crenarchaeol are poorly constrained. However, this value is consistent with the 

3.0-3.5 ‰ CIE globally inferred from marine calcite and 1-3.5‰ lower than the CIE recorded 

in the C27-C29 n-alkanes.  Hence, also at the Danish PETM sites, the terrestrial CIE seems to 

be larger than the marine CIE. 

The most important amplification mechanisms postulated to explain a larger terrestrial CIE 

in comparison to the marine CIE are an increase in relative humidity (Bowen et al., 2004), or 

a change in vegetational types (Schouten et al., 2007b; Smith et al., 2007). In the Central 

North Sea Basin, adjacent to our study area, Kender et al. (2012) found evidence for an 

increase in river runoff related to higher regional precipitation over NW Europe at the onset 

and within the earliest CIE, based on elevated C/N ratios, increase in the abundance of 

kaolinite clays, and a dinoflagellate community shift indicative of elevated nutrient levels and 

reduced salinity conditions. An intensification of the hydrological cycle during the PETM is 

also evident from the relative increases in kaolinite clays at many PETM marginal sites (e.g. 

Schmitz and Pujalte, 2003; Crouch et al., 2003; Schulte et al., 2013, Robert and Kennett, 

1994; Bolle and Adatte, 2001). These deposits are, however, mostly interpreted as the 

redeposition of older clays during episodes of strongly seasonal precipitation (e.g. Schmitz et 

al., 2001; Schmitz and Pujalte, 2003). In fact, palaeosoil data from northern Spain (Schmitz 

and Pujalte, 2003) and terrestrial n-alkane δD records from eastern Tanzania (Handley et al., 

2012) point to more arid annual conditions in the subtropics during the PETM. This is 

consistent with model predictions that warmer atmospheric temperatures will cause a stronger 

latitudinal evaporation-precipitation gradient, with higher evaporation rates in the sub-tropics 

and higher precipitation rates in mid- and high-latitudes (Manabe, 1996). Consequently, there 

is a strong regional difference in humidity variations and it is therefore unlikely that a change 



in relative humidity as a single factor can account for the consistent difference in the CIE 

between marine and terrestrial carbon reservoirs observed globally.  

Alternatively, it has been suggested that a larger input of angiosperms with respect to 

gymnosperms during the PETM may overestimate the CIE by up to ~3‰ as angiosperms are 

more 13C-depleted compared to gymnosperms and also show a larger CIE (Schouten et al., 

2007b; Smith et al., 2007). Shifts from gymnosperm- to angiosperm-dominated plant 

communities have been observed in the Bighorn Basin, Wyoming (Smith et al., 2007) and at 

the Lomonosov Ridge in the Central Arctic Basin (Sluijs et al., 2006; Schouten et al., 2007b). 

Kender et al. (2012) studied the pollen and spore assemblages in sediments from the Central 

North Sea Basin, which also indicated a significant shift in the composition of regional 

vegetation. At the onset of the PETM, they observed a large decrease in gymnosperm taxa, 

mainly consisting of coastal swamp conifers and pines, which was replaced by angiosperm 

taxa, ferns and mosses, indicative of a bog type plant environment. Similar vegetation 

changes were recently also reported for the Store Bælt section in the eastern North Sea Basin 

(Willumsen et al., 2013). It is therefore likely that the observed offset in magnitude between 

the CIEs recorded in the terrestrial-derived n-alkanes and marine-derived crenarchaeol at the 

Store Bælt and Fur sections is mainly driven by regional vegetation changes, although we 

cannot exclude that an increase in relative humidity also contributed to the larger n-alkane 

CIE.  

 

4.2 Stratification and photic zone anoxia 

The low organic carbon content, the ample evidence of bioturbation in the sediments, and 

the high glauconitic content in the clayey and sandy silt deposits just before the onset of the 

PETM (Nielsen et al., 1986), are all indicative of a well-oxygenated water column prior to the 

PETM. Both Danish sections show an abrupt lithological transition at the Palaeocene/Eocene 



boundary. The relative amount of organic carbon increases rapidly in concert with the CIE 

and remains high throughout the PETM interval (Figs. 3a and b). Together with the fine-

laminated clays devoid of benthos and high sulfur (pyrite) content, this implies the 

development of anoxic and sulfidic bottom waters (Nielsen et al., 1986; Pedersen, 1981). This 

is in agreement with the findings of Kender et al. (2012), suggesting a large scale stratification 

of the North Sea Basin during the PETM based on palynological and sedimentological 

evidence.  

Supporting evidence for euxinic conditions during the PETM comes from the presence of 

sulfur-bound isorenieratane at both Danish sections. Sulfur-bound isorenieratane is a 

diagenetic product of isorenieratene, a characteristic pigment of photosynthetic green sulfur 

bacteria; besides light (Overmann et al., 1992), these bacteria require free sulfide (H2S) and 

anoxic conditions to thrive (Sinninghe Damsté et al., 1993; Summons and Powell, 1986). The 

presence of these lipids in the Danish PETM sediments, therefore, unambiguously indicates 

the occurrence of photic zone euxinia (PZE). At the Fur section, sulfur-bound isorenieratane 

was detected in the entire PETM interval with the highest abundance (~17 μg g-1 TOC) 

occurring 2.51 m after the onset of the CIE (Fig. 3a). Outside the PETM interval this 

biomarker is below detection limit. In the Store Bælt section sulfur-bound isorenieratane is 

also detected, although not at all depths within the PETM interval, and the highest abundance 

(~6 μg g-1 TOC) is recorded after the onset of the PETM (Fig. 3b). The evidence for PZE at 

these two locations suggests that a large part of the eastern North Sea Basin became stratified 

and had euxinic waters reaching into the photic zone. The development of photic zone euxinia 

in the North Sea Basin may have multiple causes, such as substantial increases in primary 

productivity, possibly due to higher nutrient loads by adjacent rivers (Knox, 1996b), and/or 

oxygen-depletion of intermediate waters due to enhanced microbial recycling and lower 

solubility of oxygen in warmer waters (Chun et al., 2010; Nicolo et al., 2010). Furthermore, 



there has likely been a limited exchange with adjacent water masses, potentially linked with 

regional tectonic uplift (Bice and Marotzke, 2002; Knox, 1998; Tripati and Elderfield, 2005).  

Episodes of photic zone euxinia, coincident with bottom water anoxia, and increased 

sedimentary organic matter contents have also been reported for the Arctic Ocean, which was 

a restricted basin during the PETM (Sluijs et al., 2006). The increase in fresh water input due 

to an enhanced hydrological cycle (Pagani et al., 2006), in combination with an increase in 

primary productivity, has been invoked to explain the stagnant water masses in this enclosed 

high latitude basin. A similar supposition has been raised for the North Sea Basin (Kender et 

al., 2012), based on the influx of fresh-water tolerant dinoflagellate cysts and indications of 

increased precipitation, suggesting enhanced fluvial runoff. The fact that two restricted basins 

at different latitudes became anoxic, as well as some coastal sites, suggests that restricted 

water column ventilation may have been a common feature during the PETM (Sluijs et al., 

2014 and references cited therein).  

Such a widespread anoxia in shelf seas is reminiscent of the black shale deposits of the 

early Toarcian. During this period biomarkers of green sulfur bacteria have also been found 

(Schouten et al., 2000; Sinninghe Damsté and Schouten, 2006; van Breugel et al., 2006), 

suggesting the development of photic zone euxinia over large areas in the European 

epicontinental seas and Tethys continental margin. This suggests that the stratification of 

epicontinental seas may have been a common phenomenon in a greenhouse climate mode (cf. 

Jenkyns, 2010). Furthermore, a prominent negative carbon isotope excursion is also measured 

in both inorganic and organic carbon during the early Toarcian (Jenkyns and Clayton, 1997; 

Jiménez et al., 1996; Kemp et al., 2005). The parallels between the early Toarcian black 

shales and several PETM sites, therefore, suggest that some of the underlying mechanisms 

may have been similar. The potentially globally enhanced stratification during the PETM, 

possibly in combination with elevated productivity, could thus have led to enhanced carbon 



burial providing a negative feedback to the release of carbon during the PETM (Bowen and 

Zachos, 2010).  

 

4.3 Sea surface and air temperature records  

For both Danish sections, the TEX86 record shows a marked increase parallel to the negative 

excursion in δ13CTOC, suggesting warmer conditions for the PETM (Figs. 3 and 4). For the Fur 

section TEX86 values decrease during the latest Palaeocene before they rapidly increase across 

the onset of the PETM to above 0.7 (Fig. 4a). The record of the Store Bælt section exhibits 

large scatter for the Late Palaeocene; TEX86 values average around 0.5 (Fig. 4b). A decrease 

in TEX86 is recorded just before the onset of the PETM, just as for the Fur record. Overall, 

TEX86 values during the PETM are slightly lower at the Store Bælt section than those 

recorded at the Fur section (Figs. 4a and b).  

We applied the TEX86
H  calibration of Kim et al. (2010) to convert the TEX86 into SSTs. 

This calibration is recommended for palaeothermometry of greenhouse worlds with SST >15 

°C. The decreasing trend in TEX86 values for the latest Palaeocene for the Fur section 

corresponds to a temperature decrease from 24 to 17 °C (Fig. 4a). This is followed by a sharp 

increase at the onset of the PETM towards a maximum SST of ~31 °C (Fig. 4a). For the Store 

Bælt section, Late Palaeocene SSTs ranged between 28 and 16 °C, and although the record is 

subjected to considerable scatter, low SST values are also recorded at this site just before the 

onset of the PETM (Fig. 4b). Across the onset, SST increases to a maximum of ca. 30 °C 

followed by a gradual decrease during the course of the PETM. These peak SST estimates are 

within the range of peak estimates obtained for the mid-latitude New Jersey shelf (Zachos et 

al., 2006; Sluijs et al., 2007b). Application of the TEX86
L  and 1/TEX86 calibrations yield 

overall lower absolute temperatures in comparison with TEX86
H  SSTs, while application of the 



Baysian calibration of Tierney and Tingley (2014) yielded somewhat different absolute 

temperatures, but all the records do show the same trends (data not shown).  

Most PETM sections show either relatively stable background SST values (Sluijs et al., 

2011; Zachos et al., 2003), or even a warming that preceded the negative CIE (Sluijs et al., 

2007b; Tripati and Elderfield, 2004). However, both Danish sections exhibit a large decrease 

in SST of ca. 7 °C just prior to the onset of the CIE in the glauconitic silt unit. It is possible 

that the TEX86 records at our sites are biased for this time-interval. For instance, the TEX86 

values can be affected by the input of soil-derived isoprenoid GDGTs which can be assessed 

by the BIT index (Weijers et al., 2006). Before the PETM, BIT values are generally high 

between 0.3 to 0.7 for both sections (Figs. 4a and b). These high values indicate that the 

TEX86 values may indeed be affected by soil organic matter input and thus the SST estimates 

for the latest Palaeocene may be biased. Just before the onset of the CIE in the glauconitic silt 

unit, BIT values gradually decrease to <0.1 and remain low during the PETM (Figs. 4a and b), 

suggesting that TEX86 values are unlikely to be substantially affected by terrestrial input for 

this part of the section. The reason for the high BIT values and the variability in TEX86 values 

may be that the GDGT distributions are affected by oxic degradation. The TOC values for the 

Late Palaeocene part of both sections are low (<0.6 %; Figs. 3a and b) and the depositional 

environment was oxic prior to the PETM (see also section 4.2), and thus organic matter, 

including GDGTs, were substantially exposed to oxygen. This is supported by palynological 

observations of organic particles in the Holmehus Formation, which are severely degraded 

and corroded (Heilmann-Clausen et al, 1985). Indeed, before the PETM, concentrations of the 

branched GDGTs and crenarchaeol are low (<0.01 μg g-1 sediment; Fig. 4b). Concomitant 

with the onset of the CIE, and higher TOC values, there is a substantial increase in the 

concentration of crenarchaeol towards peak values of ~0.6 μg g-1 sediment (Fig. 4b). In 

contrast, the branched GDGT concentration during that same interval increases considerably 



less (up to ~0.03 μg g-1 sediment; Fig. 4b). This is in agreement with the findings of Huguet et 

al. (2009) and Lengger et al. (2013), who showed that upon prolonged exposure to oxic 

conditions, crenarchaeol is more prone to oxic degradation during early diagenesis than 

branched GDGTs, leading to higher BIT values. Thus, the high BIT values prior to the PETM 

may have been caused by severe oxic degradation. By association, this selective degradation 

of the marine signal compared to the terrestrial signal may have also biased TEX86 

temperature estimates, because soil organic matter contain isoprenoid GDGTs with a different 

distribution than marine isoprenoid GDGTs. However, it is still uncertain to what degree it 

affects the temperature estimates (Huguet et al., 2009). Finally, the GDGTs may have been 

derived from sources other than Thaumarchaeota which are thought to be the primary source 

for marine GDGTs. Analysis of the δ13C values of the biphytane moieties of GDGTs at the 

Fur and Store Bælt sections showed that acyclic and monocyclic biphytanes exhibited 

relatively depleted 13C values (down to -31 ‰) compared to the tricyclic biphytane derived 

from crenarchaeol (ca. -21‰; Schoon et al., 2013). This suggests that some of the GDGTs, in 

particular GDGT-1, may partly derive from Archaea associated with methane cycling 

(Schoon et al., 2013). Thus, a larger input of this GDGT to the sediments deposited just 

before the onset of the CIE in the glauconitic silt unit may have caused an underestimation of 

the SSTs in this interval.  

If the TEX86 values from the glauconitic silt unit with the unusual cooling are excluded 

and we average the remaining pre-PETM TEX86 values (23 ± 4 °C for Store Bælt, and 24 °C 

for Fur), we obtain an average temperature increase of ~7°C across the Palaeocene-Eocene 

boundary for both Danish sections. Application  of TEX86
L  or 1/TEX86 calibrations yield an 

identical increase of ~7°C, while the Bayesian calibration model of Tierney and Tingley 

(2014) yielded an increase of 11-12 °C. A 7 °C warming of the North Sea surface waters is 

consistent with the mid-latitude temperature records from the New Jersey shelf based on the 



δ18O in planktonic foraminifera and TEX86 (Sluijs et al., 2007b; Zachos et al., 2006; John et 

al., 2008) as well as in the southern hemisphere at the East Tasman Plateau (Sluijs et al., 

2011) and the mid-Waipara section, New Zealand (Hollis et al., 2012; see also Fig. 1). As 

previously suggested by Zachos et al. (2006), it is possible that shallow marine sites are 

affected by variations in regional and seasonal parameters, causing a larger warming at 

continental margins in comparison with open marine waters. 

Interestingly, reconstructed MATs based on the MBT’/CBT proxy for the Fur section 

show a similar pattern as the TEX86 record: a temperature decrease from 19 to 16 °C for the 

latest Palaeocene followed by an increase of 4 °C across the Palaeocene-Eocene boundary 

(Fig. 4a). Peak MAT values (~24 °C) are reached at the same depth as peak SST values (2.51 

m; Fig. 4b), resulting in an overall increase of MAT of 5-8 °C. The similar patterns between 

the SST and MAT records suggests that potential biases on the TEX86 temperature record 

prior to the PETM, as discussed above, may have not been severe. In contrast to the Fur 

section and the TEX86 record, the MBT’/CBT record of the Store Bælt section exhibits no 

warming trend and MAT estimates remain similar across the onset of the PETM (Fig. 4b). 

Peak MAT values (~20 °C) are lower than those recorded for the Fur section and occur 

between 129.75 and 128.45 mcd.  As discussed above, the Store Bælt section was likely 

further removed from land than the Fur section and did not receive a large influx of soil-

derived organic matter, which may explain why at this location the MBT’/CBT does not show 

any warming trend. The only other available MBT’/CBT record of the PETM is from the 

Arctic continent. Absolute temperature values are lower as would be expected for this higher 

latitude site, from ~15 °C for the Late Palaeocene towards ~21 °C during the PETM (Peterse 

et al., 2012, recalculated from Weijers et al., 2007a). This corresponds to a ~6 ºC warming of 

the continents around the Arctic region, which is in good agreement with the MBT’/CBT 

record of the Fur section.  



 

5. Conclusions 

We studied two PETM sections from the eastern part of the North Sea Basin. Both Danish 

sections are marked by a negative CIE in TOC of 5-6 ‰. Analyses of the stable carbon 

isotopes of higher plant-derived long-chain n-alkanes reveal a terrestrial CIE of 4-6 ‰ at 

Store Bælt, but at Fur the terrestrial CIE magnitude is 1-2 ‰ higher and seems to precede the 

CIE in TOC. The differences in the distribution patterns and δ13C profiles of the n-alkanes 

between the two sites, likely reflect regional rather than global changes. The terrestrial CIE is 

larger than reconstructed for the marine CIE, probably due to a change in vegetation. 

The onset of the CIE is accompanied by a marked change in lithology, increasing organic 

matter content and the presence of sulfur-bound isorenieratane, indicating a substantial 

change in depositional environment from well-oxygenated to anoxic and sulfidic, likely due to 

a combination of diminished oxygen supply by intermediate waters, increased primary 

productivity and an increase in fluvial runoff. These euxinic conditions are similar to those 

previously reported for the Lomonosov Ridge in the Arctic Ocean, suggesting that restricted 

water column ventilation was common in semi-enclosed basins during the PETM.  

The TEX86 SST records show a warming of ~7 °C during the PETM. This warming is 

preceded by a remarkable cooling of several degrees prior to the onset of the PETM, 

potentially caused by oxic degradation and selective preservation of soil organic matter during 

the latest Palaeocene, or by the additional input of GDGTs from sources other than 

Thaumarchaeota. Continental air temperatures reconstructed using the MBT’/CBT index 

show a remarkable similar trend, including a cooling prior to the PETM at the Fur section, but 

not at the Store Bælt section. It is possible that these temperature records reflect additional 

local climate changes besides the global changes associated with the PETM. Our study thus 



suggests that it is important to study climate records from multiple locations within a region to 

separate regional from global climate variability. 
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Figure 1: Plate tectonic reconstruction of 55 Ma (www.odsn.de/odsn) and reconstructed 

warming during the PETM. The dots show locations where PETM SST and MAT warming 

have been reconstructed: aHollis et al., 2012 (pTEX86), bSluijs et al., 2011 (TEX86), cSluijs et 

al., 2007b (TEX86), dPeterse et al., 2012, recalculated from Weijers et al., 2007a (MBT/CBT), 

eSluijs et al., 2006 (TEX86), fZachos et al., 2006 (TEX86), gTripati and Elderfield, 2005 

(Mg/Ca and 18O of planktonic foraminifera), hWing et al., 2005 (leaf margin analysis), 

iZachos et al., 2003 (Mg/Ca and 18O of planktonic foraminifera), jThomas et al. 2002 (18O 

of planktonic foraminifera), kKennett and Stott, 1991 (18O of planktonic foraminifera). The 

star indicates the location of this study.  



 

Figure 2: Map of Denmark showing the location of the two study sites at Fur Island and Store 

Bælt. 



 

Figure 3: Profiles of the PETM sections at (A) Fur and (B) Store Bælt, showing the TOC 

content and the stable carbon isotopic composition of TOC, the stable carbon isotopic 

compositions of the C27 (light grey), C29 (middle grey), C31 (dark grey) n-alkanes, the Carbon 

Preference Index (CPI), and the abundance of S-bound isorenieratane. The dotted line 

indicates the onset of the CIE of the PETM and the grey area indicates the entire PETM 

interval. Note the different depth scale below and above the glacially-disturbed interval 



described in the text. The ash layers -33 and -17 of Bøggild (1918) are shown. Abbreviations: 

LP= Late Palaeocene, GS = Glauconitic Silt unit, ØC = Østerrende Clay, SC = Stolleklint 

Clay. 

 

Figure 4: Profiles of the PETM sections at (A) Fur and (B) Store Bælt, showing the sea 

surface temperatures derived from TEX86 and mean annual air temperatures derived from the 

MBT’/CBT proxy, the BIT index, and absolute concentrations of crenarchaeol and branched 

GDGTs in μg g-1 sediment. Note the difference in scale for both, which differs by a factor of 



ten. The dotted line indicates the onset of the CIE of the PETM and the grey area indicates the 

entire PETM interval. Note the different depth scale below and above the glacially-disturbed 

interval described in the text. The ash layers -33 and -17 of Bøggild (1918) are shown. 

Abbreviations: LP = Late Palaeocene, GS = Glauconitic Silt unit, ØC = Østerrende Clay, SC 

= Stolleklint Clay. 
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