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ABSTRACT

We tested the applicability of the BIT (branched and isoprembidether) index as a
proxy for palaeoflood events in the river-dominated continentagjimaf the Gulf of Lions
(NW Mediterranean). We compared the concentrations of brarmgtheerol dialkyl glycerol
tetraethers (brGDGTs) and crenarchaeol in suspendedubagiomatter (SPM) collected
downstream in the Rhéne River, as well as in surface satinaead a ca. 8 m piston core
retrieved from the Rhéne prodelta. The core covered thed@®tyr, with four distinct
intervals recording the river influence under natural and imdmeed shifts in four main
channels of the river mouth (Bras de Fer, Grand Rhoéne, Péganid Roustan). Our results
indicate that there are mixed sources of brGDGTs and ctereol in the Rhéne prodelta,
complicating application of the BIT index as an indicator of e@mtial organic carbon input
and, thus, as a palaeoflood proxy. However, the sedimentaryeBbrd for the period when
continental material was delivered by the river more dyrdotthe core site (Roustan phase;
1892 to present) mimics the historical palaeoflood record. shiuws the potential of the BIT
index as a palaeoflood proxy, provided that the delivery routheotontinental material by
rivers to the core sites remains constavdr time. Our study also highlights the idea that
shifts in river channels should be taken into account for theotigke BIT index as a

palaeoflood proxy.

Keywords: palaeoflood, BIT index, GDGTs, Rhéne prodelta
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1. Introduction

The Earth’s surface temperature rose by 0.6 + 0.2°C over@tle century, with
accelerated warming during the past two decades (IPCC, 20iB).a warmer climate, the
water-holding capacity of the atmosphere and evaporationetatthosphere increase (e.g.
Trenberth et al., 2003). Therefore, it would be expectedoratirbations of the global water
cycle would accompany global warming (e.g. Allen and Ingra@92). The possibility of
increased precipitation intensity and variability is pradcto boost the risks of extreme
events such as typhoons/cyclones, droughts, and floods (IPCC, 204:3y. dduntries in
temperate and tropical zones are highly vulnerable to sucbnextevents, exposing their
coastal areas, including deltas, and their dense populatioigtaatial human and economic
consequences. Although the global climate models used for fwog®f future climate
changes in the IPCC fifth assessment have been impravesl thie IPCC fourth assessment,
the numerical model simulations still have difficulty in prodgc precipitation forecasts
consistent with observations, whereas the prediction of tenuperat more accurate (IPCC,
2013). Consequently, accurate predictions of changes in préoipieae more difficult to
evaluate from current climate models. Therefore, themclaf increasing magnitude of
extreme events due to global warming needs to be verifiedsagemleodata with precise age
dating, providing records of variation of precipitation thatéhactually occurred in the past.

Instrumental records of river flows have been used to estagiatistical relationships
between weather and runoff, which has been applied to ptegicological changes in the
future (e.g. Prudhomme et al., 2002). However, instrumental recbndater discharge are
too short to evaluate long term variation and already falliwthe period of suggested strong
human impact on natural conditions. The study of paleohydrologispbnses to past global
climate changes can provide valuable information for indicatiegpotential impact of the

present greenhouse global climate change and therefore contobdésitjn strategies for
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water and risk management (e.g. Gregory et al., 2006)efiiner a wide range of tools and
analytical techniques have been developed to extend hydrolodaa beyond the
instrumental period of historical and geological scalestoggcal/geomorphological data (e.g.
Starkel, 2003; Baker, 2006; Gregory et al., 2006), fossil pollerpkami macrofossil data (e.g.
Bonnefille and Chalié, 20009D and 8*°C data for higher plant derived leaf wax (e.g.
Scheful3 et al., 2005) and a process-based vegetation modet @att Guiot, 2005).
Nonetheless, reconstruction of paleohydrological change is stilenbang, with seemingly
no consensus on the occurrence of reconstructed millennial-gaafion. Continuous
palaeoflood records beyond the instrumental period are rare ohtobts assess natural
variation in flood occurrences related to climate changeblishing a proxy which can be
used for palaeoflood reconstruction is therefore desirable.

Due to the development of high pressure liquid chromatographg-s@ectrometry
(HPLC-MS) techniques for the analysis of glycerol dialkyl gyt tetraethers (GDGTS)
(Hopmans et al., 2000), the branched and isoprenoid tetraetf@riiBéx was introduced as
a tool, initially for estimating the relative amountsrisfer borne terrestrial organic carbon
(OC) in marine sediments (Hopmans et al., 2004) and later speafically as a proxy for
river borne soil OC input (Huguet et al., 2007; Walsh et al., 2008 et al., 2009Smith et
al. 2010Q. The index is based on a group of branched GDGTs (brGD&J.s1), presumably
derived from anaerobic bacteria (Weijers et al., 2006), whacur widely in soils (Weijers et
al., 2007), and a structurally related isoprenoid GDGT, ccbaaol (Fig. 1), predominantly
produced by marine planktoniéroup | Crenarchaeota (Sinningbamsté et al., 2002; see
also Table 4 in Schouten et al., 2013), which was recertlgssfied as the novel phylum
Thaumarchaeota (Brochier-Armanet et al., 2008; Spang et al., ZIli®)index has also
shown potential as a proxy for paleohydrology change (Ménot €087, Verschuren et al.,

2009). However, it has also been shown that variation innthexiin marine sediments may
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predominantly reflect variation in marine crenarchaeol pribolucather than the soil-derived
brGDGT flux (e.g. Weijers et al., 2009; Fietz et al., 208hijth et al., 2012). Therefore, it is
necessary to further assess its applicability for paleostusfiediverse river systems by
constraining the source of brGDGTs and crenarchaeol.

We previously performed several studies of the BIT index inTiieRiver system
(France), which has a relatively small catchment aasal in the Gulf of Lions (NW
Mediterranean) into which the Tét River and Rhéne River {l&im et al., 2006, 2007, 2009,
2010). A suspended particulate matter (SPM) study of the iVét Bhowed that variation in
the concentration of brGDGTs was closely related to watérsadiment discharges (Kim et
al., 2007). The average BIT value for the Tét suspended par{i@l85) was substantially
higher than that for the offshore seawater (< 0.01). Studiesmnhe surface sediments in the
Gulf of Lions showed that the BIT index decreased from therishelf to the continental
slope (Kim et al., 2006, 2010). Analysis of sediment trap aollicare material collected
from the Tét inner shelf showed that the proportion of soil @@tal OC calculated on the
basis of the BIT index was higher during flood periods than non-floaddse(Kim et al.,
2009).

Although previous studies showed that the index was able toth@deput of soil OC
in the Gulf of Lions, its applicability as a proxy for palaeoflaants was not assessed for
the river-dominated continental margin of the Gulf of Lions. &fwee, we have extended our
previous studies, by analysing the SPM from the downstream Rbhénsell as sediment
samples from a 43 cm multicore and a ca. 8 m piston core thhenRhdne prodelta. We
compared GDGT data from the piston core with ostracod data Fanget et al. (2013),
which identified the extreme flood events based on the ocmaref freshwater (continental)
ostracods. This enabled us to constrain the applicabilitheoBIT index as a palaeoflood

indicator in the Gulf of Lions.
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2. Study area

The Gulf of Lions is a river dominated continental margirthe NW Mediterranean
Sea between 42°N 3°E and 44°N 6°E (Fig. 2). Freshwatesagichent inputs to the gulf
originate mainly from the Rhéne River, which has a catchmesat af 97,800 km2 and a
length of 812 km, with its source in the Alps. The mean annasmwlischarge is ca. 1700
m/s and the annual solid discharge varies between 2 andldOtannes, with flood events
responsible for > 70% of these amounts (Pont et al, 2002; Eyralle 2806, 2012; Sabatier
et al., 2006). In the marine coastal area, close to tle# mouth, both flocculation and
aggregation lead to the formation of fine grained depasitsthe subaqueous prodelta (30
km?). Most of the sediment delivered by the river is prilm&antrapped in the prodelta (Ulses
et al., 2008), characterized by a sediment accumulationfrafeto 20-50 cm/yr (Calmet and
Fernandez, 1990; Charmasson et al., 1998; Radakovitch et al., 1999e™ation rate
strongly decreases seaward, with values of 0.2-0.6 cmB0 ki distance (Miralles et al.,
2005). The prodelta cannot, however, be considered as a permadiemergary repository
since it is subject to episodic reworking (Marion et al., 2@t@) subsequent seaward export
through several turbid layers, i.e. nepheloid layers (Aldial.e 1982; Estournel et al., 1997;

Naudin and Cauwet, 1997).

3. Material and methods
3.1. Sample collection

The SPM samples are listed in Table 1 and sampling positierghawn in Fig. 2. Six
SPM samples were collected close to the water sudiadeghebottom of the Rhéne River at
three different stations (RW1, RW2, and RW3). At therriveuth (RW4), the samples were

collected at four different water depths. The hydrodynamicsnairohg of river water with
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marine water in the estuary is typical of a micro-tskt wedge estuary (Ibafez et al., 1997).
The salt marine water forms a wedge in the river wadérnen underneath the freshwater
layer. Therefore, we considered three SPM samples fronathetie surface layer at the river
mouth as mixed SPM from both seawater and freshwaterelemental analysis of SPM and
the concentration, water was collected manually with akdtucA small portion of the
collected water (0.5-0.7 I) was filtered onto ashed (450overnight) and pre-weighed glass
fibre filters (Whatman GF-F, 0.dm, 47 mm diam.). For lipid analysis 5-23 | water were
filtered onto ashed glass fibre filters (Whatman GR:Fum, 142 mm diam.) with an in-situ
pump system, (WTS, McLane Labs, Falmouth, MA). All samplese kept frozen at -20°C
and freeze dried before analysis.

The multicore Dyneco 23B (Fig. 2) was retrieved from tbed®an prodeltaic lobe at 46
m water depth (43.307N; 4.855E) during the RHOSOS cruise (le/8uUroit) in September
2008. The surface sediment (0-0.5 cm) was sliced and imrelydikgep frozen on board. The
piston core RHS-KS57 (Fig. 2) was obtained from 79 m water ddgt285N; 4.8495E)
during the same cruise. The age model of this core wasiss&blusing radioactive'Cs,
isotopic Pb ratio PPb°’Pb) and one accelerator mass spectrometer (AXCS)ate on a
well-preservedurritella sp. as described by Fanget et al. (2013). The core wagrgulbdaat
5 cm intervals for elemental and GDGT analyses. The smmpkre freeze dried and

homogenized prior to analysis.

3.2. Bulk geochemical analysis

The OC content of the marine sediments was obtained usindp@aergal analyser
(LECO CN 2000 at CEFREM), after acidification with 2 MCHovernight, 50 °C) to remove
carbonate. The OC data for core RHS-KS57 were published by tFaingé (2013). The

freeze dried filter samples were decarbonated with HGbwas described by Lorrain et al.
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(2003) and analysed with a Thermo Flash EA 1112 ElementdyZeraThe OC content was
expressed as wt. % dry sediment. The analyses were detdriat least in duplicate. The

analytical error was on average better than 0.2 wt. %.

3.3. Lipid extraction and purification

The filters on which SPM was collected (in total 10 sas)pleere freeze dried and
extracted using a modified Bligh and Dyer methaéchite et al., 1979Pitcher et al., 2009)
in order to analyse core lipids and intact polar lipids. ThghBand Dyer extracts (BDES)
were separated over a small silica gel (activated oyletincolumn withn-hexane:EtOA
(2:1, v:v) and MeOH as eluents for core lipids and intactrplgséds, respectively. For
GDGT quantification, 0.01 pg of£GDGT internal standard was added to each fraction.
The core lipid fractions from the BDEs were separated tiwto fractions over an ADs
column (activated 2 h at 150 °C) using hexane:DCM (1:3,and DCM:MeOH (1:1, v:v),
respectively.

For the upper 3 m of core RHS-KS57, GDGTs were analysed @a. 5 cm, and
every ca. 10 cm between 3 m and 7.7 m (in total 79 saynplesse core samples and the
core top sediment of multicore Dyneco 23B were extracted am accelerated solvent
extractor (DIONEX ASE 200) using DCM:MeOH (9:1, v:v) at 100 aad 1500 psi. The
extracts were collected in vials. Solvents were removewyuSaliper Turbovab®LV, and
the extracts were taken up in DCM, dried over anhydroyS®@aand blown down under a
stream of M. For quantification of GDGTs, 0.1 ug internal standargs (GDGT) was
added to each total extract before it was separatedhrge fractions over an activated
Al ;03 column using hexane:DCM (9:1, v:v), hexane:DCM (1:1, v:v) 2@iM:MeOH (1:1,

ViV).



195 3.4. GDGT analysis and BIT calculation

196 For the SPM samples, the analysis of GDGTSs in core raadtipolar lipid fractions
197 was carried out as described by Zell et al. (2013a). Fomrtarine sediments, the polar
198 DCM:MeOH fractions were analyzed for core lipid GDGTdascribed by Schouten et al.
199 (2007). The fractions were dried down undet Mdissolved by sonication (5 min) m
200 hexane:propan-2-ol (99:1, v:v) to a concentration of ca. 2 mapahlfiltered through 0.45
201 um PTFE filters. The samples were analyzed using HPBCIAMS according to the
202 procedure described by Schouten et al. (2007), with minor modifisateBGTs were
203 detected using selective ion monitoring of (M¥Hpns (dwell time 237 ms) and
204 quantification was achieved by integrating peak areas amg tise Gs GDGT internal
205 standard according to Huguet et al. (2006). Note that the fiferatit extraction methods
206 used for quantification of GDGTs of core lipids would provide caraple results (cf.

207 Lengger et al.,, 2012).

208 The BIT index was calculated according to Hopmans et al. (2004):
209
210 BIT index = — Lt (+HII "

[0+ [0+ (11T} +[1V]
211

212 The roman numerals refer to the GDGTs indicated in Fil.Iland 11l are brGDGTs and IV
213 is crenarchaeol (Hopmans et al., 2004). The reproducibility imétermination of the BIT
214 index was better than £0.01. The BIT index varies betweamd0l, representing marine and
215 terrestrial OC end members, respectively (Hopmans, 2Gfi4).

216

217 3.5. Statistical analysis

218 We performed the nonparametric Mann-Whitney U test, whiohs not meet the

219 normality assumption of the one way analysis variance (ANQYA¢valuate the differences
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in mean values between two different groups in a simviay to Zell et al. (2013). Groups
that showed significant differencp € 0.05) were assigned different letters. Linear regvassi
analysis was also performed to investigate the relatiors#tipeen GDGT parameters. The

statistical tests were performed using the R-3.0.1gupek

4. Results

The SPM concentration and OC content of Rhéne River SPM saa@esummarized
in Table 1. SPM concentration varied between 12 and 1& angd the OC content of the
SPM was relatively constant at 2-3 wt. %. BrGDGTs amsharchaeol were detected in all
the SPM samples. Summed brGDGT concentration (normalized m@€nt) ranged from 8
to 36ug/g OC (av. 16 £ I=7; Fig. 3A), while crenarchaeol concentration was subsiinti
lower, i.e. between 1 andug/g OC (av. 2 £ 1n=7; Fig. 3B). The BIT index averaged 0.89 +
0.02 @=7; Fig. 3C). Summed brGDGT concentration values for the SRiviples from the
mixed zone, i.e. beneath the surface layer at the meeith as a mixture of both seawater and
freshwater, were slightly lower than those in the rivaeth\an average value of 11 +.®/g
OC (n=3; Fig. 3A). In contrast, the crenarchaeol concentrationhigiser, ranging from 4 to
7 ug/g OC (av. 6 + lug/g OC,n=3; Fig. 3B). Consequently, the BIT index was lower,
varying between 0.56 and 0.81 (av. 0.65 + OnER; Fig. 3C).

BrGDGTs and crenarchaeol were also detected in allnema@diment core samples.
The concentrations of summed brGDGTs and crenarchaeol aasmtlé BIT index for the
core top sediment from the Dyneco 23B multicore wepg/g§ OC and fug/g OC, and 0.64,
respectively (Fig. 3; data points indicated with a sfdre. summed brGDGT concentration of
for piston core RHS-KS57 varied between 2 andu@ifg OC, while the concentration of
crenarchaeol ranged from 3 to g§/g OC (Fig. 4A-B). The records of the accumulation rate

(AR) of these GDGTs mimicked those of their concentratranying between 0.02 and 0.38
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(ug/cnflyr) for summed brGDGTs and between 0.02 and QugZ:(/yr) for crenarchaeol,

respectively (Fig. 4). The BIT index varied widely beéned.17 and 0.78 (Fig. 4C).

5. Discussion
5.1. Present-day source of GDGTs in the Rhéne River and praystiem: consequences for
the BIT index

Our SPM results only provide “snap-shot” information at theetioh sampling and
should thus be interpreted cautiously. The BIT index for therine SPM revealed only a
narrow range of variation (0.89 + 0.0257; Fig. 3). The riverine BIT values were slightly
lower than the hypothetical terrestrial end member value (bffopmans et al., 2004). This is
most probably due to the production of crenarchaeol in soil as shave drainage basin of
the Tét River, a typical small Mediterranean river, whlolwvs into the Gulf of Lions, with an
average BIT value of 0.84 (Kim et al., 2010). SPM oftBeRiver also has locally lower BIT
values (down to 0.6), which has been explained by crenarcpemhiction in the river (Kim
et al., 2007). In situ production of crenarchaeol in other rivassalso been reported (e.g. Zell
et al., 2013a,b; Yang et al., 2013). It is also possible GHAGDGTs were produced in the
Rhéne River itself, as reported for other river systems (Zhal.22011; Kim et al., 2012;
Zhang et al., 2012; Yang et al., 2013; Zell et al., 2013a,b;dngelet al., 2014). Hence,
GDGTs in Rhéne River SPM might have a mixed source of switd river-produced
brGDGTs and crenarchaeol. Nevertheless, despite potemtstui production, BIT values
were high in the river itself, consistent with the origipabposition for the BIT index
(Hopmans et al., 2004).

Values of the BIT index of SPM in the mixed zone significardlecreased in
comparison with that of riverine SPM (Fig. 3C). This isszd by the substantial increase in

crenarchaeol concentration in the mixed zone of seawatdresidvater at the Rhdone River
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mouth (Fig. 3B), while that of the brGDGTs remained comparébig. 3A). The index
decreased further in the prodelta sediments (Fig. 3Ck duggests that there is in fact an
addition of crenarchaeol, most likely by in situ production tie water column by
Thaumarchaeota but we cannot completely exclude a potential benthic tpmod(af.
Lengger et al., 2012). Recent studies provide increasing evidesicbrGDGTs can also be
produced in coastal sediments (Peterse et al., 2009; Zhu, &04al). However, similar
brGDGT concentrations (normalized on OC) were found in the RRver SPM and the
mixed zone SPM compared with that of the Rhéne prodelta sis#aiement (indicated with a
star in Fig. 3). This suggests that the in situ productidor@DGTs in the marine sediments
might have no significant impact on the BIT index, as also rebdefor Svalbard fjord
sediments (Peterse et al., 2009) and the East China Sea (Zhu28tl1). Our observation
leads us to conclude that, in the present day system, br&Rf&Tprimarily transported from
the Rhone watershed to the Rhéne prodelta but the BIT indgxontelta sediments is
strongly influenced by enhanced contribution of crenarchaeol prddige nitrifying
Thaumarchaeota (Konneke et al., 2005; Wuchter et al., 2006) thriwinthel marine

environment.

5.2. Applicability of BIT index as an indicator of palaeoflood events

In a study of the BIT index in the Tét River systema(tee), Kim et al. (2007) showed
that the variation in concentration of riverine brGDGTs whasealy related to water and
sediment discharges from the river, with substantiallydnidBIT value (0.85) than that for
the offshore seawater (< 0.01) in the Gulf of Lions. Furthermm@®@DGT concentration and
the BIT index in sediment trap and multicore material wareh higher during the flood
period than during non-flood periods in the Tét prodelta (Kiml.et2809). In the Rhéne

prodelta, brGDGT concentration and the BIT index were much hidjlaer at offshore sites
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(Kim et al., 2010). This promoted the idea that BIT index, in watjon with brGDGT
concentration, might serve as a tool for reconstructing pateebévents in deltaic systems
of the Gulf of Lions. To assess this possibility, we furterestigated the evolution of
brGDGT and crenarchaeol concentrations in the Rhéne prodelta dineirigst 400 yr and
evaluated the consequences for the BIT index, by analysing.fiem RHS-KS57 piston
coreobtained in 79 m deep wal@Hig. 2).

Fanget et al. (2013) reconstructed paleoenvironmental changss trastracod and
benthic foraminiferal assemblages recorded in the core. Tdeytified four intervals
recording changes in river influence under natural and man-iddsbéts in Rhéne
distributaries and corresponding to deltaic lobes: Bras de Fand@hbne, Pégoulier, and
Roustan (Fig. 4). The Bras de Fer interval (771-590 cm, 414 AD) is characterized by
quite stable environmental conditions, low hydrodynamic energy andndonmmarine
benthic microfossil species. The south-westward direction oRti@e plume (Estournel et
al., 1997, Naudin and Cauwet, 1997) probably caused reduced rivenc¥ at the core site
at that time. During the “Grand Rhéne” interval (590-360 cm, 11835 AD), ostracod
assemblages are dominated by the shallow water sgamiesonchaspp. which are found in
marginal marine environments (delta and estuarine) chamseteby changing salinity and
sediment flux. Following an important flood in 1711 AD, the BdasFer channel shifted
towards the east and thus was similar to the present dawpad the Grand Rhéne River.
Between 1711 AD and 1852 AD, the seaward termination of the Grand HRoerewas
divided into three distributaries called Piémanson, RoustanPégdulier channels (Fig. 2).
By that time, the Rhéne River mouth was located upstreamSzimt Louis, i.e. > 6 km
inland from the modern position, resulting in a moderate inflerence at the core site. The
“Pégoulier” interval (360-280 cm, 1855-1892 AD) is highly comparabléhe Bras de Fer

interval in terms of micro-faunal content. It correspondtghé&period of artificial closure of



320 the Piémanson and Roustan channels in 1855 AD. Consequenthyatiie and sediment
321 discharges were funnelled into a single mouth, the Pégaliainel, located at the eastern
322 most part of the modern delta. Sediment flux was thus foclosdee east of the prodelta to
323 contribute to the building of the Pégoulier outlet. The “Roustarrval (0-280 cm, 1892 AD
324 to present) shows a strong decrease of marine ostracods @mtomitant increase in the
325 deltaic assemblage (Fig. 4D-E). In addition, freshwateaosds (i.eCandonasp.,llyocypris
326 sp.) appear at discrete levels, generally in correlatibh @stracods typical of the littoral
327 areas (i.e.Leptocytheresp., Pterigocythereissp.). Ostracod fauna indicate a significant
328 increase in the Rhoéne River influence at the core siteording to our age model, the
329 gradual increase in the river influence indicates a more rpadxsource and reflects the
330 present situation, with the Rhéne River flowing into the Gidilf.ions through the Roustan
331 channel since 1892 AD, where our core was located (Fig. 2).

332 In general, the summed brGDGT concentration and the BIT indes significantly
333 lower in the sediments than in the river SPM, whiledtenarchaeol concentration was much
334 higher (Fig. 3). For the entire piston core dataset, crerawthaoncentration and
335 accumulation rate significantly correlated with (Fig. 5A) tho$ the summed brGDGTs {R
336  0.29, p < 0.001, and?R0.59, p < 0.001, respectively). Positive correlationsveeh the
337 concentration®f crenarchaeol and brGDGTs have been reported for variouisensattings
338 (e.g. Yamamoto et al., 2008; Zhu et al., 2011; Fietz e@ll2)but not for accumulation
339 rates With respect to the four separate sedimentary phagegicant positive correlations
340 Dbetween crenarchaeol and brGDGTs for both the concentrationfh@m@acumulation rates
341 occurred only during Grand Rhéne (1711-1855 AD) and Roustan (1892 AD-prpkasés
342 (Table 2), when the Grand Rhéne and Roustan channels were Ioghteat the front of the
343 core site (Fig. 2). During these periods, the crenarchaeol mipatien was similar to that of

344  SPM in the mixing zone (Fig. 3Y.arious studies have found that marine Thaumarchaeota are



345 nitrifiers and their abundance is dependent on primary productiiite sorganic N is
346 converted upon decay of algal biomass to,Nfd.g. Wuchter et al., 2006; Sinninghe Damsté
347 et al.,, 2009). Hence, enhanced riverine nutrient delivery to dnénental margins may
348 stimulate primary productivity and thus, indirectly, incredkaumarchaeotal abundance and
349 crenarchaeol production, resulting in a decrease in the BIK.iffdhes probably explains the
350 co-variation of brGDGT and crenarchaeol concentrationswel$ as of brGDGT and
351 crenarchaeol accumulation rates in our records (Fig. 5A).

352 During all phases (Table 2), the (negative) correlatiamsbbth concentration and
353 accumulation rate of crenarchaeol with the BIT index (Fig.\8&e much stronger and more
354 significant than the (positive) correlations of brGDGT caonicdion and accumulation rate
355 with the BIT index (Fig. 5C). The correlation between crenaeol and the BIT index was
356 highestduring the Bras de Fer phaseflected by the lower secti@f the core; 771-590 cm,
357 upto 1711 AD), when the Rhoéne River flowed into the Gulfiohk through the Bras de Fer
358 channelhich is located more to the west; Fig.ahd thus the river influence was lowest at
359 the core site (Fig. 5; Table 2). The variation in crenacheoncentration(3-45 pg/g OC)
360 was substantially greater than that in brGDGT abundance (Rgld OC) (Fig. 4).
361 Remarkably, despite the overall low brGDGT accumulationsr&t®.1 pg/cnf/yr), only
362 during this Bras de Fer phase the correlation between tHe@F&ccumulation rate and the
363 BIT index was significant (Table 2). Neverthelegsappears that duringpis phase the BIT
364 index was more strongly governed by crenarchaeol production iménme environment
365 than by the input of brGDGTs from the Rhéne River. Accordinglgsehresults support the
366 proposition that the riverine brGDGTs are nbotaysthe first order factor controlling the BIT
367 index in marine sediments but the variation in marine-dérerenarchaeol abundance is (cf.
368 Castafieda et al., 2010; Fietz et al., 2011a,b, 2012; Wu &04aB). However, it does not

369 explain why BIT values are higher along the coast than thdskooé in the Gulf of Lions
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(Kim et al., 2010), as well as in the vicinity of largeers (e.g. Hopmans et al., 2004).
certain locations, brGDGTs transported from the rivers migiteratrongly influence the BIT
index than marine-derived crenarchaeol, although we cannot rule rouadditional
contribution of brGDGTSs from the coastal erosion.

Importantly, we also observed that variations in crenaathaed thus in BIT index
were strongly influenced by Rhéne River channel shifts. Dutteg“Grand Rhéne” and
“Roustan” river-dominated phases, the BIT index was more syrguoylerned by variation in
riverine brGDGTs than during “Bras de Fer” and “Pégoulierrineadominated phases.
When the Rhéne River mouth was located right at the froneatdhe site during the Roustan
phase (Fig. 2), the accumulation rates of both brGDGTs amdrcteeol were much higher
than during other phases (Fig. 4). Interestingly, during the tRoyshase, the BIT index was
well in phase, within the age uncertainty, with the histdrpalaeoflood record (> 4.0 m at
Arles; i.e. when the river level was > 5.25 m above nseanlevel; Pichard, 1995; Fig. 6). As
proposed for the Yellow River-dominated Bohai Sea (Wu et8l3), highly turbid river
flow might play a key role in the BIT index when the river mioloas shiftedcloser to the
core site. Highly turbid river flow carries more SPM to tharine sites and thus reduces
water transparency, providing unfavourable conditions for primary pragu€fiurner et al.,
1990). As a result, fewer Thaumarchaeota might be producedhasdéss crenarchaeol
might accumulate in marine sediments, whilst the input ofrineebrGDGTs increases,

amplifying the magnitude of the BIT index.

6. Conclusions
Our study indicates that brGDGTs were transported primariynm frthe Rhoéne
watershed to the Rhéne prodelta and that the contribution ofenarmbduced brGDGTs was

minor. However, the BIT index showed a stronger correlation eviénarchaeol concentration
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than with brGDGT concentration, indicating that the BIT indeRidne prodelta sediments
was primarily influenced by variation in marine crenarcthgeoduction rather than by the
delivery of riverine brGDGTs. This complicates the applaratof the BIT index as an
indicator for the input of continental OC and thus as a palaeofiomg. Furthermore, it was
observed that the shifts in the Rhéne distributaries cordrthike distribution of allochthonous
and autochthonous brGDGTs and crenarchaeol at the core site.thNéhsantinental material
was delivered by the Rhéne River more directly to the cibee(Roustan phase), the BIT
index strongly mimicked the historical palaeoflood record. Bhisws the potential of the
BIT index for tracing palaeoflood events and thus for providinggudlood records on longer
geological time-scales beyond the instrumental period, assurhatgnb major change
affected the course of the river channel. Our study alsoigiighlthe idea that variation in the
delivery route of continental OC by rivers to core sites shbaldaken into account for the

use of the BIT index as a palaeoflood proxy.
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Figure captions

Fig. 1. Structure of brGDGTSs (I-11l) and crenarchaeol (V).

Fig. 2. Map showing the sampling locations of SPM along the Rhéne RRMi1, RW2,
RW3, and RW4) and multicore Dyneco 23B and piston core RHS-Ki®57 the Rhone

prodelta (NW Mediterranean).

Fig. 3. Box plot of A) summed brGDGTgug/g OC), B) crenarchaeglg/g OC), and C) BIT
index from SPM collected in October 2010 and piston core RHS-K&#lécted in
September 2008. Core top sediment data from multicore Dynecar23Bdicated with a red

star. Letters indicate statistically significant groupslata p < 0.05).

Fig. 4. Vertical profile of A) summed brGDGTSs for concentratipig/g OC, black line) and
accumulation ratepg/cnf/yr, red line), B) crenarchaeol for concentratipiy/y OC, black
line) and accumulation rateug/cnf/yr, red line), C) BIT index, D) ostracod fresh water

assemblage (%), and E) ostracod full marine assemblapgér¢m piston core RHS-KS57.

Ostracod data are from Fanget et al. (2013). Filled trsnigldicate age control points.

Fig. 5. Cross plots A) between crenarchaeol and summed brGDGTstvigdrecrenarchaeol
and the BIT index and C) between summed brGDGTs and the BIT ifatedoth
concentrationsp(g/g OC) and accumulation ratesg(cnf/yr). Redand bluelines indicate

linearand logrelationships for whole datasetspectively



651

652

653

654

655

656

Fig. 6. Detailed comparison of A) accumulation rates of summed mBsD(ug/cn?/yr), B)
accumulation rates of crenarchaepdy/cnf/yr), and C) BIT index with D) historical flood
records at Arles in France (Pichard, 1995) for the Roustan lebedp Filled triangles

indicate age control points.
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Table?2

Linear regression analysis between crenarchaeol and sulw@&&GTs, crenarchaeol and
BIT index, and summed brGDGTs and BIT index for (A) concentnat{ig/g OC) and (B)
accumulation rates (ARug/cnf/yr). The relationship of p < 0.05 in significance leiel

highlighted in bold.

Crenarchaeol vs. Crenarchaeol vs. BrGDGTSs vs.

brGDGTs BIT BIT

Parameters Robes R p R p =3 p

A. Concentration
ROUSTAN 0.37 <0.001 -046 <0.001 0.003 0.69
PEGOULIER 0.15 0.40 -0.33 0.17 0.15 0.40
GRAND RHONE  0.30 0.01 -0.26 0.02 0.15 0.09
BRAS DE FER -0.001 0.91 -0.72 <0.001 0.09 0.28
Combined 0.29 <0001 -043 <.0001 0.03 0.12

B. Accumulation

rate
ROUSTAN 0.50 <0.001 -0.26 <0.001 0.01 0.43
PEGOULIER 0.06 0.61 -0.37 0.14 0.10 0.48
GRAND RHONE  0.31 0.01 -021 0.04 0.19 0.05
BRAS DE FER 0.04 0.44 -0.64 <0.001 041  0.009

Combined 0.59 <0001 -0.15 0.0002 0.03  0.09
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