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Summary 

Data are presented for Total carbon dioxide (TCO2), oxygen and nutrients from 14 cruises 

covering two repeat sections across the Weddell Gyre, from 1973 to 2010. Assessments of the 

rate of increase of anthropogenic CO2 (Cant) are made at three locations. Along the Prime 

Meridian, TCO2 is observed to steadily increase in the bottom water. Accompanying changes 

in silicate, nitrate and oxygen confirm the non-steady state of the Weddell circulation. The 

rate of increase of TCO2 of +0.12±0.05 µmol kg
-1

 yr
-1

 therefore poses an upper limit to the 

rate of increase of Cant. In contrast, the bottom water located in the central Weddell Sea 

exhibits no significant increase in TCO2, suggesting that this water is less well ventilated at 

the southern margins of the Weddell Sea. At the tip of the Antarctic Peninsula (i.e., the 

formation region of the bottom water found at the Prime Meridian) the high rate of increase of 

TCO2 over time observed at the lowest temperatures suggests that nearly full equilibration 

occurs with the anthropogenic CO2 of the atmosphere. This observation constitutes rare 

evidence for the possibility that ice cover is not a major impediment for uptake of Cant in this 

prominent deep water formation region.  
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Introduction 

The perturbation of the global carbon cycle by human activity has been extensively 

documented. Measurements of atmospheric carbon dioxide (CO2) at Mauna Loa Observatory 

have accurately revealed the continuous buildup of the CO2 in the atmosphere since the 1950s 

[1] and have been instrumental in raising awareness of the global-scale climate experiment. 

Because of the intense exchange of gases between the atmosphere and the oceans, the carbon 

inventory of the oceans has also been increasing. However, it has proven difficult to quantify 

the carbon uptake and storage by the oceans. Mixing time scales of the oceans are several 

orders of magnitude larger than those of the atmosphere [2], implying that a time series 

approach such as that so successfully implemented at Mauna Loa (and subsequently at other 

sites) will not allow for a globally representative picture of the changing oceanic carbon 

reservoir at high temporal resolution.  

Based on worldwide measurements of the partial pressure of CO2 in the surface ocean and the 

atmosphere, Takahashi et al. [3] computed an oceanic CO2 sink of 2±1 Pg C yr
-1

 for the 

nominal year 2000. Results from other methods give similar estimates [4]. The uptake of 

anthropogenic CO2 (Cant) is not homogeneously distributed over the world oceans, but varies 

strongly depending on local characteristics (e.g., biological CO2 fixation or respiration, 

seasonal cooling or warming, upwelling, deep water formation). The Southern Ocean is 

thought to be a region of disproportionately high CO2 absorption [5,6] with the most recent 

estimate, based on different methods, amounting to 0.42 Pg C yr
-1

 south of 44°S [6]. 

Uptake of Cant occurs at the ocean surface, but long-term storage involves the deep and 

abyssal oceans. The surface and deep ocean are separated by the thermocline which impedes 

intense contact. However, at high latitudes the connectivity between the surface and deep 

oceans is high due to the small density differences between these layers; one may envision the 

polar oceans to provide a direct contact between the atmosphere and the deep ocean waters. 

Indeed, almost all of the abyssal water masses in the world oceans are generated in only a few 

restricted regions of the polar oceans. Within the Southern Ocean, one of those regions is the 

Weddell Sea and its eastward extensions, known collectively as the Weddell Gyre. The 

Weddell Gyre is located in the Atlantic sector of the Southern Ocean with the Antarctic 

Peninsula as its western boundary. The gyre is mainly wind-driven with westward flow in the 

south and eastward in the north. Upwelling of sub-surface waters occurs towards its interior 

due to its divergent nature, but also along the shelves [7]. From the Antarctic Circumpolar 

Current to the north, sub-surface water known as Circumpolar Deep Water (CDW) is 

imported mainly in the east [8]. This CDW is the main source water of the gyre from which 

almost all other water masses are derived. Locally known as Warm Deep Water (WDW), it is 

characterized by a temperature and salinity maximum just below the pycnocline. Along the 

shelves in the south and southwest of the Weddell Sea, surface waters cool and become saltier 

to form a dense water mass that will flow downslope into the abyssal Weddell Sea, entraining 

a (variable) fraction of WDW during its descent. At depth, the cold water mass is referred to 

as Weddell Sea Bottom Water (WSBW). This WSBW is one of the densest waters in the 

oceans and contributes to the Antarctic Bottom Water (AABW) which is found in the abyssal 

oceans. 



By the process of deep water formation, the deep and bottom layers of the oceans are supplied 

with oxygen and other atmospheric gases like the anthropogenic chlorofluorocarbons (CFCs) 

and CO2. Notably, dense water formation is potentially one of the main routes for Cant to enter 

the abyss and be sequestered on time scales of centuries. The high latitudes of the Southern 

Ocean have the largest uncertainty regarding the invasion of anthropogenic CO2, with 

different data-based methods giving different results [9]. 

The Weddell Gyre has, for this reason, been a major region of investigation of the carbon 

cycle and the anthropogenic perturbation thereof [10,11,12,13,14,15]. It is evident that the 

total storage of Cant is relatively small [13], but a significant increase in CO2 has been found 

in the deep and bottom layers of the gyre [14,15], although the latter studies differ in the 

vertical distribution of Cant. We expand on these earlier studies of the accumulation of Cant in 

the Weddell Gyre by investigating, in an extended measurement database, the trends in total 

CO2 in the WSBW at (i) the Prime Meridian, (ii) the deep central Weddell Sea and (iii) the 

continental slope of the Antarctic Peninsula. This comprehensive use of the available data 

now allows an improved assessment of the invasion of anthropogenic CO2 into the Weddell 

Gyre. 

 

Data and Methods 

Data are presented from two sections across the Weddell Gyre, which have been occupied 

repeatedly during the last decades (see table S1 for a detailed listing of cruises and where the 

data can be obtained). Both sections were in most years sampled consecutively during a single 

cruise with the German icebreaker FS Polarstern. The section along the Prime Meridian (or 

Greenwich Meridian) runs from about 55°S to the Antarctic continent. Van Heuven et al. [15] 

have extensively described the data at this section between 1973 and 2008 and here we add 

data from Polarstern cruise ANT-XXVII/2 in 2010/11 (see below). For nutrients and oxygen, 

data of two older cruises (ANT-VIII/2, 1989 and ANT-IX/2, 1990) are additionally included. 

The second section runs between Kapp Norvegia and Joinville Island near the tip of the 

Antarctic Peninsula; we present data between 1993 and 2011, consisting of 6 cruises with data 

also at the Prime Meridian, supplemented by cruise ANT-X/7 (1993) [16]. 

The newest, previously unpublished data were collected during cruise ANT-XXVII/2 from 28 

November 2010, Cape Town, South Africa to 5 February 2011, Punta Arenas, Chile [17]. 

Measurements of Total CO2 (TCO2) and Total Alkalinity (TA; not used in the present study) 

were conducted with the same two instruments (VINDTA 3C, Marianda, Kiel, Germany) as 

used during the previous cruises ANT-XXIV/3 and ANT-XXIV/2 in 2008. TCO2 was 

measured with the coulometric method [18]. Accuracy was set by measuring Certified 

Reference Material (CRM) from batches 100 and 105 obtained from Prof. Andrew Dickson of 

Scripps Institution of Oceanography (U.S.A.). The precision during this cruise for TCO2 and 

TA was 1.0 and 1.5 µmol kg
-1

, respectively, as determined from the average difference of in-

bottle CRM replicates (n=87). A number of samples (unknowns and CRMs) were measured 

on both instruments to assess consistency between the two instruments. 



The dissolved nutrients nitrate, phosphate and silicate were measured during ANT-XXVII/2 

on the TRAACS 800 auto-analyzer system of the Royal Netherlands Institute for Sea 

Research (NIOZ, Texel, the Netherlands), which was also used on the cruises in 1996, 1998, 

2005 and 2008. In all these cases, the same sea water standards with known nutrient 

concentrations were measured for initial consistency control. New Reference Material 

Nutrient Sample (RMNS; JRM Kanso, Japan) containing known concentrations of silicate, 

phosphate, nitrate and nitrite in seawater was also analyzed in triplicate during every run and 

used to standardize the results. Overall accuracy (with respect to RMNS) for nitrate, 

phosphate and silicate is better than 0.11 µmol/l, 0.01 µmol/l and 0.3 µmol/l, respectively. For 

more details, refer to [19]. 

Only data for dissolved oxygen (O2) was used that was measured with a standard (generally 

automated) Winkler technique; the precision is ±0.2% for the Polarstern cruises. Details of the 

measurements of temperature, salinity and pressure are given in [17] and [20]. For all 

measurements, accuracy is better than ±0.003°C, ±0.003 and ±2 dbar, respectively. Salinity is 

given on the Practical Salinity Scale (PSS78). 

Some clearly deviating cruise datasets were discarded for this study (TCO2 for AJAX, 

74JC10_1 and part of ANT-X/4; oxygen for ANT-XXIII/3, ANT-XXII/3 and parts of ANT-

V/2&3 and GEOSECS; see [15] for the procedure). 

 

Data adjustment 

For data collected prior to 1993, no internationally recognized CRMs for TCO2 were available 

and systematic offsets due to calibration issues may have gone unnoticed. To minimize such 

inaccuracies, data from all cruises have been adjusted to be unbiased (with respect to each 

other) in the lower Warm Deep Water to upper Weddell Sea Deep Water. In this depth range 

(about 800 to 2200 m) the water column is least ventilated [21] and thus we also expect the 

lowest level of Cant. Data of TCO2 from between -0.4°C and 0.2°C from individual cruises 

were regressed against potential temperature and the intercept at 0°C was determined (note 

that the definition of WDW proper and WSDW proper are different from this). Each cruise 

was then adjusted to the average intercept of the cruises from the CRM era (a more 

comprehensive description of the data standardization methodology is given in [15]). This 

procedure was followed for both data from the Prime Meridian and for those in the central 

and western Weddell Sea (in the latter case using only data from east of 43ºW, to avoid re-

using ‘standardization samples’ in subsequent analyses). The results are considered to 

improve local data consistency, and should not be taken to represent overall biases of 

individual cruises. For the cruises during the CRM era the (additive) adjustments of TCO2 

were smaller than the commonly reported upper limit for accuracy of 2 µmol kg
-1

, and also 

below the threshold of 4 µmol kg
-1

 used in the major data quality control efforts GLODAP 

and CARINA [22]. In fact, only cruise ANT-V/2&3 (1986) required a significant (upward) 

correction of TCO2. In the remainder of this work, we use TCO2 normalized to a salinity of 

34.65, to partially account for TCO2 changes due to mixing. 



For the other variables presented here, no CRM was available and thus adjustments were 

implemented similarly. Modest multiplicative adjustments of 0.5-2% were generally applied 

to nutrients. Adjustment details are available in Table S2.  

 

Results 

Prime Meridian 

Shown in Fig. 2 are time trends of four relevant sea water properties (TCO2, oxygen, silicate, 

nitrate) in four different water masses at the Prime Meridian. These were obtained by means 

of linearly regressing the mean values of each cruise, in each water mass, against the year of 

measurement. A significant trend in TCO2 of +0.12±0.05 µmol kg
-1

 yr
-1

 is found in the 

WSBW between 1973 and 2011. This rate is very similar to the rate observed during the era 

of CRM use (i.e., 1996-2010; +0.16±0.14 µmol kg
-1

 yr
-1

). In the surface layer the trend is 

larger (+0.53±0.21 µmol kg
-1

 yr
-1

), as is the variability, which is not surprising because 

several processes, such as biological activity and air-sea exchange (and also the variation in 

sampling season), tend to have large impact on TCO2. Interestingly, there are also trends in 

the steady state tracers oxygen (decreasing in the deeper water masses) and silicate 

(increasing in the deeper water masses). The small trend observed in nitrate is only barely 

significant. The new data from 2010/2011 fall nearly exactly on the existing deep water trends 

of all four properties. 

 

Abyssal central Weddell Sea 

In Figure 3 we display the normalized TCO2 in the WSBW in the Weddell Sea interior at 25-

43°W (θ<-0.75°C). This location was chosen for its modest lateral CFC-12 maximum at the 

sea floor (see [23]), suggesting modest recent ventilation – note that the magnitude of the 

CFC maximum is similar to that in the core of WSBW on the Prime Meridian [23]. The mean 

age of WSBW both on the Prime Meridian and in the Weddell Sea interior is 120-160 years 

[23]. However, within the (relatively small) inter-annual variability, no significant trend in 

TCO2 was found between 1993 and 2011, in apparent contrast to the TCO2 increase observed 

in the WSBW at the Prime Meridian. 

 

Tip of the Antarctic Peninsula 

The WSBW is generated along the margins of the western and southwestern Weddell Sea, 

where nascent plumes of WSBW descend the continental slope [23,24]. Such a plume can be 

observed near the western end of all our sections across the Weddell Sea. The annual and 

inter-annual variability of WSBW formation is rather large [25,26], and the narrow vertical 

extent of the plume complicates its sampling. Because of that, there exists, on the shelf as well 

as on the slope, an (apparent) variability of water types, ranging from near-freezing former 

surface water to nearly unmodified WDW from the Weddell Sea interior. It is, therefore, 



nearly impossible to compute a simple trend of TCO2 from our repeat sections, although 

changes between two occupations may give indications for the uptake of Cant [27]. To 

nonetheless extract temporal trends from our dataset, we assess the time rate of change of 

normalized TCO2 for discreet selections of potential temperature (θ; Fig. 4). To that end, 

TCO2 data from all cruises were binned in 0.3°C intervals. For each interval, the TCO2 

averages (one per cruise) were then regressed against time, yielding the rate of increase at a 

certain θ (Fig. 4A); the mean depth of samples within each θ-bin is shown in Figure 4B. 

Most conspicuously, in the very coldest waters below -1°C (i.e., in the most recently 

ventilated waters), we observe the TCO2 trend to become steeper with decreasing 

temperature, approaching 0.8–1.0 µmol kg
-1

 yr
-1

 at freezing temperature (not enough such 

freezing point samples are available for trend determination). For θ between -1 and -0.5°C, 

the rate of increase in TCO2 is at its minimum. At higher θ, i.e., in the upper WSDW (-

0.2°C<θ<0°C), an intermediate rate of increase of about 0.2 µmol kg
-1

 a
-1

 is observed, which 

is somewhat surprising as this water mass is considered not well ventilated – note that based 

on the ‘lower WDW/upper WSDW’ adjustment of the data, one might inherently expect no 

changes at θ of -0.2°C; however, the adjustments were performed on data east of 43ºW, i.e., 

towards the central Weddell Sea, and therefore an absence of trends at the slope is not 

necessarily expected. For comparison, we performed a similar analysis for the data along the 

Prime Meridian (Fig. 4C and 4D). Because the bottom water is nowhere colder than -1°C here 

(implying significant admixture of warmer, less ventilated waters), changes are not so 

pronounced, but agree with the earlier estimate of TCO2 increase in the WSBW. The 

WSDW/WDW at the Prime Meridian does not exhibit an appreciable TCO2 increase. 

 

Discussion 

All methods for determining Cant contain the assumption of steady state conditions in 

hydrography and biogeochemistry of the region under investigation. This also holds for our 

straightforward way of detecting trends in measured TCO2 data; the rise of TCO2 could also 

be (partly) caused by non-anthropogenic processes. At the Prime Meridian, the main increase 

in TCO2 is observed to occur in the WSBW, largely provoked by a core of recently ventilated 

water centered at 58°S which originates from the bottom water formation regions in the 

western Weddell Sea [15,21,23]. However, significant decadal variability (and trends) in the 

potential temperature and salinity of the WSBW, and a decadal decrease of its volume, have 

been documented [20,28], suggesting a non-steady state. Moreover, Huhn et al. [23] using 

CFC data, suggest that the ventilation rate of the WSBW has significantly decreased. The 

downward trend of oxygen and upward trends of silicate and nitrate (Fig. 2) are in line with 

such non-steady state conditions and less ventilation. Circulation changes that would lead to 

increased admixture of WDW would cause a decrease of oxygen in the WSBW. A reduction 

of the ventilation of WSBW would result in longer residence times of the water near the 

bottom, which in turn would tend to increase the silicate concentration, as high silicate 

concentration in the Weddell basin are eventually caused by transfer from the sediments [29]. 

The small, barely significant trend observed for nitrate (Fig. 2) is explained by the very small 

gradients of nitrate in the water column of the Weddell Gyre (only about 2 µmol kg
-1

 over 



more than 4000 m; see typical concentrations in Fig. 2); in such conditions, variations in 

admixture of water masses do not yield significant changes beyond measurement uncertainty. 

These observations strengthen an earlier suspicion [15] that changes in hydrographic 

conditions to some extent underlie the observed increase in TCO2. Nonetheless, the expected 

effect of hydrographic trends on TCO2 (ca. 0.025 µmol kg
-1

 yr
-1

) is not enough to explain the 

full size of the observed trend on TCO2 (as stated, +0.12±0.05 µmol kg
-1

 yr
-1

). We cannot rule 

out changes in deep ocean remineralization. 

Along the section across the Weddell Sea, WSBW is found overlying most of the sea floor, 

though its eastward extent has been shrinking during the last decades (G. Rohardt, 2013, 

AWI, unpublished data). This bottom water is thought to be originating from the Filcher-

Ronne Shelf in the south [24,26]. In the most ventilated deep part of the section, we do not 

find a significant TCO2 increase (Fig. 3), this in apparent contrast to the increase in the 

WSBW on the Prime Meridian and on the continental shelf to the west (note that this also 

holds when at the Prime Meridian only the data from the CRM era are considered (see Fig. 2), 

i.e, the same period of time as for the central Weddell Sea). Using the CFC-based Transit 

Time Distribution (TTD) technique, Huhn et al. [23] found a non-zero level of Cant in this 

ventilated water mass, but estimated the increase herein over the last two decades to be only 

about 1 µmol kg
-1

. Assuming the TTD generates the correct magnitude of anthropogenic 

TCO2 increases, it is manifest that such a small increase is not significantly discernible in 

TCO2 data which spread about 5-10 µmol kg
-1

 in this water mass (see Fig. 3). The 

anthropogenic signal is small because of relatively limited ventilation [23]. It is encouraging 

that the results from CFCs and direct measurements are in such fine agreement. 

On the shelf and continental slope of the Antarctic Peninsula, the rate of increase of TCO2 as 

a function of θ (Fig 4A) convincingly reveals significant uptake of (anthropogenic) CO2 by 

the cold waters that, upon densification during winter, may contribute significantly to the 

ventilation of the deep Weddell Gyre. The coldest waters (below -1.5ºC) are then the nascent 

bottom waters on the shelf and upper slope. The rate of increase of TCO2 in these water 

equals the theoretical rate (red circle in Fig 4A) that is expected for freezing shelf water in 

pCO2 equilibrium with the atmospheric pCO2 of the early 2000s (calculated using CO2SYS 

[30], assuming θ = -1.88°C, S=34.4 and the mean yearly increase in pCO2
atm

 from 1995 to 

2005 of 1.8 µatm yr
-1

). This leads us to believe that almost complete equilibration of the 

surface water with the increasingly CO2-rich atmosphere occurs on a regular basis. Near the 

Antarctic Peninsula and at the Prime Meridian (Fig 4C), water between about -1°C and -0.3°C 

is observed to have a low rate of increase of TCO2. Probably this is water that circulates 

within the gyre without much contact with the atmosphere. Water of intermediate temperature 

between -1.5°C and -1°C likely are mixtures of descending shelf water and entrained, warmer, 

Cant-poor WDW and WSDW from the Weddell Sea interior. Towards higher θ, i.e., in the 

upper WSDW and WDW, the rate of increase gets higher as well (Fig. 4A). This hints at 

mixing of those deep water masses with Cant-enriched shelf waters, a process occurring along 

the shelf break [31,32]. On the Prime Meridian, such an increase of the rate of increase of 

TCO2 in the WDW is not observed (Fig. 4C), likely owing to the local absence of admixture 

of shelf waters. Also, at the Prime Meridian the TCO2 trend in the surface water is, unlike at 

the Peninsula not following the atmospheric increase of CO2; the two reasons are the 



definition of surface water (<200 m), which thus includes some Cant-poor WDW at some 

locations, and the dilution of the surface waters by upwelled deep water poor in Cant. Much of 

the Cant-charged upper WSDW/WDW that is formed at the Peninsula may exit the Weddell 

Gyre to the north before reaching the Prime Meridian. Such a mechanism of dense water 

masses dynamically moving along the slope through the passages in the South Scotia Ridge 

has been reported before [33]. 

The hydrographic conditions of the northern Weddell Sea margin may be conducive to full 

equilibration of pCO2. The typical time scale of full CO2 equilibration between ocean and 

atmosphere is in the order of 6-12 months, implying that with full equilibration, the residence 

time of the surface water should also be in that order of magnitude. This may be accomplished 

by the shelf water moving around the Weddell Gyre as part of the Antarctic Coastal Current 

[34]. Due to the divergent nature of the gyre, the exchange of the shelf water with interior 

water masses is restricted [31] thus enhancing the residence time. However, sea ice covers the 

shelf waters during a considerable part of the year. In winter the TCO2 of the shelf waters is 

probably high due to some upwelling of high-TCO2 Warm Deep Water and some 

remineralization of organic matter, while outgassing is impeded due to the contiguous ice 

cover. In spring and summer, major biological activity in and around the sea ice and the water 

causes strong pCO2 undersaturation [35,36] which results in an influx of CO2 from the 

atmosphere. High wind speeds towards the end of summer and in autumn strongly enhance 

the air-sea fluxes. This causes the shelves to be sinks both for natural and anthropogenic CO2 

and a high level of equilibration may thus be reached.  

Although the coastal region of the Southern Ocean has been considered to be a strong sink for 

anthropogenic CO2 (e.g., [35]), several other oceanographic studies have (explicitly or 

otherwise) suggested the CO2 saturation to be significantly lower than 100% (e.g., [11,12]). In 

the current work however, the well-defined, long term positive trend, increasing in slope with 

decreasing temperature, is relatively unambiguous in its suggestion of a saturated source 

water mass. Our observation that these important deep water formation regions appear to 

track the increasing atmospheric pCO2 is likely to be of great value to studies in which a 

surface saturation of Cant has to be prescribed (notably, transit time distribution studies; e.g., 

[23]). 

 

Conclusions 

We present new evidence for the notion of significant invasion of anthropogenic CO2 into the 

deep Weddell Gyre. Along the Prime Meridian, the longest and most frequently sampled 

series of repeat sections exists. Newly added data, collected in 2010-2011, strengthens our 

confidence in an earlier observation of increasing TCO2 in the Weddell Sea Bottom Water at 

the Prime Meridian [15], improving the estimate to +0.12±0.05 µmol kg
-1

 yr
-1

 over the period 

1973-2010. For the more recent era of CRM use, the rate is determined to be +0.16±0.14 

µmol kg
-1

 yr
-1

. The accompanying trends that are observed in the concentrations of oxygen, 

silicate and nitrate suggest the presence of changes in biogeochemistry and/or circulation, 

congruent with prior observations of the changes in hydrography and ventilation of the 



abyssal waters [20,23]. Such processes may account for part of the observed time trend of 

TCO2. Observations since 1993 of the bottom water of the central Weddell Sea do not reveal a 

significantly increasing TCO2. This is in line with earlier TTD-based results [23], which show 

only a very small increase in Cant; such a small increase would not be discernible in the TCO2 

data due to natural variability in the region. Ventilation and replenishment of these waters 

must be very slow to be compatible with these observations. Sluggish air-sea gas exchange at 

the source region of these waters, the Filcher-Ronne Shelf, is speculated to underlie the 

observed low rate of increase in the bottom water. 

We find strong indications that the shelf water and nascent bottom water in the western 

Weddell Sea (i.e., the source waters of the WSBW at the Prime Meridian) to large extent track 

the atmospheric pCO2. This suggests that at that location, ice cover, which is ubiquitously 

present in this region, does not constitute a major impediment for air-sea CO2 equilibration on 

annual time scales. Conceivably, the enhanced residence time of the shelf water in a gyre 

system combined with the yearly period of ice-free conditions suffice to complete air-sea 

equilibration of pCO2. Frequent occurrences of coastal polynyas may also contribute. A 

considerable part of the Cant-enriched shelf and nascent bottom water may exit the Weddell 

Sea under topographic constraints relatively straight to the north, where it may be mixed into 

the deeper layers. 

The present study illustrates the paramount value of long-term time series measurements for 

the elucidation of the Cant dynamics of regions of high variability such as the Weddell Gyre. 

Such measurement series should be sustained in order to further our understanding of the 

abyssal Cant sequestration potential of the Southern Ocean. 
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Figure 1. Bathymetric map of the Weddell Sea and surroundings. All oceanographic research 

stations of all cruises included in this study are drawn as black circles. Red circles indicate the 

stations from which data is used in the Prime Meridian analysis. Green circles: abyssal 

Weddell Sea analysis. Blue circles: Antarctic Peninsula analysis. 

 



 

Figure 2. Time trends (µmol kg
-1

 yr
-1

) in four seawater properties determined in the cores of 4 

water masses at the Prime Meridian - from top to bottom: Surface water, Warm Deep Water 

(WDW), Weddell Sea Deep Water (WSDW) and Weddell Sea Bottom Water (WSBW). 

Trends were computed using least squares regression of the means of each cruise against time. 

Significant trends are indicated by drawn lines, statistically insignificant trends by dotted 

lines. For TCO2 the trends are additionally shown for the CRM era with light blue lines. 

 

Figure 3. Trend of the mean TCO2 concentration in the bottom water (within 250 m from the 

seafloor) of the Weddell Sea interior between 25ºW and 43ºW from 1992 to 2011. The slight 

increase is not significant (blue dotted line). From 1996 onwards, CRMs were used to 

ascertain TCO2 data accuracy (light blue dotted line); the trend is not significant either. 

 



 

 

 

Figure 4. Time rate of change of normalized TCO2 (dTCO2/dt) binned in 0.3°C ranges of θ 

for (A) data over the continental shelf and slope of the tip of the Antarctic Peninsula (west of 

40ºW; within 1750 m of seafloor but not shallower than 250 m depth), and (C) data along the 

Prime Meridian (below 500 m). Vertical lines indicate the bin ranges, horizontal lines 

represent the standard error of the determined time trend. The red dot indicates the expected 

mean rate of increase, assuming pCO2 equilibrium with the atmosphere during the decade 

1995-2005. (B) and (D) show the mean and standard deviation of the depths of the samples in 

each of the θ bins for the Antarctic Peninsula and Prime Meridian data, respectively.  
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