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Abstract

Branched glycerol dialkyl glycerol tetraethers (brGDGTs) in river fan sediments have been used successfully to reconstruct
mean annual air temperature (MAAT) and soil pH of the Congo River drainage basin. However, in a previous study of
Amazon deep-sea fan sediments the reconstructed MAATS were ca. 10 °C colder than the actual MAAT of the Amazon basin.
In this study we investigated this apparent offset, by comparing the concentrations and distributions of brGDGTs in Amazon
River suspended particulate matter (SPM) and sediments to those in marine SPM and surface sediments. The riverine
brGDGT input was evident from the elevated brGDGT concentrations in marine SPM and surface sediments close to the
river mouth. The distributions of brGDGTs in marine SPM and sediments varied widely, but generally showed a higher
relative abundance of methylated and cyclic brGDGTs than those in the river. Since this difference in brGDGT distribution
was also found in intact polar lipid (IPL)-derived brGDGTs, which were more recently produced, the change in the marine
brGDGT distribution was most likely due to marine in situ production. Consequently, the MAATS calculated based on the
methylation of branched tetraethers (MBT) and the cyclisation of branched tetraethers (CBT) were lower and the CBT-
derived pH values were higher than those of the Amazon basin. However, SPM and sediments from stations close to the river
mouth still showed MBT/CBT values that were similar to those of the river. Therefore, we recommend caution when applying
the MBT/CBT proxy, it should only be used in sediment cores that were under high river influence. The influence of riverine
derived isoprenoid GDGT (isoGDGT) on the isoGDGT-based TEXgq temperature proxy was also examined in marine SPM
and sediments. An input of riverine isoGDGTSs from the Amazon River was apparent, but its influence on the marine TEXg,
was minor since the TEXgs of SPM in the Amazon River was similar to that in the marine SPM and sediments.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license (http://
creativecommons.org/licenses/by-nc-sa/3.0/).
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1. INTRODUCTION

During the last decade, the implementation of high-per-
formance liquid chromatography/mass spectrometry
(HPLC/MS) has enabled the detection of structurally
diverse intact glycerol dialkyl glycerol tetraethers (GDGTs)
(see Schouten et al., 2013a,b for a review). The most com-
monly detected tetraether lipids in coastal marine sediments
are branched and isoprenoid GDGTs (brGDGTs and iso-
GDGTs, respectively).

BrGDGTs are membrane-spanning lipids most likely of
anaerobic (e.g. Weijers et al., 2006a.b) and heterotrophic
(Pancost and Sinninghe Damsté, 2003; Oppermann et al.,
2010) bacteria that are ubiquitous in peat (Weijers et al.,
2006a) and soil (Weijers et al., 2007b). Recent studies indi-
cate that some acidobacterial species produce brGDGT-Ia
(Fig. 1) (Weijers et al., 2009a; Sinninghe Damsté et al.,
2011), but the producers of other brGDGTs remain
unknown. The brGDGTs vary in the degree of methylation
(4-6) and may contain up to two cyclopentane moieties
formed by internal cyclization (Sinninghe Damsté et al.,
2000; Weijers et al., 2006a) (Fig. 1). The distribution of
the brGDGTs in soils, as expressed by the degree of meth-
ylation (methylation index of branched tetraethers; MBT)
and cyclization (cyclization index of branched tetraethers;
CBT) of the brGDGTs, correlates with mean annual air
temperature (MAAT) and soil pH (Weijers et al., 2007b;
Peterse et al., 2012). Hence, the MBT/CBT proxy has been
used to reconstruct past environmental and climate changes
in diverse settings: marine (e.g. Weijers et al., 2007b;
Donders et al., 2009; Rueda et al., 2009; Bendle et al.,
2010), and lacustrine (e.g. Tyler et al., 2010; Zink et al.,
2010; Fawecett et al., 2011) sediments, peat (Ballantyne
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et al., 2010), and loess (Peterse et al., 2011b). Weijers
et al. (2007a) applied the MBT/CBT proxy in Congo
deep-sea fan sediments, assuming that brGDGTs were
mainly produced in soils, washed into small streams and
rivers by soil erosion, and further transported to the ocean.
Since then it has been argued that the MBT/CBT paleoth-
ermometer of deep-sea fan sediments reflect an integrated
environmental signal of the whole river basin. However, it
has also been found that the brGDGT distributions in mar-
ine sediments might be altered by in situ production and
degradation processes in the marine environment (Peterse
et al., 2009; Zhu et al., 2011; Hu et al., 2012).

Following the successful use of the MBT/CBT proxy in
the Congo deep-sea fan, Bendle et al. (2010) in turn applied
it to the Amazon deep-sea fan sediments. In contrast to the
findings of Weijers et al. (2007a), the reconstructed MAAT
in the Amazon decreased from the glacial period (20-23 °C)
to the mid-Holocene (~10 °C), increasing over the remain-
der of the Holocene to 17 °C. It was postulated that an
increased brGDGT contribution from the Andes region
was responsible for the observed decrease of the recon-
structed MAAT during the Holocene (Bendle et al.,
2010). However, subsequent studies (Kim et al., 2012b;
Zell et al., 2013a) have shown that the brGDGTs in the
river suspended particulate matter (SPM) and riverbed sed-
iments in the central Amazon basin do not predominantly
originate from the high Andes soils (>2500 m in altitude).
Zell et al. (2013a) found that the MBT/CBT-derived tem-
perature from the lower Amazon River was about 2 °C
lower than that in surrounding soils. This difference was
related to in situ production in the river and highlights
the complex interplay between allochthonous and autoch-
thonous sources of brGDGTs. However, this can also only
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Fig. 1. Chemical structures of brGDGTs (Ia-IIlc) and isoGDGTs (GDGT-0-GDGT-3 and crenarchaeol) and the detected IPLs of brGDGT

Ia and crenarchaeol in this study (1-6).
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partially explain the ~10 °C lower estimates of Holocene
temperatures in Amazon deep-sea fan sediments (Bendle
et al., 2010). In order to understand why the MBT/CBT
can be used to reconstruct the climate of the Congo basin,
but shows obvious problems in the reconstruction of the
Amazon basin climate, a detailed study of sources of
brGDGTs in marine sediments under the influence of the
Amazon River is required.

IsoGDGTs are membrane-spanning lipids mainly bio-
synthesized by Thaumarchaeota, formerly known as Group
I Crenarchaeota (Brochier-Armanet et al., 2008; Spang
et al., 2010). They are abundant in both marine environ-
ments (e.g. Schouten et al., 2002; Kim et al., 2010) and lakes
(e.g. Blaga et al., 2009; Sinninghe Damsté et al., 2009;
Powers et al., 2010). There occur isoGDGTs containing
0-4 cyclopentane moieties, and there is crenarchaeol and
its regio-isomer, which in addition to 4 cyclopentane moie-
ties contain a cyclohexane moiety (Schouten et al., 2000,
2008; Sinninghe Damsté et al., 2002) (Fig. 1). Schouten
et al. (2002) found that the number of cyclopentane moie-
ties in marine sediments increased with increasing sea sur-
face temperature (SST) and thus introduced the TEXgq
(TetraEther indeX of tetraethers consisting of 86 carbon
atoms) as a SST proxy. More recently, the TEXgs was
refined as TEX&) for tropical and subtropical oceans
(Kim et al., 2010), and a new water-depth-integrated annual
mean temperature calibration (0-200 m water depth) has
been introduced (Kim et al., 2012b). Since isoGDGTs also
occur in soil (Weijers et al., 2006b) and river SPM (e.g.
Herfort et al., 2006; Kim et al., 2007) the distribution of iso-
GDGTs in marine sediments can be influenced by input of
riverine isoGDGTs (Weijers et al., 2006b), presumably
affecting the TEX}. proxy inference.

In this study, we compared the concentrations and dis-
tributions of brGDGTs and isoGDGTs in the Amazon
shelf and deep-sea fan with those in the adjacent terrestrial
Amazon basin in order to assess the impact of the
brGDGT provenance on the application of the MBT/
CBT proxy in this region. Since brGDGTs have been
extensively studied in soils and SPM in the Amazon basin
(Kim et al., 2012a,b; Zell et al., 2013a,b) the present study
is fully focused on the potential sources of both brGDGTs
and isoGDGTs in the marine environment. This is an
essential step in order to be able to confidently apply
the MBT/CBT, BIT and TEX?6 proxies to marine sedi-
ment cores. To identify sources of the GDGTs, we exam-
ined the presence of reported intact polar lipids (IPLs) of
brGDGTs and crenarchacol (Liu et al., 2010; Pitcher
et al., 2010, 2011; Peterse et al., 2011a) as well as the con-
centrations and distributions of IPL-derived GDGTs as in
the approach by Zell et al. (2013a,b). This study provides
new insights on the interpretation of the GDGT-based
sedimentary record of the Amazon River deep-sea fan
and for other river systems.

2. STUDY AREA: THE AMAZON SHELF AND FAN
The Amazon River (Fig. 2A) is the largest drainage sys-

tem in the world in terms of fresh-water discharge
(Milliman and Meade, 1983) and catchment area

(Goulding et al., 2003). The mean annual water discharge
is 2 x 10°m®s™" at Obidos, the most downstream gauging
station in the Amazon River (Callede et al., 2000). The
Amazon River ranks second globally in terms of suspended
sediment particle transport, with an annual mean sediment
discharge of 8-12 x 10" kgy™! at Obidos (Dunne et al.,
1998). Once on the Amazon Shelf, the Amazon River
plume is advected offshore and transported northwestward
along the north Brazilian coast as it is entrained by the
North Brazilian Current, covering most of the continental
shelf from 1°S to 5°N (Muller-Karger et al., 1988). Average
annual water temperature and salinity provides an idea
about the extent of the Amazon River plume (Fig. 2B
and C). Over the shelf, the Amazon freshwater plume is
typically 3-10 m thick and between 80-200 km wide
(Fig. 2C; Lentz and Limeburner, 1995). The Amazon shelf
is strongly influenced by tidal currents with an extreme tidal
range of 10 m at the mouth of the Amazon River (Gibbs,
1982). The flow of the Amazon River is so large that the
estuary effectively extends across the entire inner shelf, in
a band within 25 km off the river mouth. The estuarine-like
circulation on the shelf allows high-salinity ocean water to
penetrate underneath the low-salinity surface plume and
prevents most riverine sediments from escaping off the
shelf, causing a sediment deposition as a band of highly
mobile, inner shelf muds extending 1600 km north-west
and 50-150 km across the shelf (Nittrouer and DeMaster,
1986). Thus, the Amazon shelf is an area of active sediment
deposition at an estimated rate of ~6 x 10" kg y~! (Kuehl
et al., 1986).

The Amazon fan (or Amazon cone) is globally the third
largest modern ‘mud-rich’ deep-sea fan and forms a signif-
icant proportion of the continental margin of Brazil
(Damuth and Flood, 1985). The Amazon Fan extends
downslope from the shelf break for ~700 km and exhibits
an elongated radial pattern covering ~3.3 x 10° km?. When
sea-level was low during glacial periods, sediment eroded
from the continent within the Amazon drainage basin was
transported directly to the fan (Damuth and Kumar,
1975). In contrast, when sea-level was high during intergla-
cial periods (such as today), the sediment load from the
river was transported in long shore currents to the north-
west and deposited on the continental shelf (Milliman
et al., 1975; Nittrouer and DeMaster, 1986).

3. MATERIALS AND METHODS
3.1. Sample collection

Marine SPM and surface sediments over the Amazon
Shelf and slope were collected on board of the R/V Knorr
197-4 between February and March 2010 (Table 1).
Sediment was collected at all stations, but SPM was only
collected along the sampling stations of the two transects
as indicated in Fig. 2D. SPM sampling was carried out at
two water depths, at the chlorophyll maximum (chly,y)
and close to the bottom. The depth of the chly., was
determined with a fluorescence detector (Fluorescence,
Wetlab ECO-AFL/FL). The water used to determine the
SPM concentration and the total organic carbon (TOC)
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Fig. 2. (A) Map of the Amazon basin showing the Amazon watershed (back line) and the sampling stations (red dots). (B) Mean annual SST
and (C) mean annual salinity in the western tropical Atlantic from the world ocean atlas 09 (WOAO09) data set (Antonov et al., 2010; Locarnini
et al., 2010). (D) Detailed view of the marine study area showing the sampling stations and indicating transects 1 and 2. NBC = North

Brazilian Current.

analysis of the SPM was collected with Niskin bottles.
Between 1 and 26 L of this water were filtered onto ashed
(450 °C, overnight) and pre-weighed glass fibre filters
(Whatman GF-F, 0.7 um, 47 mm diameter). For the lipid
analysis about 300 L of water were separately filtered onto
ashed glass fibre filters with in situ pumps (Whatman GF-
F, 0.7pum, 142mm diameter, WTS, McLane Labs,
Falmouth, MA). All samples were kept frozen at
—20°C and freeze dried before analysis. Sediment cores
were collected using a box corer from which the top
1 cm was subsampled.

River SPM was taken at Obidos, which is the last gaug-
ing station in the Amazon River and located 800 km
westwards from the Atlantic Ocean just beyond tidal
influences. Four SPM samples were collected each of them
at a different river water level: rising, high, falling and low
water level (Zell et al., 2013b). In addition, three river-bed
sediments were collected in 2010; one 26 km downstream
from Obidos and the other two close to the Amazon River
mouth (Fig. 2A).

3.2. Environmental parameter and bulk geochemical analysis

The pH of the sediment samples was measured in a mix-
ture of sediment and distilled water 1:3.5 (v:v). This water
and sediment were stirred vigorously and left to settle for
20 min. The pH was measured with a Wissenschaftlich-
Technische Werkstitten pH 315i/SET and probe pH-Elec-
trode SenTix 41 (pH 0-14, T 0-80 °C, stored in 3 mol L~!
KCl) at the Netherlands Institute for Sea Research (NIOZ).
Before the pH measurements, the pH analyzer was cali-
brated with CertiPUR buffer solutions with pH 4.01, 7.00,
and 10.00.

All sediment samples were freeze dried and decarbonat-
ed (using 2 mol L' HCI) prior to analyses. The marine
SPM filters were also decarbonated using HCIl vapor as
described by Lorrain et al. (2003). The TOC contents of
the marine sediments were analyzed with a Fison NA
1500 Elemental Analyzer at the University of South Florida
(USF, USA). The analyses were determined in duplicates
and the precision was 0.1 mg OC g~'. Particulate organic
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Table 1
Amazon River and marine SPM and sediment samples studied and their general properties.

Sampling Longitude Latitude Sampling CTD water Annual mean Measured oC

date water temperature temperature pH (Wt.%)

(dd/mm/yy) depth (m)  (°C) 0-200 m (°C)®
Amazon River SPM
CBMS5 (high water) 03/07/09 55.47 1.97 Surface 28.8 - 6.2 3.0
CBM6 (low water) 16/10/09 55.49 1.95 Surface 31.0 - 6.8 33
CBM7 (falling water) 08/09/10 55.50 1.95 Surface 30.5 - 7.0 3.0
CBMB8 (rising water) 01/02/11 55.55 1.91 Surface 28.7 - 6.8 1.0
Amazon River sediments
AMAZA 26 - —54.25 —2.41 - - - - 0.6
AMAZC RO11B - —51.01 —0.13 - - - - 0.2
AMAZC RO3 - —50.80 —0.95 - - - - 0.6
Marine SPM
13a 23/02/10 —48.61 4.46 1700 4.0 23.1 - 0.5
13a 23/02/10 —48.61 4.46 85 27.2 23.1 - 0.9
20 24/02/10 —48.35 4.04 1000 5.0 23.1 - 2.0
20 24/02/10 —48.35 4.04 75 27.5 23.1 - 5.2
21 25/02/10 —48.54 3.96 700 5.4 23.1 - 0.6
21 25/02/10 —48.54 3.96 85 27.8 23.1 - 6.0
22b 25/02/10 —48.61 3.95 600 5.9 23.1 - 2.8
22b 25/02/10 —48.61 3.95 89 27.7 23.1 - 16.3
23 25/02/10 —49.06 3.68 100 24.0 234 - 10.0
23 25/02/10 —49.06 3.68 75 27.9 234 - 13.7
25 26/02/10 —49.86 3.19 25 27.5 27.6 - 0.6
25 26/02/10 —49.86 3.19 5 28.7 27.6 - 43
28b 27/02/10 —48.17 3.78 990 5.0 23.1 - 0.6
28b 27/02/10 —48.17 3.78 100 27.4 23.1 - 0.5
32b 28/02/10 —47.64 3.07 1777 3.9 23.2 - 0.8
32b 28/02/10 —47.64 3.07 100 26.3 23.2 - 1.4
42b 02/03/10 —47.74 2.85 590 6.2 234 - 0.7
42b 02/03/10 —47.74 2.85 90 27.0 23.4 - 1.4
42¢/d 03/03/10 —47.85 2.57 200 12.1 234 - 2.1
42¢/d 03/03/10 —47.85 2.57 60 26.4 234 - 0.9
42d 03/03/10 —47.85 2.57 100 24.7 234 - 0.2
42d 03/03/10 —47.85 2.57 60 26.9 23.4 - 0.8
43 03/03/10 —48.05 2.09 55 27.5 26.7 - 0.7
43 03/03/10 —48.05 2.09 10 28.3 26.7 - 0.9
Marine surface sediments
13a 23/02/10 —48.61 4.46 1711 - 23.1 7.9 0.9
20 24/02/10 —48.35 4.04 1088 - 23.1 7.9 1.1
21 25/02/10 —48.54 3.96 738 - 23.1 8.0 1.1
22b 25/02/10 —48.61 3.95 640 - 23.1 8.0 0.7
23 25/02/10 —49.06 3.68 107 - 23.4° 8.0 0.6
25 26/02/10 —49.86 3.19 32 - 27.6° 8.2 0.7
28b 27/02/10 —48.17 3.78 1014 - 23.1 8.0 1.0
32b (=42a) 28/02/10 —47.64 3.07 1028 - 23.2 7.9 0.7
32¢ 02/03/10 —47.31 3.65 2079 - 234 8.0 1.1
42b 02/03/10 —47.74 2.85 609 - 234 8.0 0.8
42d 03/03/10 —47.85 2.57 110 - 23.4° 9.0 0.1
43 03/03/10 —48.05 2.09 65 - 26.7° 8.9 0.0
44c 04/03/10 —46.25 3.39 3375 - 22.9 7.9 1.1
49 04/03/10 —45.36 1.64 - - 22.8 8.1 14
54 07/03/10 —44.35 0.66 2372 - 23.1 8.1 0.3
60b 10/03/10 —42.74 —1.03 3113 - 23.2 7.9 1.0

a

‘- =no data available.
® Data from the world ocean atlas 09 (WOAO09) data set (Locarnini et al., 2010).

¢ Depth integrated temperature for 0-100 m water depth.
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carbon (POC) and TOC of Amazon River sediment were
analyzed with a Thermo-Scientific Flash 2000 Elemental
Analyzer at the NIOZ. The analyses were determined in
duplicate and the precision was 0.2 mg OC g~ .

3.3. Extraction and analysis of GDGTs

Extraction and analysis of core lipid (CL), IPL-derived
GDGTs and IPLs were carried out in the same way as
described by Zell et al. (2013a,b). Briefly, the freeze-dried
samples were extracted with a modified Bligh and Dyer
technique (Pitcher et al., 2009) and fractioned into CLs
and IPLs (Oba et al., 2006; Pitcher et al., 2009). For
GDGT quantification, 0.1 mg C4s GDGT internal stan-
dard was added (Huguet et al., 2006). Part of the IPL
fraction was hydrolyzed to obtain IPL-derived CLs
(Weijers et al., 2011). The CL GDGTs were analyzed
using high performance liquid chromatography atmo-
spheric pressure positive ion chemical ionization—mass
spectrometry in selected ion monitoring mode (Schouten
et al., 2007).

For the analysis of IPLs in SPM samples and marine
sediments four sampling stations (25, 28b, 42d, and 43,
see Fig. 2D) were chosen. To analyze the brGDGT IPLs
a selective reaction monitoring (SRM) method according
to Peterse et al. (2011a,b) was used. Crenarchacol IPLs
were detected by high-performance liquid chromatogra-
phy—electrospray ionization-tandem mass spectrometry
using an SRM method (Pitcher et al., 2011).

3.4. Calculation of GDGT-based indices

In the following equations, the numerals refer to the
GDGTs indicated in Fig. 1. The BIT (Branched and Iso-
prenoid Tetraether) index (Hopmans et al., 2004), the
degree of cyclization (DC, Sinninghe Damsté et al., 2009),
and the MBT and CBT values (Weijers et al., 2007b) were
calculated as follows:

(Ia] 4 [a] + [IIIa]

BT index = 4 TTa) + [[1Ta] + (V] (m)
B [Ib] + [ITb]
D= 10 + 11 - [110] @
L /Iib] + [irb)
CBT = —log <—[Ia] n [Ha]) (3)
[Ia] + [Ib] + [Ic]
MBI = T [16] & (1] + [[Ta] - [1Tb] + [Tic] + [[1Ta] -+ [{11b)] + [1T1¢] “)

For the calculation of pH and temperature, the regional soil
calibration for the Amazon basin was used (Bendle et al.,
2010):

CBT =423 —0.58 x pH (#* = 0.75,n = 37) (5)

MBT = 0.19 4 0.08 x CBT + 0.03 x MAAT (+*
=091,n=37) (6)

TEXge was calculated according to Schouten et al.
(2002). The TEXgs values were converted to temperatures
using the global core-top calibrations for 0-200 m water
depth (Kim et al., 2012b):

[GDGT — 2]+ [GDGT — 3] + [Cren’]

TEXss = [GDGT — 1]+ [GDGT — 2] + [GDGT — 3] + [Cren]
(™)

T('C) = 54.7 x log(TEXgs) + 30.7 (* = 0.84,n
=255,p < 0.0001) (8)

4. RESULTS
4.1. Amazon river SPM and sediments

The concentrations of brGDGTs in river SPM varied
between 30 and 100 pg goe (30 and 100 brGDGT ng L)
for the CL fraction and between 2 and 16 pg goe (2 and
18 brGDGT ng L") for the IPL fraction (Fig. 3A and B;
Table 2). The IPL fraction was on average 12% of the total
amount of brGDGTs. In the river-bed sediments, the
concentrations of CL brGDGTs were between 60 and
170 pg goe, while the concentrations of IPL-derived
brGDGTs were between 4 and 17 pg got (Table 2), which
is on average 7% of the total amount of brGDGTs. The dis-
tribution of brGDGTs in river SPM and sediments were
similar (Fig. 4A). The most abundant brGDGT in both
river SPM and sediments was brGDGT Ia, with an average
of 75% and 72% of the total CL brGDGTs and the total
IPL-derived brGDGTs, respectively. The MBT values of
the river SPM and sediments varied between 0.80 and
0.86 in the CL brGDGTs, and between 0.77 and 0.09 in
the IPL-derived brGDGTs (Fig. 5A). The DC values of
river SPM and sediments were 0.06-0.11 in the CL
brGDGTs and 0.05-0.13 in the IPL-derived brGDGTs
(Fig. 5B). The CBT-derived pH of CL brGDGTs varied
from 5.3 to 5.7 and from 5.1 to 5.9 in the IPL fraction
(Fig. 5C). The MBT/CBT-derived MAAT ranged from 21
to 24 °C in the CL brGDGTs and from 21 to 24 °C in the
IPL-derived brGDGTs (Fig. 5D).

The concentrations of iso0GDGTs of river SPM were
34-99 ug goe (27-76 ng L'y for the CL fraction and
5-15 pug got (4-11ng L") for the IPL fraction (Fig. 3C
and D, Table 2). IPL-derived isoGDGTs represented on
average 32% of the total amount of isoGDGTs. River
sediments contained 20-54 pg goe of CL isoGDGTs and
13-30 pug goe of IPL-derived isoGDGTs (Table 2). IPL-
derived isoGDGTs represented on average 40% of the total
isoGDGTs. In the CL fraction of SPM the most dominant
isoGDGT was crenarchaeol (Fig. 6A), representing 55% of
all isoGDGTs. In the sediments GDGT-0 was the most
common isoGDGT (51%) (Fig. 6A). GDGT-0 was also
the most common isoGDGT in the IPL fraction of river
SPM and sediments, representing 40% and 71% of all
isoGDGTs, respectively. This results in a GDGT-0 to
crenarchaeol ratio in river SPM and sediments varying
between 0.2 and 2.3 in the CL isoGDGTs and between
1.0 and 12.6 in the IPL-derived isoGDGTs (Fig. 7A). The
TEXgs values of CL and IPL-derived isoGDGTs were
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SPM (transects 1 and 2; see Fig. 2D) and in marine surface sediments.

0.64-0.74 and 0.66-0.83, respectively (Fig. 7B). The
TEXgs-derived temperatures were 21-30°C for CL
isoGDGTs and 29-32°C for IPL-derived isoGDGTs
(Fig. 7C). The BIT of river SPM was between 0.4 and 0.9
in the CL fraction and between 0.3 and 0.7 in the IPL frac-
tion (Fig. 7D), while the river sediments had an average
BIT of 0.9 in the CL fraction and of 0.7 in the IPL fraction.

4.2. Marine SPM

From the sampling station closest to the river mouth
(station 25; Fig. 2D), the brGDGT concentration in marine
SPM decreased rapidly. In the bottom water SPM of sta-
tion 25, the concentration of the CL brGDGTs was
28 ug goe (2 ug L'), while the concentration of the IPL-
derived brGDGTs was 0.1 ug go& (0.3 pg L") (Fig. 3A
and B, Table 2), comprising 0.3% of the total brGDGTs.
At all other stations, the concentrations of the brGDGTs
varied between 0 and 2 pg goe (0-0.02 ug L) for the CL
fraction and 0 and 1.4 pug goe (0-0.02 pg L™1) for the IPL
fraction, which comprised (Fig. 3A and B; Table 2), on
average, 43% of the total amount of brGDGTs present.
As in the river SPM, brGDGT Ia was the most abundant

brGDGT in marine SPM (Fig. 4B). However, relative
abundance of brGDGT Ia in the marine SPM was more
variable than in the river, accounting for 30-100% of the
total amount of the detected CL brGDGTs. MBT and
DC could not be calculated for some of the SPM samples,
as there was not sufficient material to detect all the
brGDGTs required to calculate these indexes. This was
especially the case for SPM from the chl,,, (Table 2).
For the samples in which the MBT and CBT were calcu-
lated, the MBT ranged from 0.28 to 0.94 in the CL
brGDGTs, and from 0.77 to 0.96 in the IPL-derived
brGDGTs (Fig. 5A). The DC varied between 0.03 and
0.38 in the CL fraction and between 0.03 and 0.4 in the
IPL fraction (Fig. 5B). The CBT-derived pH varied from
4.6 to 8.3 in the CL brGDGTs and from 4.6 to 8.4 in the
IPL-derived brGDGTs (Fig. 5C). The MBT/CBT-derived
MAAT ranged from 17 to 28 °C in the Cl brGDGTs and
from 23 to 29 °C in the IPL-derived brGDGTs (Fig. 5D).

The concentrations of CL isoGDGTs in marine SPM
ranged from 3 to 160 pg got and those of the IPL-derived
isoGDGTs from 1.8 to 82 ug go& (Fig. 3C, D, Table 2).
IPL-derived isoGDGTs comprised on average 34% of the
total amount of isoGDGTs. The concentrations were in



Table 2
Concentrations of brGDGTs and isoGDGTs normalized to OC.

brGDGTs isoGDGTs"

CL (ng go¢) IPL-derived (ug g5¢) CL (ng got) IPL-derived (ug g5¢)
Ia Ib Ic ITa IIb IIc IIla IIIb Illc Ia Ib Ic IIa IIb IIc IIla IIIb IIlc O 1 2 3 Cren Cren’ 0 1 2 3 Cren Cren’
Amazon River SPM

CBM5 784 45 16 126 16 02 0.7 02 - 138 1.0 01 26 04 - - - - 15220 18 14 126 03 19.3 22 20 25 6.8 -
CBM6 221 22 08 41 07 - 04 - - 1.6 03 01 05 - - 0.1 - - 79 35 45 41 387 12 50 09 1.7 27 47 -
CBM7 820 53 19 118 1.8 03 1.1 - - 59 05 02 12 02 - 0.1 - - 187 61 64 51 624 12 143 29 41 58 148 1.7
CBM8 496 51 1.7 107 22 04 10 - - 11.5 0.6 02 1.2 02 - 0.1 - - 11.0 28 33 29 286 08 81 1420 28 67 1.1

Amazon River sediments

AMAZA 26 122.5 133 40 226 3.7 06 12 - - 37 04 02 05 0.1 - - - - 30.1 3.7 38 29 13.0 0.5 28.1 27 21 23 27 04
AMAZC ROI11B 481 48 17 72 1.1 02 03 - - 123 1.7 05 25 04 01 01 - - 88 13 15 12 70 02 84 0808 10 1.8 0.3
AMAZCRO3 722 79 24 138 24 03 08 - - 28 04 01 07 01 00 01 - - 236 30 35 32 101 04 23317 14 16 19 03
Marine SPM

13a bottom 1.0 01 - 02 0.1 - 02 - - 02 0.02 - 004 - - 001 - - 99 31 33 05 187 13 26 1014 02 21 03
13a chlyax - R 01T - - - - - - - - 13 09 24 09 104 08 12 0715 08 6.0 0.6
20 bottom 1.0 0.03 0.02 0.1 - - 001 - - 1.1 0.1 0.03 02 - - 01 - - 47 18 19 02 89 07 21 0503 - 09 03
20 chlyayx 0.01 - — — — — — - - 0.1 - - - - - - - - 04 03 03 0.1 23 0.1 05 0303 02 14 02
21 bottom 06 0.1 - 0.1 - - 01 - - 09 o1 01 02 - - - - - 27494 102 1.0 454 37 63 26 42 01 38 15
21 chlpayx 0.2 0.02 — 0.04 — - - - - 0.1 - - - - - - - - 39 22 24 1.1 202 1.2 47 33 37 22 281 23
22b bottom 0.04 - - - - - 01 - - 0r - - - - - - - - 31 1.l 12 01 53 04 20 1017 00516 -
22b chlpax 0.2 0.02 0.01 0.03 — - - - - - - - - - - - - - 1.0 06 06 0.2 5.0 0.3 1.8 1.3 16 09 94 09
23 bottom 0.1 0.03 - - - - 0.1 - - 04 - - 0.1 - - - - - 147 74 104 52 49.7 33 151 6.0 7.8 44 382 52
23 chlyax 0.02 - - - - - - - - 0.02 — - - - - - - - 03 03 05 03 27 0.1 02 0.1 02 0.1 1.0 0.1
25 bottom 186 35 16 38 08 02 03 - - 002 - - - - - - - - 75 28 38 22 331 12 58 1521 16 120 1.6
25 chljax 07 01 01 02 0.04 - 0.01 - - 0.1 0.04002- - - - - - 16 09 19 06 126 03 05 0307 03 34 -
28b bottom 0.3 0.03 — 0.1 - - 0.1 - - - - - - - - - - - 182 51 5.0 0.8 31.3 21 58 2548 001 20 1.2
28b chlax 0.04 - - - - - - - - 0.1 - - - - - - - - 45 24 48 20 227 22 8.0 44 59 28 371 25
32b bottom 02 - - 0.1 - - 03 - - 04 - - - - - - - - 123 47 46 05 223 1.7 60 3459 03 50 -
32b chlyax 002 - - - - - - - - 003 - - - - - - - - 14 08 11 04 67 04 09 0505 03 37 03
42b bottom 08 0.1 0.03 02 0.03 - 02 - - 02 - - - - - - - - 22776 83 08 368 30 202 88 13.0 0.5 145 5.0
42b chl,.« 0r - - - - - - - - 01 - - - - - - - - 17 08 12 03 72 05 14 08 10 05 58 05
42¢/d bottom 0.1 - - 0.03 - 0.04 02 - - 0.1 - - - - - - - - 100 37 54 08 234 24 73 28 62 06 94 5.1
42¢/d chlpay 0.r - - - - - - - - 01 - - - - - - - - 09 05 09 04 47 03 04 0306 02 24 02
42d bottom 0.1 0.04 - - - - 002 - - 004 - - - - - - - - 12681 12582 637 33 78 37 43 29 246 22
42d chl,.« - - - - = = = == 003 - - - - - - - - 03 02 04 02 21 01 02 0102 01 08 0.1
43 bottom 0.2 02 01 02 01 0.04 01 - - 0.1 0.04 0.03 - - - - - - 2.1 1.7 32 24 242 0.7 0.7 0507 05 39 -
43 chlpax 04 03 04 02 01 01 02 - - 0.1 0.04 003 - - - - - — 66 6.0 102 7.7 69.8 2.1 1.8 1.1 1.8 1.6 144 06
Marine surface sediments

13a 39 04 01 09 04 01 0.7 0.1 0.02 0.1 0.02 0.01 0.1 0.03 0.02 0.04 0.01 — 28.7 7.8 8.6 1.5 46.7 4.1 34 06 06 02 32 02
20 29 02 01 06 02 0.1 03 0.1 0.01 002 0.01 0.0 0.03 0.02 0.01 0.01 001 — 164 46 49 08 278 24 47 0.8 0.7 02 33 0.2
21 29 02 01 06 02 01 02 002 - 0.1 0.01 - 0.1 0.01 0.01 0.02 - - 196 56 62 1.0 400 28 35 06 05 02 28 02

22b 60 05 02 13 05 01 04 01 - 03 01 00202 01 003003~ - 351 104 114 20 533 50 79 13 11 03 66 04
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the same range as the concentration in the river. However,
the concentration per L was about 100 times higher in river
SPM than in marine SPM (0.06 to 4 ng L™ for the CL frac-
tion and 0.03 to 1.7 ng L™} for the IPL fraction). In the
marine SPM, crenarchaeol was the most abundant
isoGDGT (on average 56% of the total amount of all CL
isoGDGTs). The GDGT-0/crenarchaeol ratio varied
between 0.1 and 0.6 in the CL fraction. In the IPL fraction,
the variation was larger, with values varying between 0.1
and 3.0 (Fig. 7A). The TEXgs varied from 0.59 to 0.83 in
the CL isoGDGTs and from 0.65 to 0.81 in the IPL-derived
isoGDGTs (Fig. 7B). The TEXgs-derived temperatures
were 18-26 °C for CL isoGDGTs and 20-25 °C for IPL-
derived isoGDGTs (Fig. 7C). The BIT values in marine
SPM were in general low with values of 0-0.1 in the CL
fraction. Only in the SPM of the bottom water of station
25 the BIT was higher (0.41). The BIT in the IPL fraction
varied between 0 and 0.53 (Fig. 7D).

4.3. Marine sediments

In the marine surface sediments the brGDGT concentra-
tions varied between 2 and 74 pg goe in the CL fraction and
between 0.1 and 2.7 pg goe in the IPL fraction (Fig. 3A and
B, Table 2). IPL-derived brGDGTs represented on average
5% of the total brGDGTs. The highest concentrations were
found at stations 25 and 43, the two sampling stations clos-
est to the Amazon River mouth (Fig. 2D). Surprisingly,
high concentrations were also found at station 54. The dis-
tribution of brGDGTs varied widely (Fig. 4C); in general
GDGT Ia was most abundant, but its relative abundance
varied from 11% to 80% in the CL brGDGTs and from
16% to 36% in the IPL-derived brGDGTs (Table 2). The
second most abundant brGDGTs was either Ila or IIla.
The MBT of the core-top sediments varied between 0.48
and 0.85 (CL brGDGTs) and between 0.35 and 0.81
(IPL-derived brGDGTs) (Fig. 5A). The DC was between
0.04 and 0.72 (CL brGDGTs) and between 0.13 and 0.55
(IPL-derived brGDGTs) (Fig. 5B). The highest values were
found at the stations 42d and 43, where higher pH values
(~9) were also measured than at other stations (~8)
(Table 1). The CBT-derived pH varied from 4.9 to 8.0 in
the CL brGDGTs and from 6.0 to 7.5 in the IPL-derived
brGDGTs (Fig. 5C). The MBT/CBT-derived MAAT ran-
ged from 12 to 23 °C in the CL brGDGTs and from 6 to
23 °C in the IPL-derived brGDGTs (Fig. 5SD).

IsoGDGT concentrations in the marine surface
sediments varied between 32 and 300 pg goe for the CL
fraction and between 5 and 65 pg goo for the IPL fraction
(Fig. 3C and D, Table 2). IPL-derived isoGDGTs repre-
sented 14% of the total isoGDGTs. In marine sediments,
the most common isoGDGT was also crenarchaeol (e.g.
Fig. 6B) in both the CL fraction (52%) and the IPL fraction
(39%). The ratio between crenarchaeol and GDGT-0 varied
between 0.13 and 0.76 in the CL GDGTs and between 0.15
and 2.20 in the IPL derived GDGTs (Fig. 7A). The TEXgq
varied between 0.6 and 0.74 in the CL isoGDGTs and
between 0.5 and 0.79 in the IPL-derived isoGDGTs
(Fig. 7B). The TEXg¢-derived temperatures were 19-24 °C
for CL isoGDGTs and 14-25°C for IPL-derived
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derived MAAT values. Vertical bars indicate the standard deviation (13).

1soGDGTs (Fig. 7C). Surprisingly, the highest BIT value of
the CL GDGTs was found at station 54 with a BIT of 0.78
(0.20 for IPL-derived GDGTs) and not at station 25, which
had a BIT of 0.37 (0.11 of IPL-derived isoGDGTs). At all
other stations the BIT was lower, varying between 0.06 and
0.12 for CL GDGTs and between 0.01 and 0.07 for IPL-
derived GDGTs (Fig. 7D).

4.4. IPL GDGTs

Chl,,.x and bottom water SPM and marine sediments
from four stations (25, 28b, 42d, and 43) were analyzed
for intact IPLs. BrGDGTs with polar head-groups were
only detected at stations 25 and 42d. The detected brGDGT
IPLs were glyconyl-brGDGT I (1, numerals refer to Fig. 1),
phosphohexose-brGDGT I (2), and hexose-phosphoglycer-
ol-brGDGT I (3). All three brGDGT IPLs were found in
the sediment of station 25. In the bottom SPM IPLs 2
and 3 were found, while at the chl,,x compound 1 was
detected. At station 42d the sediment contained compound
2 and 3, while the SPM contained compound 1. Crenar-
chaeol IPLs were detected in SPM and sediments of all four
tested stations. The following crenarchaeol-derived IPLs

were detected: crenarchaeol-monohexose (4), crenarchae-
ol-dihexose (5), and crenarchaeol-hexose-phosphohexose
(6). The relative amount of the respective IPLs is reported
in Table 3.

5. DISCUSSION

5.1. Origin of brGDGTs on the Amazon shelf and in the
Amazon fan

It has been assumed that the brGDGTs in marine sedi-
ments are mainly derived from erosion of soils and are
transported through rivers to the coastal marine environ-
ment (Weijers et al., 2007a). Hence, it is expected that the
highest concentrations of brGDGTs normalized to OC
are to be found in the river and close to the river mouth
and then should decrease gradually offshore until
brGDGTs can no longer be detected (cf. Hopmans et al.,
2004). It is also anticipated that the distribution of the nine
brGDGTs derived from soil is preserved in coastal marine
sediments, without a substantial alteration of the brGDGT
distribution (Weijers et al., 2007a). Zell et al. (2013a) exam-
ined the distribution of brGDGTs in ‘terra firme’ soils from
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the Amazon watershed and compared it against brGDGTs
in river SPM. They found that the brGDGT distribution in
river SPM was slightly different from that in the lowland
soils, most likely due to additional in situ production of
brGDGTs within the Amazon River. In the present study,
we concentrate on examining the second step: the delivery
of brGDGTs to the ocean by the Amazon River.

The concentrations of the CL brGDGTs normalized to
OC in Amazon River SPM and Amazon sediment (Table 2)
and the distributions of CL brGDGTs in river SPM and
sediments were similar (Fig. 4A). That the distributions
were similar is also apparent from the fact that these sam-
ples plot close vicinity to each other in a brGDGT “prove-
nance plot” (i.e. a plot of DC vs. MBT, Fig. 8A; cf.
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Sinninghe Damsté et al., 2009). The distribution (Fig. 8A)
and the average percentage of IPL-derived brGDGTs
(11% and 7%, respectively) were also similar in the Amazon
River SPM and sediment. Since the SPM and one riverbed
sediment were collected close to the town of Obidos and the
two other riverbed sediments were collected farther down-
stream (Fig. 2A), our results also show that there is no
alteration of the brGDGTSs between Obidos and shortly
before the river mouth.

On the Amazon shelf, station 25 is the station that was
mostly strongly influences by the Amazon River water,
because of the NW deflection of the river plume caused
by the North Brazilian Current (Fig. 2D). The CL
brGDGT concentration in the surface waters at station 25
was lower than in the deeper waters (Fig. 3A, Table 2),
but at both depths in station 25 the CL brGDGT distribu-
tion was similar to that of Amazon River SPM (Fig. 8A).
The marine SPM at the other sites had 50 to 1000 times
lower CL brGDGT concentrations (normalized to OC)
and most of them had a different CL brGDGT distribution
than the river SPM (Fig. 8A). The MBT of most marine
SPM was lower than that in the Amazon River (Fig. 8A).
The DC of marine SPM was variable but relatively high
(>~0.3) at stations 28b, 42d, and 43 (Fig. 8A) compared
to the other stations. Station 43 is the station of transect
2 which is closest to the shore (Fig. 2D), but clearly showed
a much higher DC in both chl,,, and bottom water SPM
compared to the DC of CL brGDGTs in the Amazon River
(Figs. 4 and 5A and B, 8A). Only four SPM samples

contained sufficient IPL-derived brGDGTs (stations 13,
20, 21, and 25) to determine the MBT and DC. In contrast
to CL brGDGTs, they showed MBT and DC values similar
to those found in the Amazon River (Fig. 8A).

Similar observations were made for the marine surface
sediment; the sediments from the two stations closest to
the river mouth (stations 25 and 43; Fig. 2D) had high
CL brGDGT concentrations normalized to OC compared
to those of the other stations (Fig. 3A). Of these two sta-
tions only the brGDGT distribution at station 25 was sim-
ilar to that of the Amazon River (Fig. 8A). Station 54 also
had a surprisingly high CL brGDGT concentration
(Fig. 3A) and a MBT and DC similar to that of the Ama-
zon River (Fig. 8A), even though it is unlikely that it is
influenced by the Amazon River since the ocean current
flows northwards (Fig. 2). We assume that this station
receives brGDGTs from the Bacanga River, a river south-
east of the Amazon basin, which enters the ocean at the city
of Sao Luis (S 2.5°, W 44.3°) and probably delivers
brGDGTs to the ocean with a distribution that is compara-
ble to that found in SPM of the Amazon River. In the other
marine sediments the CL brGDGT concentration was
lower (Fig. 3A) and the distribution of CL brGDGTs var-
ied strongly (Fig. 4C), resulting in substantial differences in
MBT and DC values (Figs. 5A and 8A). The sediment of
the shelf stations 43 and 42d were special as they exhibited
exceptionally high DC values (Fig. 8A). Almost all sedi-
ments had a lower MBT compared to the Amazon River.
The MBT showed a tendency to decrease with increasing
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Table 3

Percentage of the total detected IPLs with a brGDGT (Ia) and crenarchaeol core, assuming similar response factors for the different IPLs, in

SPM and marine surface sediment at selected stations.

Station 25 28b 42d 43
IPLs* Chl,,x Bottom Sediment Chl,,, Bottom Sediment Chl,,, Bottom Sediment Chl,,, Bottom Sediment
SPM SPM SPM SPM SPM SPM SPM SPM
Ila
1 100 0 10 - - - 100 100 0 - - -
2 0 91 76 - - - 0 0 66 - - -
3 0 8.7 14 - - - 0 0 34 - - -
Crenarchaeol
4 31 33 29 34 10 19 10 55 52 37 25 32
5 3 32 10 6 85 5 2 19 39 6 3 48
6 66 35 61 60 5 76 87 26 9 57 73 21
“~” = below detection limit.
# Numbers refer to structures shown in Fig. 1.
CL IPL-derived
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Fig. 8. MBT vs. DC cross plot (A) to compare the distributions of CL and IPL-derived brGDGTs of all analyzed riverine and marine SPM
and sediment samples and (B) the relationship of MBT with water depth in marine surface sediments.

water depth (Fig. 8B). Changes in DC and MBT were also
evident in the IPL-derived brGDGTs. Their DC values
were generally slightly higher than those of the CL
brGDGTs (Fig. 8A). However, only one of the two stations
(i.e. 42d) which were characterized by substantially higher
DC values in the CL brGDGTs also showed a higher DC
in the IPL-derived GDGTs (Fig. 8A). MBT values of
IPL-derived brGDGTs were generally lower and more var-
iable. No decrease with water depth was apparent (Fig. 8B).
A ternary plot showing the relative abundance of the vari-
ous groups of brGDGTs (Fig. 9A) reveals that in most
SPM and surface sediments lower MBT values for CL
brGDGTs are due to higher relative amounts of II(a—c)

and III(a—c). The same can be seen in the IPL-derived
brGDGTs (Fig. 9B), but in the IPL-derived brGDGTs
the fraction of brGDGT Il(a—c) varies to a larger extent
than the CL brGDGT IIl(a—c).

Our results show that there are major changes in the
brGDGT distribution from the Amazon River to marine
SPM and sediment and also within the marine environ-
ment. This is most likely caused by selective degradation
processes of brGDGTs derived from the terrestrial environ-
ment or by in situ production of brGDGTs in the marine
environment, or both. Furthermore, seasonal variations in
hydrodynamics in the river catchments (Zell et al., 2013b)
or, perhaps, input by eolian transport (Fietz et al., 2013)
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might play a role in altering the riverine brGDGT signals in
marine settings. Intensive degradation of organic com-
pounds take place on the Amazon shelf where it was previ-
ously shown that 55-70% of the POC flux from the
Amazon River is decomposed or otherwise lost before
being buried in sediments (Aller et al., 1996). Long resi-
dence times of organic-rich particulates in deltaic “fluid
muds” underlying oxygenated water makes the Amazon
shelf region relatively inefficient for organic carbon preser-
vation (Blair and Aller, 2012). Oxic degradation might pre-
sumably affect the brGDGTs, but the brGDGT delivered
from the river should have been affected in a similar way.
Therefore, it seems unlikely that the large differences of
the brGDGT distributions between marine surface sedi-
ments and SPM can be explained solely by microbial degra-
dation. Hydrodynamic processes in the Amazon Basin
slightly altered brGDGT distributions of the Amazon River
SPM (Zell et al., 2013b). However, the riverine brGDGT
data obtained at the Obidos station, the last gauging station
in the Amazon River, very closely clustered together, sepa-
rated from those of the most of the marine SPM and sedi-
ments. Therefore, it is unlikely that hydrodynamic
processes occurred in the Amazon basin are solely respon-
sible for variable distributions of brGDGTs observed in the
Amazon shelf and fan. Recently, Fietz et al. (2013) showed
that atmospheric dust samples collected off northwest
Africa contained brGDGTs and thus an eolian input of
brGDGTs might also influence brGDGT signals, especially
in remote open ocean settings. However, the eolian input of
brGDGTs is also unlikely due to the heterogeneous distri-
bution of brGDGTs observed in coastal marine SPM and
sediments in our study area.

In-situ production of brGDGTs in the marine environ-
ment is an alternative explanation. Marine in situ produc-
tion of brGDGTs has previously been proposed in coastal
sediments of Svalbard (Peterse et al., 2009), in East China
Sea shelf sediments (Zhu et al., 2011), and in hydrothermal
vents in the south Pacific Ocean (Hu et al., 2012). A higher
amount of cyclic brGDGTs, similar to what we observed in
SPM and sediment of the Amazon shelf, was observed in
the coastal sediments of Svalbard and East China Sea shelf

sediments. However, Zhu et al. (2011) reported that the
MBT increased from the Yangtze River sediment to coastal
sediment, which is opposite the trend we observe for the
Amazon system.

In order to investigate whether marine in situ produc-
tion causes the difference between the brGDGT distribu-
tions in the Amazon River, compared to that in the
marine environment, we analyzed IPL-derived brGDGTs.
IPL-derived brGDGTs are more labile compared to CL
brGDGTs, since the polar head group of IPL brGDGTs
is lost relatively fast (within days) after cell death (Harvey
et al., 1986; Logemann et al., 2011). Therefore, IPL-derived
GDGTs are considered to represent the more recently pro-
duced, ‘fresher’ brGDGTs than CL brGDGTs. The per-
centage of IPL-derived brGDGTs of the total amount of
brGDGTs might indicate where increased production of
brGDGTs occurs. In marine SPM, the percentage of IPL-
derived brGDGTs was substantially higher (43%) than that
in the river (7%) and in marine sediments (5%). This higher
percentage in marine SPM might indicate that brGDGTs
are at least partially produced in the water column and
potentially sink down to the sediments where they are pre-
served as CLs. However, the MBT and DC values of IPL-
derived brGDGTs in marine SPM were similar to those
found in the IPL-derived brGDGTs in the Amazon River
(Fig. 8A), which would suggest that the brGDGTs pro-
duced in the marine water column are similar to the
brGDGTs in the river and that the different distribution
of the CL brGDGTs must derive from another source.
However, these results should be interpreted with care,
since there were only four SPM samples that contained suf-
ficient amounts of IPL-derived brGDGTs to calculate the
MBT and DC. Of the marine sediments, station 42d sedi-
ment had the highest percentage of IPL-derived brGDGTs,
this was also the only station besides station 25 in which
IPLs could be directly detected. The detected IPLs included
phospholipids which are known to degrade faster than gly-
colipids (Harvey et al., 1986; Lengger et al., 2012), which
suggests that at least some of the IPL-derived GDGTs were
recently produced. The DC of IPL-derived brGDGTs in
marine sediments was slightly higher than that of the
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0.67, respectively). Clusters 1 and 2 are discussed in the text.

Amazon River, except for the sediment of station 42d in
which it was much higher (Fig. 8A). The higher DC was
associated with higher sediment pH at stations 42d and
43 (Table 1). This might indicate that the DC of brGDGTs
produced in the marine environment, like the DC of soil
brGDGTs (Weijers et al., 2007b), is related to the environ-
mental pH. If we assume that this is the case, the brGDGT
distributions at stations 42d and 43 would be a strong
indication for marine in situ production at these sites.
The CBT-derived pH from station 42d was not as high
as the measured pH, but this could be due to a flattening
of the CBT-pH relationship at higher pH values as pro-
posed by Xie et al. (2012). In addition, it is probable that
the calibrations made for soils are not valid for the marine
environment. In previous studies, it has been found that an
increase of cyclic brGDGTs may be related with marine
in situ production (Peterse et al., 2009; Zhu et al., 2011)
which might be associated with the fact that the pH in
the marine environment is typically higher than that of soil.

The MBT of IPL-derived brGDGTs in most marine sur-
face sediments showed reduced values (0.4-0.75) compared
to the river signature (0.8-0.9; Fig. 8A). In contrast to the
CL brGDGTs an apparent decrease of the MBT with water
depth cannot be observed in the IPL-derived brGDGTs
(Fig. 8B). However, in the IPL fraction higher relative
amounts of GDGT Il(a—) are evident from the ternary plot
(Fig. 9B) compared to the CL brGDGTs in marine surface
sediments from deep water. This might indicate that the
processes that alter the brGDGT distribution in marine set-
tings are more complex and might not only be influenced by
in situ production. Another factor could be that the
brGDGT distribution in the IPL-derived brGDGTS is not
the same as that of the CL brGDGTs. For example,
Lengger et al. (2012) showed that the TEXgs values of dif-
ferent isoGDGT IPLs is different. As some isoGDGT IPLs
degrade faster than others, the TEXgs of the IPL fraction
was consistently higher than that calculated with CL iso-
GDGTs. We assume that this could also be the case for
brGDGTs, leading to a different MBT and DC in IPL-
derived brGDGTs, compared to CL brGDGTs.

Overall our results show that brGDGTs are transported
from the Amazon River to the ocean. However, only the
brGDGT distribution of marine SPM and surface
sediments in stations closest to the river source is similar
to that in the river. Further away from the river, the
brGDGT distribution in marine sediments varies widely.
The major reason for this seems to be marine in situ pro-
duction of brGDGTs with a variable distribution, which
seems to be influenced by the pH and potentially lower tem-
peratures in deeper water. This illustrates that the distribu-
tion of brGDGTs produced in the ocean may also
correspond to the ambient environment.

5.2. Origins of isoGDGTs on the Amazon shelf and in the
Amazon fan

Unlike the case of the brGDGTs, the concentration of
CL isoGDGTs per g OC in the Amazon River SPM is sim-
ilar to that in the ocean (Fig. 3C), but the concentration per
liter was about 10-100 times higher in the river (Amazon
River SPM on average: 60 ug L™!, marine SPM at station
25: 3pugL™! and marine SPM at all other stations:
0.5 ug LY. Similar values have been reported for other
river systems, e.g. the Rhine River (Herfort et al., 20006).
This indicates that the Amazon River may act as a source
of isoGDGTs in the marine environment. To determine if
the riverine isoGDGTs influence the isoGDGT distribution
in marine SPM and sediments, the GDGT-0/crenarchaeol
ratio and the TEXgq values were compared (Fig. 10). The
main difference between Amazon SPM and river-bed sedi-
ments was found in the relative amount of GDGT-0 and
crenarchaeol. Crenarchaeol is only produced by Tha-
umarchaeota, while GDGT-0 is produced by many
archaea, including Thaumarchaeota. Methanogenic
archaea produce predominantly GDGT-0 (e.g. Schouten
et al., 2013a,b). In Thaumarchaeota, the GDGT-0/crenar-
chaeol ratio is temperature-dependent, and typically varies
between 0.2 and 2 (Schouten et al., 2002). It has been pro-
posed for lakes, that if this ratio is >2 it indicates a substan-
tial methanogenic origin of GDGT-0 (Blaga et al., 2009).
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The values of the CL GDGT-0/crenarchaeol ratio were low
(<1.5) in the river SPM, but in two out of three Amazon
River sediments the values were slightly >2 (Fig. 10A). In
the IPL-derived isoGDGTs from the three river-bed sedi-
ments, the GDGT-0/crenarchaeol ratio was even much
higher (GDGT-0/crenarchaeol ratio = 5-13, the data are
not shown in Fig. 10B). It is thus likely that methanogens
from anoxic sediments in the Amazon system (Conrad
et al., 2010) contribute to the GDGT signal in river sedi-
ments. However, these isoGDGTs in river sediments are
only to a minor extent contributing to the isoGDGTs trans-
ported by the river since GDGT-0/crenarchaeol ratios of
SPM for both the IPL and CL fractions are much smaller
(Fig. 10).

When the GDGT-0/crenarchaeol ratio and TEXgg of the
river SPM were compared to those of the marine SPM and
sediments (Fig. 10A), it is observed that the GDGT-0/cren-
archaeol ratio was higher in the river. TEXgs values of river
SPM and sediment fell between those of marine SPM and
sediments, which showed a wider range. CL values of iso-
GDGTs from the marine samples occurred in two clusters
(Fig. 10A). The first cluster contained chl,,,,x SPM of all sta-
tions, as well as bottom SPM and surface sediments of sta-
tions 25, 43 and 42d. The second cluster was formed by
offshore bottom SPM samples and sediments. IPL-derived
isoGDGTs showed more variation in TEXgg values but a
similar clustering (Fig. 10B). The different IPL-derived iso-
GDGT distributions in offshore chl,,x SPM compared to
offshore bottom SPM and sediment suggests production
of is0GDGTs below the chly,y. The higher GDGT-0/cren-
archaeol ratio and the lower TEXg¢ values in cluster 2 may
be explained by an increased contribution of Tha-
umarchaeota residing in deeper water. The more distinct
appearance of this second cluster in IPL-derived isoGDGT's
(Fig. 10B), supports the idea that isoGDGDTs are indeed
produced in situ below the chl,.,. This hypothesis is
supported by the detection of crenarchaeol-hexose-phos-
phohexose, which is less stable than the other two crenar-
chaeol IPLs (Lengger et al., 2012), in these samples.

5.3. Implications for the use of GDGT-based paleoproxies in
marine sediments

5.3.1. BIT

The flux-weighted value of the BIT index of SPM at
Obidos is 0.67 (Zell et al., 2013b) and the average BIT value
of the river-bed sediments is 0.74. This is lower than the
BIT index of lowland Amazon soils (0.9 on average), which
is attributed to production of crenarchaeol in the Amazon
River (Zell et al., 2013a,b). In the marine environment,
the highest value of the BIT index was found in surface sed-
iments at station 25 (0.50), at station 42b (0.36) and, sur-
prisingly, also at station 54 (0.78), which is distant from
the Amazon River. It is possible that the high concentration
of brGDGTSs measured at station 54 is due to the influence
of the Bacanga River, which has its outflow further to the
south. In agreement with this is that the brGDGT distribu-
tion observed at this station is similar to that of river SPM
(see Section 5.1). In all other marine SPM samples and

surface sediments, the BIT index was much lower, likely
due to the substantially lower brGDGT concentrations
(normalized on OC; Fig. 3A, Table 2). It has been reported
for various systems that variations in the BIT index in mar-
ine SPM and sediments predominantly reflect variations in
marine production of crenarchaeol rather than in the deliv-
ery of riverine brGDGTs (e.g., Weijers et al., 2009b; Fietz
et al., 2011; Smith et al., 2012). However, in the Amazon
River fan we generally observe relatively constant crenar-
chaeol concentrations (Fig. 3C, Table 2) in combination
with sharply declining (with increasing distance from the
river mouth) brGDGT concentrations, arguing for a dom-
inant control of the delivery of brGDGTs from the river on
the BIT index values. Despite the advocated potential
in situ production of brGDGTs, it is still possible to use
the BIT to detect riverine input apparently because the
amounts of brGDGTs produced in situ in the marine envi-
ronment are substantially lower than that of crenarchaeol.

5.3.2. The MBTICBT paleothermometer

In order to be able to use the MBT/CBT as a continental
temperature proxy, it is essential that the brGDGT distri-
bution from soils is not altered during the transport and
deposition of marine sediments. However, it has been
shown that there is already a difference in the distribution
of brGDGTs between Amazon basin soils and Amazon
River SPM, due to in situ production in the river itself
(Zell et al., 2013a.,b). In the present study we found even
more variable brGDGT distributions in marine SPM and
surface sediments of the Amazon shelf and fan. Conse-
quently, the MBT/CBT-derived pH and MAAT from the
brGDGTs in most of the marine surface sediments using
the Amazon soil calibration did not represent those of the
Amazon drainage basin. In the marine environment, the
highest CBT-derived pH (8) was 2.5 pH units higher than
that of the Amazon River SPM (pH 5.5), whereas the
MBT/CBT-derived MAAT was up to 14 °C colder than
that of the Amazon River SPM. However, station 25, which
was characterized by the highest OC-normalized brGDGT
concentration (and high BIT index; 0.5) provided MBT/
CBT-reconstructed MAAT and pH values comparable to
the results obtained from the Amazon River watershed
(Fig. 5D). Hence, it can be concluded that although most
of the stations were only weakly influenced by the Amazon
River outflow, the stations under high river influence still
possess the “continental” Amazon brGDGT distribution.
This suggests that the MBT/CBT proxy should only be
used to reconstruct paleoenvironmental conditions from
sediment cores that are demonstrably strongly influenced
by the fluvial inputs of brGDGTs. In general, the BIT index
may serve as a good, initial indicator for screening potential
sites which are under strong fluvial influences.

Our new data allow us to re-evaluate the results
obtained from ODP Site 942 (Bendle et al., 2010), a site that
was used to reconstruct the climate of the Amazon basin
during the late Quaternary. ODP Site 942 (Fig. 2, 5°45'N,
49°6'W, 3346 m water depth) is situated slightly north of
the stations of the present study. The MBT/CBT-derived
temperature (ca. 17 °C) of the surface sediments from their
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study compares well with the temperatures derived from
our surface sediments that were located closest to ODP Site
942 (our sites 13a, 20, and 21; Fig. 2D). Their MBT/CBT-
derived temperature record showed relatively constant
values of around 21 °C between 40 and 10.5 ka with a tem-
perature drop just after 10.5 ka to values as low as 10 °C.
This was followed by a general increase to 17 °C in the last
6 ka. The unexpected temperature drop of the early Holo-
cene was explained by an increased input of brGDGTs
from Andean soils, which would carry a “low temperature”
signal (Bendle et al., 2010). This seems to be a conceivable
argument, since ~82 to 95% of the suspended sediments in
the Amazon River is currently derived from the Andes (e.g.
Meade, 1994; Wittmann et al., 2011). However, the MBT/
CBT-derived temperature from modern Amazon River
SPM were higher (22 °C) than the temperatures derived
from marine surface sediments and the brGDGT distribu-
tion from the river did not resemble the brGDGT distribu-
tion in the high Andes (Kim et al., 2012b; Zell et al., 2013a).
Therefore, a major influence of brGDGTSs from the Andean
soils can be excluded, both today and presumably during
the past. With our detailed data set on surface sediments
in this area, we surmise that sea level changes had a signif-
icant impact on the MBT/CBT-derived temperature record
of ODP Site 942. During a much reduced sea level stand,
between 40 and 10.5 ka, river SPM could reach OPD Site
942 more directly than during the sea level high stand of
the Holocene when the input of riverine SPM to ODP Site
942 was nil. This undoubtedly led to a much stronger influ-
ence of in situ produced brGDGTSs on the MBT/CBT tem-
perature record during the Holocene. This interpretation is
supported by the BIT record which showed high values (ca.
0.6) from 40 to 10.5 ka and a subsequent reduction in the
Early Holocene. However, the BIT values during the Holo-
cene for this core remain remarkably high (ca. 0.3), indicat-
ing that the BIT index should be used with caution as an
indicator for the applicability of the terrestrial MBT/CBT
palaeothermometer. In conclusion, in order to reconstruct
the MAAT of the Amazon basin during the Holocene, a
core site near to the Amazon River mouth, where more riv-
erine terrestrial material is being deposited should be
considered.

The comparison of our results with those of similar stud-
ies showed that there might be substantial differences
between river systems. So far, two other river systems have
been studied for the applicability of the MBT/CBT as a
paleothermometer in marine sediments, i.e. the Yangtze
River and the Pearl River in China (Zhu et al., 2011;
Strong et al., 2012; Zhang et al., 2012). In the marine sedi-
ments of these river systems, like in the Amazon River sys-
tem, MBT/CBT-derived MAATs were lower than the
actual MAATS of the drainage basins. In addition the cause
of lower MBT/CBT-derived MAATSs was different in the
two Chinese rivers. In front of the Yangtze River, DC val-
ues increased, but lower MBT values were not found (Zhu
et al., 2011). In the Pearl River, DC and MBT changes
between the soil, river and marine sites were not obvious
(Strong et al., 2012; Zhang et al., 2012). This suggests that
the applicability of the MBT/CBT proxy can vary between

different river systems, potentially due to the differences in
the sedimentary regimes, hydrodynamics, and degradation
loss (Strong et al., 2012), but also differences between the
populations of brGDGT producing bacteria. We conclude
that it is necessary to investigate recent samples from a river
system before applying the MBT/CBT proxy and we sug-
gest caution in the application of the proxy to past periods
of low sea level and changing delivery rates of riverine sed-
iments to marine depositional sites.

5.3.3. The TEXgs paleothermometer

Since the TEXgq values for Amazon River SPM and for
marine SPM at the chl,,,x and surface sediments were sim-
ilar, the influence of riverine isoGDGTs on the TEXge
could not be detected in our study area. All marine samples
(except for station 25) had a BIT value <0.2 and a GDGT-
0/crenarchaeol ratio <2. This means that their TEXgq val-
ues should record the sea temperature of the top 200 m
water column (Weijers et al., 2006b; Kim et al., 2012a).
TEXgg.derived temperatures from the chl,,, SPM were
about 24 °C (average water depth chl,,, = 72 m) compared
with the depth-integrated temperature between 0 and 100 m
of 27 °C (WOAO9 data base). Therefore, the TEXg4-derived
temperatures were ca. 3 °C lower than expected; we should
note that the temperature reconstructed from the SPM is a
snap shot and not the annual mean. However, since the
sampling site is close to the equator, no strong seasonal
temperature changes are expected. In offshore bottom
SPM and sediments, TEXgs-derived temperatures were
even lower (20°C), possibly due to the influence of
isoGDGTs produced below the chl,,,. This led to
TEXgg-derived temperatures that were on average 4 °C
colder than the depth-integrated annual mean temperatures
from 0 to 200 m water depth (Table 1). The detection of
crenarchaeol-hexose-phosphohexose in marine SPM and
sediments also indicates that the in situ production of iso-
GDGTs in sediments might occur in the Amazon shelf
and fan. However, the sedimentary production of iso-
GDGTs is unlikely to influence the TEXgs, because the
majority of iso0GDGTs is derived from the water column
and the isoGDGTs produced in sediments might be more
easily degradable (Lengger et al., 2012).

6. CONCLUSIONS

Our study shows that brGDGTs are primarily trans-
ported from the Amazon River to marine sediments. How-
ever, brGDGTs are also produced in the marine
environment. Hence caution has to be taken when using
the MBT/CBT proxy in marine sediments to derive conti-
nental paleotemperatures. Only sediments which are under
strong river influence should be considered acceptable for
this purpose. In-situ production of brGDGTs in the marine
environment does not have a strong influence on the BIT,
since the concentration of brGDGTs is much lower than
that of crenarchaeol. No obvious influence on the TEXgg
paleothermometer by the riverine isoGDGTs is detected
in marine SPM and sediments due to similar TEXgq values
in the river and marine SPM and sediments.
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