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Abstract

Phospholipid-derived fatty acids (PLFA) and respiratory quinones (RQ) are microbial compounds that have been utilized as
biomarkers to quantify bacterial biomass and to characterize microbial community structure in sediments, waters, and soils.
While PLFAs have been widely used as quantitative bacterial biomarkers in marine sediments, applications of quinone
analysis in marine sediments are very limited. In this study, we investigated the relation between both groups of bacterial
biomarkers in a broad range of marine sediments from the intertidal zone to the deep sea. We found a good log-log
correlation between concentrations of bacterial PLFA and RQ over several orders of magnitude. This relationship is probably
due to metabolic variation in quinone concentrations in bacterial cells in different environments, whereas PLFA
concentrations are relatively stable under different conditions. We also found a good agreement in the community structure
classifications based on the bacterial PLFAs and RQs. These results strengthen the application of both compounds as
quantitative bacterial biomarkers. Moreover, the bacterial PLFA- and RQ profiles revealed a comparable dissimilarity pattern
of the sampled sediments, but with a higher level of dissimilarity for the RQs. This means that the quinone method has a
higher resolution for resolving differences in bacterial community composition. Combining PLFA and quinone analysis as a
complementary method is a good strategy to yield higher resolving power in bacterial community structure.
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Introduction

Microbial biomass in marine sediments accounts for 0.182

3.6% of Earth’s total biomass (4.1 petagram carbon), and their

community composition is highly diverse due to variation in

oxygen concentrations in the overlying water, sediment carbon

content, and sediment depth [1,2]. Sediment bacteria fulfill an

important role in organic matter remineralization [3,4] and

nutrient cycling [5], and are an integral component of food-webs,

particularly those that are detritus-based [6,7]. Sediment bacterial

communities are more diverse than planktonic communities, and

respond actively to environmental conditions of their habitat [8–

10]. Studies on the role of bacteria in sediment biogeochemistry

particularly require a quantitative assessment of both bacterial

biomass and community composition.

Nevertheless, studies on estimates of bacterial biomass, com-

munity composition, and diversity are constrained by the

methodological limitation that over 99% of the total bacterial

population cannot be cultivated by traditional culture techniques

[11–13]. In the past few decades, the rise of culture-independent

techniques (molecular approach and chemical analysis-based

method) has allowed us to further reveal sediment microbial

ecology. Molecular approaches that are highly suited for high

resolution description of bacteria communities in marine sediment

are rDNA clone libraries, denaturing gradient gel electrophoresis

(DGGE), and terminal restriction fragment length polymorphism

(T-RFLP). In recent years, the advent of high-throughput

sequencing technologies (e.g. pyrosequencing and Illumina) has

greatly enhance the knowledge on bacterial community structure

[14,15]. As most powerful quantitative molecular approaches, the

Q-PCR approach has been widely applied to quantify gene copy

number as a proxy of bacterial abundance [16–18], and the FISH

technique has been used for visualizing and quantifying bacterial

cells in sediments [19,20]. Both quantitative approaches are

distinctly suitable for targeting specific phylogenetic groups but less

suitable for analysis of the full bacterial community, because

quantitative application for analysis of all bacterial groups requires

the use of many target-specific primers and probes and also need

to optimize its protocol for each target group. Moreover, the PCR-

based approaches cannot eliminate methodological biases, and

nucleic acid extraction from sediment samples has inherent biases,
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for instance extraction efficiency from sample and bacterial species

[21].

Despite the superiority of molecular approaches for the analysis

of bacterial community structure, also phospholipid-derived fatty

acid (PLFA) analysis [22,23] and the quinone profiling method

[24,25] have been successfully used as a chemotaxonomic

analytical-based method to quantify bacterial biomass and to

profile the bacterial community composition in marine sediments.

PLFAs are essential membrane lipids of microbial cells and

therefore proxies for bacterial biomass. Microorganisms contain

numerous PLFAs with some being ‘‘general’’ and unspecific, while

others are more specific and found in higher abundance in some

microbial groups [23,26]. Respiratory quinones (RQ, including

ubiquinone [UQ] and menaquinone [MK]), and photosynthetic

quinones (including phylloquinone [K1] and plastquinone [PQ])

are lipid coenzymes used for electron transfer in microbial cell

membranes. A bacterial phylum has generally only one dominant

molecular species of respiratory quinone (e.g. [27]). The main

advantage of both chemotaxonomic methods is that there are

established and standardized quantitative extraction protocols

available [28,29] that allow rapid and quantitative extraction from

various types of sediment samples. Therefore, the lipid analysis is

easily applicable to quantify bacterial biomass for a wide range of

marine sediments without optimizing the extraction method. In

fact, concentrations of bacteria-specific PLFAs have been used as a

proxy for total bacterial biomass in various marine sediments (e.g.

[30]), and the total RQ concentration has been found to correlate

with bacterial biomass in soil [31], with the total bacterial cell

count in various environments [32], and with the bacterial cell

volume in lake water [33].

Moreover, analysis of PLFA- and quinone profiles has been

widely utilized as a valuable tool for showing differences between

samples and also community shift during experimental/monitor-

ing periods (e.g. [34,35]). Cluster analysis for characterizing

bacterial community structure based on dissimilarity- or similarity

value matrix of PLFA- and quinone profile for marine sediments

showed a similar clustering pattern with that of the molecular

techniques [34,35]. One major disadvantage of both lipid analyses

for studies of microbial ecology is the lower phylogenetic

resolution for identifying bacterial groups than molecular

approach. Thus, the lipid analysis has been combined with

molecular approach as a means of overcoming the limitation of

low phylogenetic resolution [24,35,36]. A major advantage of the

PLFA technique is that it can be combined with carbon stable

isotope analysis to identify active bacterial groups and to trace

carbon flows in both benthic and pelagic food webs via bacteria

and other microbial groups, such as microalgae, to higher trophic

levels (e.g. [23]). In addition, the quinone profiling method is also

possible to identify active bacterial groups by combination with

carbon radioisotope labelling [37].

For marine sediments, PLFAs have been widely used as

quantitative bacterial biomarkers [30], but applications of

quinones as biomarkers for sedimentary bacteria are very few

[24,25]. In addition to their potential as a proxy for bacterial

biomass, the ratio between quinones and PLFAs may also provide

a proxy for the level of activity of the bacterial community [38],

because PLFAs are structural biomass components while quinone

concentrations are related to biomass and respiratory activity as

they are part of electron transport chains (e.g. [39]). The ratio

between total RQ and total PLFA was firstly applied in estuarine

and deep sea sediments by Hedrick and White [38]. Until now,

very few studies have applied this potential proxy in other aquatic

systems [40,41].

In this study we compared and evaluated PLFAs and quinones

as quantitative bacterial biomarkers for bacterial biomass and

community structure in marine sediments. We also explored

whether the ratio between these two bacterial biomarkers could be

used as a potential proxy for bacterial activity, by examining the

concentrations of PLFAs and quinones and quantity and quality of

organic matter in a wide range of marine sediments from the

intertidal zone to the deep sea.

Materials and Methods

Study Areas and Sampling Procedure
Samples were collected from a wide variety of sediments,

ranging from intertidal to coastal, shelf and deep-sea sediments (see

Table 1 for the sites and sampling depth details and Table S1).

Samples selected for this study came from previous published and

unpublished studies were either PLFA or quinone analysis had

already been performed and we completed the data set by

additional analyses. No specific permissions for all sampling were

required for these locations. Intertidal sediments were collected

from 3 locations (Oude Bietenhaven, Zandkreek, and Rattekaai) in

the Oosterschelde, a marine embayment in the SW of the

Netherlands, and one location (Kapellebank) in the nearby Scheldt

Estuary. Sediment was sampled manually at low tide using cores

(30 cm height and 6 cm in diameter) and cores were sliced.

Another tidal flat location was sampled for long-term incubations

in the laboratory. In short, lab incubation sediments were collected

from the surface (0,2 cm) of a tidal flat (Biezelingse Ham) in the

Scheldt Estuary, homogenized, and incubated for up to 261 days

in vitro with regular sampling in a similar manner of the

experiment that is described in [42]. North Sea sediments were

collected from three stations in November 2010. Stations NS-1

and -3, located close to the Dutch coast and on the Dogger Bank

respectively, are non-depositional areas, while station NS-2,

situated on the Oyster Ground, is a semi-depositional area.

Sediment was sampled with cores by multi-corer (Octopus type).

Japanese natural coastal sediments were collected from nine

different bays and embayments in the Seto Inland Sea using a

Smith-McIntyre Grab sampler or an Ekman-Berge grab sampler,

and then subsampled by collecting surface sediment samples from

late September to early October 2008 and from early May to early

June 2009. Japanese fish farm sediments were collected from 14

stations located in and around fish farming areas in the north part

of Sukumo Bay, located in Sikoku, Japan in the same manner as

the coastal sediments collected from the Seto Inland Sea.

Deep sea sediments were collected from the Arabian Sea and

the Atlantic Ocean. Samples from the Arabian Sea were obtained

from two stations, with one station (AS-1) being situated within the

oxygen minimum zone (OMZ) (i.e. ,9 mM O2 in the overlying

water) and the other station (AS-2) below the OMZ (i.e. oxic

bottom water) in January 2010 [43]. Sediment from the Atlantic

Ocean was sampled at the Galicia Bank off the coast of Spain in

September–October 2008 [44].

All sediment samples were either directly stored frozen (220uC)

or freeze-dried and subsequently stored frozen (220uC) until

extraction and analysis of PLFAs, quinones, and organic carbon.

Chemotaxonomic Markers of PLFAs and RQs in Different
Groups of Bacteria

Important chemotaxonomic PLFA and RQ markers for

bacteria are listed in Table 2. In this study, we defined the sum

of saturated fatty acid (SFAs, C13–C18), branched fatty acids

(BFAs), and mono-unsaturated fatty acids (MUFAs, #C19) as total

bacterial PLFA. In addition, there are various other bacteria-

PLFAs and Quinones of Sediment Bacteria
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specific PLFAs, for instance i17:1v7 is for a marker for the genus

Desulfovibrio [45], but these compounds are typically present in low

concentrations, which precluded analysis of these compounds in

most sample sets in the present study.

PLFA Extraction and Analysis
PLFAs were extracted from freeze-dried sediment (,4 g) and

analyzed as described in [28]. In short, total lipids were extracted

from the sample in chloroform–methanol–water (1:2:0.8, v/v)

using a modified Bligh and Dyer method and fractionated on

silicic acid into different polarity classes. The methanol fraction,

containing phospholipids, was derivatized using mild alkaline

methanolysis to yield fatty acid methyl esters (FAMEs), which were

recovered by hexane extraction. FAME concentrations were

determined by gas-chromatography-combustion-isotope ratio

mass spectrometry (GC-c-IRMS) for all samples except for

Japanese samples that were analysed by gas chromatography-

flame ionization detection (GC-FID). The concentrations obtained

by both methods are comparable from our previous experience

(r2 = 0.99, unpubishied data). Identification of individual FAME

was based on comparison of retention times with known reference

standards.

Quinone Extraction and Analysis
Quinones were extracted from freeze-dried or frozen sediment

(,6 g) as described previously [25,29]. The types and concentra-

tions of each quinone were determined using a HPLC equipped

with an ODS column (Eclipse Plus C18, 3.0 (I.D.)6150 mm, pore

size 3.5 mm, Agilent technologies) and a photodiode array detector

(SPD-M20A, Shimadzu: for the Japanese samples, and Waters 996

for the samples from the Dutch intertidal zone, North Sea, and the

deep sea). A mixture of 18% isopropyl ether in methanol was used

as the mobile phase at a flow rate of 0.5 mL min21. The quinone

molecular species were identified by the linear relationship

between the logarithm of the retention times of quinones and

the number of their isoprene units, using the identification-

supporting sheet, which is available upon request from T. K, based

on the equivalent number of isoprene units (ENIU) of quinone

components as described by [46]. Details on the analytical

conditions have been described by [33].

Organic Carbon Content
For determination of the organic carbon (OC) content,

sediment samples were first freeze-dried or dried at 60uC in an

oven overnight, acidified to remove carbonate, and further

vacuum-dried. The OC content of the sediment was determined

with an elemental analyzer (NA-1500n, Fisons, Rodano-Milan,

Italy: for the Japanese sediments and FlashEA 1112, Thermo

Electron, Bremen, Germany: for the sediments of other samples).

HAA Extractions, Analysis and Calculation of Degradation
Index

For the Japanese sediments, concentrations of hydrolysable

amino acids (HAAs) were analyzed as described in [47] and used

to calculate the degradation index (DI), a proxy for the quality, or

‘‘freshness’’, of the organic matter in the sediment. Briefly, samples

(,1 g) of freeze-dried sediment were washed with 2 M HCl and

Milli-Q water and then hydrolyzed in 6 M HCl at 110uC for 24 h.

After neutralization by 1 M NaOH, amino acids were derivatized

with o-phthaldialdehyde (OPA) [48] prior to injection to reverse-

phase high-pressure liquid chromatography (HPLC). Amino acid

concentrations were measured by HPLC and further details on the

Table 1. Sample codes and characteristics.

Site Code Water depth (m) Sediment depth* (cm) n** Analysis

OC*** DI****

Dutch intertidal (DI):

Oude bietenhaven DI-N-OB - 0–2 2 n n

Zandkreek DI-N-Z - 0–5 2 n n

Rattekaai DI-N-R - 0–1.5 2 n n

Kapellebank DI-N-K - 0–2 2 n n

Lab incubations DI-L - 0–2 1–12 y n

North Sea (NS):

Station 1 NS-1 12 0–1 1 y n

Station 2 NS-2 45 0–9 1–6 y n

Station 3 NS-3 27 0–9 1–6 y n

Japanese coast (JC):

Natural JC-N 6–83 0–1 or 0–2 1–9 y y

Fish farm JC-FF 30–75 0–2 1–14 y y

Arabian Sea (AS):

Station 1 AS-1 989 0–2 1 y n

Station 2 AS-2 1700 0–2 1 y n

Galicia Bank GB 1900 0–1 1 y n

*Total sampled depth range;
**n, sample number;
***OC: organic carbon content,
****DI: degradation index. Additional information is shown in Table S1.
doi:10.1371/journal.pone.0096219.t001
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analytical conditions have been described by [47]. The DI was

calculated following [47]:

DI~
X

i

vari{AVGvari

STDvari

� �
|fac:coefi

where vari, AVGvari, STDvari, and fac.coefi are the mol%, mean,

standard deviation and factor coefficient of amino acid i,

respectively. The factor coefficient was described in [49].

Cluster Analysis of the Pattern of Differences Among
Samples in Individual PLFAs and RQs

We conducted a cluster analysis to identify groups of similar

bacterial PLFA and RQ patterns. We first normalized the mole

fraction of bacterial PLFA and RQ (Zj,i), because this analysis

depends on the absolute values of the data, using the following

normalization equations [50]:

Zj,i~
Pj,i{Pj

Sj

With:

Pj~

PN
i~1 Pj,i

N

Sj~

PN
i~0 Pj,i{Pj

� �
N{1

" #1=2

where Pj,i is the mole fraction of bacterial PLFA or RQ component

j and sample i, N is the number of samples, and �PPj and Sj are the

average value and the standard deviation of the mole fraction of

bacterial PLFA or RQ among samples, respectively. After

normalization, the average value �PPk and the standard deviation

Sk are shown respectively as 0 and 1, where k is the normalized

component of bacterial PLFA or RQ. We used both.1 mol% of

component to the bacterial PLFA (without general bacterial

compounds (SFAs (C122C19), 16:1v7c, and 18:1v9c), MUFAs ($

C20), and PUFAs) or RQ profile, .30% of coefficient of variance

of compound among all samples for this data analysis, and

reconstructed profiles, because general and minor components

interfere with the result of this analysis. As results, the cluster

analysis was conducted based on the mole fraction of 12 bacterial

PLFAs and 16 RQ molecular species among all samples (see

‘‘Cluster analyses of bacterial PLFA and RQ profiles’’). The

normalized values were used to produce a cluster dendrogram

based on the Euclidean distance matrix, and the dendrogram was

constructed using Ward’s method with the graphing program

KyPlot version 5.0 (KyensLab Inc., Tokyo, Japan).

Cluster Analysis Based on the Full Profiles of the Bacterial
PLFAs and RQ

We conducted another cluster analysis to compare sample

discrimination and its resolution based on bacterial PLFA or RQ

profiles. A dissimilarity index (D) of profile was calculated using the

following equation [51].

D~
1

2

Xn

k~1

fki{fkj

�� ��
where n is the number of PLFA or RQ component. In the PLFA

profiles, fki and fkj are the mole fractions of the k PLFA

component for the i and j samples, respectively. In RQ profiles,

fki and fkj are the mole fractions of the k RQ component for the

i and j samples, respectively (fki, fkj.1 mol%; Sfki =Sfkj = 100 -

mol%). Cluster analysis was performed with the program KyPlot

version 5.0 based on the D distance matrix and a dendrogram

was constructed using the between-groups linkage method.

Values#0.1 of D of RQs are not recognized as different RQ

profiles according to the analytical precision based on the

duplicate analytical results including extraction and measurement

process (97% statistical reliability) [52]. For the PLFA analysis,

we determined the threshold value, 0.13, in the same manner as

the value of the quinone profiling method (see [52]) using 12

duplicate results of the incubation sediment samples (Fig. S1).

Statistical Analysis
Spearman’s rank correlations (rs) were used to show the

relationships among bacterial PLFA concentration, RQ concen-

tration and organic carbon content and the relationships between

OC content and DI. Pearson’s correlation coefficients (r) were used

to show the relationships between OC content and RQ/bacterial

PLFA ratio and between DI and RQ/bacterial PLFA ratio.

Analysis with Spearman’s rank correlation and Pearson’s corre-

lation coefficient was performed using the statistical program

PASW Statistics for Windows version 18J (IBM Japan, Tokyo,

Japan). Mantel tests were used to test the significance of the

correlation between dissimilarity matrices based on bacterial

PLFA or RQ profiles, using the R package [53].

Results

PLFA and Quinone Concentrations
Total bacterial PLFA concentrations (i.e. the sum of SFAs [C13–

C18], BFAs, and MUFAs [#C19]) in the sediment varied over

three orders of magnitude (range 1.2–834 nmol gdw21) with

lowest values for Japanese natural coastal sediment (JC-N-9) and

highest values for Dutch intertidal natural sediment (Fig. 1 and

Table 3). Total RQ concentrations in the sediment ranged from

0.01 to 28 nmol gdw21 with lowest values for the Galicia bank

(GB) and highest values for Japanese fish farm sediment, and were

one to two orders of magnitude lower than the bacterial PLFA

concentrations (Fig. 1 and Table 3). RQ concentration showed a

positive log-log correlation with the bacterial PLFA concentration

for the full dataset as well as within the individual sample sets (Fig.

1 and Table 4). However, there were clear differences in slopes of

the fits for the individual sample sets with the highest slope for the

Japanese fish farm sediments (1.487) (i.e. relatively rich in RQs)

and the lowest slope for the Dutch intertidal incubation sediments

(0.716) (i.e. relatively rich in PLFAs) (Table 4). Two deep sea

samples from the Arabian Sea (AS-2) and GB were relatively far

from the overall trend line with relatively high PLFA concentra-

tions and low RQ concentrations (Fig. 1).

Relationship Between Organic Carbon Contents and
Bacterial PLFAs and RQs

The sediment organic carbon (OC) content ranged from 0.4 to

60 mg gdw21 (mean 8.8611, mg gdw21 n = 51) over more than

two orders of magnitude in all samples (Table 3). A positive power

PLFAs and Quinones of Sediment Bacteria
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correlation between the OC contents and the bacterial PLFA

concentrations was observed (Fig. 2a and Table 4). This

correlation was similar for all sample sets, except for the Dutch

intertidal incubation and North Sea samples (Table 4). Given the

correlation, it was not surprising to find that the correlation

between the OC contents and the RQ concentrations was also

positive (Fig. 2b and Table 4).

RQ/PLFA Ratios
We used a ratio based on mole concentration between total RQ

and total bacterial PLFA (RQ/bacterial PLFA). The ratios of RQ/

bacterial PLFA ranged from 0.0007 to 0.095 with lowest value for

the deep sea sediment (GB) and highest values for Japanese fish

farm (JC-FF-13) (Fig. 3a). Strong positive log-log correlations

between the OC contents and the RQ/bacterial PLFA ratios of

the Japanese fish farm samples were observed (r = 0.888, P,0.01)

(Fig. 3a), while ratios for the other sample sets, except deep sea

samples, showed no significant correlation with OC content.

Degradation Index Values for Japanese Sediments
DI values for all Japanese samples were ranged strongly from 2

1.1 to 20.2 (Fig. 3b) with more negative values indicating more

degraded (refractory) material. The DI value was positively

correlated with the OC content (rs = 0.738, P,0.05 for Japanese

natural coast and rs = 0.702, P,0.01 for Japanese fish farm),

meaning the OC in the sediments with the highest OC content

was relatively fresh (labile). A positive linear correlation between

DI and the RQ/bacterial PLFA ratios only for the Japanese fish

farm sediments was observed (r = 0.751, P,0.01) (Fig. 3b),

whereas there was no significant correlation for Japanese natural

coastal sediments (r = 0.665, P = 0.072). Note that the positive

relationship for Japanese fish farm sediments was due to the

sample from Stn. JC-FF-13 (without the plot of Stn. JC-FF-13,

r = 0.469, P = 0.106).

Relative Composition of PLFA and Quinone Pools
The composition of the bacterial PLFA (general [SFAs (# C19),

16:1v7c, and 18:1v9c] + specific) in the sediment showed less

variation as compared to the composition of RQ (Fig. 4). The

three dominant PLFAs, 16:0, 16:1v7c and 18:1v7c, were present

generally in almost all the samples (Fig. 4a). SFAs (# C19),

16:1v7c, and 18:1v9c as a general marker for bacteria accounted

for 57 mol% of the total bacterial PLFA pool in all samples (range

47–71 mol%). Bacteria-specific PLFAs showed variation in the full

dataset. Together, i15:0, a15:0, 10Me16:0, and 18:1v7c as a

specific marker for bacterial groups accounted for average 25 mol%

(range 11–46 mol%) of the total bacterial PLFA pool in all samples

(Fig. 4a).

In general, the relative composition of RQ varied more strongly

(Fig. 4b). The most obvious difference is seen between the deep-sea

and the other (coastal and estuarine) sediments. Almost all coastal

sediments except Japanese fish farm sediments were dominated by

PQ-9 and UQ-8, while two deep sea sediments (AS-2 and GB)

were dominated by MK-8(H2) and MK-8. Japanese fish farm

sediments were dominated by UQ-10 and UQ-8. Together, UQ-

8, -9, and -10 accounted for 45 mol% (range 9–83 mol%) of the

total RQ pool in all samples. PQ-9 and K1, which are derived

from photosynthetic organisms, were observed in not only coastal

area, but also in the oxygen minimum deep-sea sediment (AS-1)

(Fig. 4b).

Cluster Analysis of the Pattern of Differences Among
Samples in Individual PLFAs and RQs

The differences in the bacterial PLFA and RQ profiles for the

different sample sets (Fig. 4) were further clarified by two cluster

analyses. The first analysis was performed to investigate the co-

Table 3. Concentration of bacterial PLFAs, respiratory quinones (RQ) and organic carbon (OC) in marine sediments in this study.

Bacterial PLFA (nmol gdw21) RQ (nmol gdw21) OC (mg-C gdw21)

Range Mean ± SD Range Mean ± SD Range Mean ± SD

All samples 1.172834 67.06122 0.01228.0 1.2263.75 0.37260.4 8.8611.2

Dutch intertidal (DI):

Natural 27.22834 2026280 0.0323.4 0.8461.14 -* -

Lab incubations 11.5289.3 43.0626.2 0.1020.36 0.2360.11 3.6216.3 9.866.2

North Sea (NS): 3.84210.3 6.0562.2 0.0120.05 0.0360.01 0.4423.0 1.661.2

Japanese coast (JC):

Natural coast 1.172202 63.3630.2 0.0125.8 1.2661.8 0.37223.7 10.168.6

Fish farm 9.552295 68.8672.9 0.18228.0 3.5467.19 1.7249.6 10.5611.7

*Not determined.
doi:10.1371/journal.pone.0096219.t003

Figure 1. Comparison between bacterial PLFA and RQ concen-
tration in the sediment with different sample sets. Line indicates
trend for the full dataset. The dotted line indicates the 1:1 relationship.
doi:10.1371/journal.pone.0096219.g001
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variation in the relative abundance of the individual bacteria-

specific PLFAs (sum of BFAs and MUFAs (#C19) except 16:1v7c

and 18:1v9c) and RQs (Fig. 5). When different compounds cluster

closely, this indicates that these compounds are probably derived

from the same bacterial groups. Two main clusters (cluster-1 and -

2) were observed that were further divided into two sub-clusters

(cluster-1a, -1b, 2a, and -2b) (Fig. 5). These five clusters were

characterized by a relatively high mole fraction of group-specific

bacterial PLFAs and RQs among all samples. It is noteworthy that

UQs were present in cluster-1, whereas almost all partially

saturated MKs were in cluster-2.

Cluster Analyses of Bacterial PLFA and RQ Profiles
The second cluster analysis was conducted to investigate the

differences in bacterial community structure of the different

sediments based on the bacterial PLFA and RQ profiles separately

in order to compare the chemotaxonomic resolution of these two

methods (Fig. 6). The bacterial PLFA profiles clearly separated

into three main groups (group PI, PII, and PIII in Fig. 6a). Group

PI comprised all Dutch intertidal natural sediments, while all other

samples were included in group PII. The only exception here is a

single Japanese natural coastal sediment sample (JC-N-9) that

formed a separate cluster (PIII). Further differentiation involved

division of group PII into six different groups (group PI-1,6 in

Fig. 6a) based on the threshold value of 0.13 (representing the

observed level of dissimilarity between replicate samples, see Fig.

S1). The RQ profiles were divided clearly into four main groups

(group QI, QII, QIII, and QIV in Fig. 6b). Within these main

groups, almost all sample sets were distinguished as separate

groups based on the threshold value of 0.1 for sample discrim-

ination of different RQ profiles [52] (Fig. 6b). The general sample

classification of the different sediments between bacterial PLFAs

versus RQs based on the dissimilarity index was significantly

correlated (using 10,000 randomizations, Mantel’s coefficient

r = 0.435, P = 0.0001).

Discussion

Analysis of lipid biomarkers is a powerful tool for quantification

of bacterial abundance and community structure. While PLFAs

have been widely utilized as quantitative bacterial biomarkers in

marine sediment [22,23], applications of the quinone profiling

method to marine sediments are still very few [24,25]. In this

study, we analyzed concentrations of PLFAs and RQs in a broad

range of marine sediments to investigate and compare their

application as indicators of bacterial biomass and community

composition.

Figure 2. Comparisons between: a) organic carbon and bacterial PLFA concentration, b) organic carbon and RQ concentration.
doi:10.1371/journal.pone.0096219.g002

Table 4. Log/log power regressions and Spearman’s rank coefficients between the bacterial PLFA (nmol gdw21) and respiratory
quinone (RQ) concentrations (nmol gdw21), and between organic carbon (mg-C gdw21) and the bacterial PLFA and quinone
concentration of individual sample set.

Bacterial PLFA (x) OC (x) OC (x)

versus RQ (y) versus bacterial PLFA (y) versus RQ (y)

Power regression rs Power regression rs Power regression rs

All samples y = 0.004961.151 0.823** y = 6.32660.882 0.946** y = 0.03961.148 0.809**

Dutch intertidal (DI):

Natural y = 0.009660.774 0.643 2 2 2 2

Lab incubations y = 0.015660.716 0.825** y = 5.99160.861 0.781** y = 0.04560.720 0.982**

North Sea (NS): y = 0.005960.899 0.624* y = 5.65060.138 0.253 y = 0.02860.115 0.263

Japanese coast (JC):

Natural coast y = 0.009461.122 0.983** y = 6.02761.011 1.000** y = 0.06961.149 0.983**

Fish farm y = 0.004361.487 0.952** y = 5.96261.022 0.880** y = 0.05661.570 0.847**

Levels of significance are *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0096219.t004
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PLFAs and RQs as Bacterial Biomass Indicators
We found a strong correlation between total concentrations of

the bacterial biomarkers PLFAs and RQs across several orders of

magnitude, both for the individual sample sets and for the whole

dataset (Fig. 1). PLFA concentrations have been used frequently as

a measure of bacterial biomass in seawater and marine sediments

(e.g. [22,23,54]), because PLFA concentrations are relatively

constant in bacterial biomass and PLFAs degrade rapidly upon

death of the source organism, meaning that they are specific for

living bacterial biomass [23]. The strong correlation across several

orders of magnitude between PLFAs and RQs indicates that RQs

also provide an estimate of living bacterial biomass in sediment.

This allowed us to determine the conversion from RQ concen-

tration (nmol gdw21) to bacterial biomass (mg C gdw21;

biomass = 0.192 RQ0.586, rs = 0.853, P,0.001, n = 59). The

equation is based on the correlation between the RQ concentra-

tion and summed concentrations of four bacteria-specific PLFAs

(i14:0, i15:0, a15:0 and i16:0) calculated by the equation detailed

in [30] using the conversion factors from [55]. Interestingly, this

relationship is not linear, which is probably due to metabolic

variation in quinone concentrations in bacterial cells in different

environments.

Previous studies have already demonstrated that total RQ

concentrations correlated very well with microbial biomass carbon

in soil (measured by a fumigation-extraction method, r = 0.96,

[31]), with the total bacterial cell count in various environments

(r = 0.98, [32]), and with bacterial cell volume in lake water

(r = 0.98, [33]). Our study is the first to demonstrate the good

correlation between concentrations of RQ versus PLFAs as a

compound-specific biomarker for bacteria in marine sediment.

Thus, these results indicate that RQ concentration can be utilized

as a proxy for bacterial biomass in sediment samples.

Despite the overall strong correlation between PLFAs and RQs,

a more detailed look at Fig. 1 reveals that there is residual

variation to be explained. Firstly, the range in RQ concentrations

was around one order of magnitude higher than that of the

bacterial PLFA concentrations in the full sample set. Secondly, the

slopes of the fits for the individual sample sets were different (Fig. 1

and Table 4), which implies that the different sediments contained

bacterial communities with different RQ/PLFA ratios. We

consider two possible explanations for this varying RQ/PLFA

ratio. The first explanation is inherent group-specific differences in

the RQ/PLFA ratios of the different groups of bacteria

contributing to the overall bacterial community. This can be

related, for example, to the type of energetic metabolism of the

bacteria (e.g. [56]). The second explanation concerns the activity

of the bacteria. While bacterial PLFA concentrations (being a

structural biomass component) are relatively stable under different

conditions [57,58], concentrations of RQs in bacterial cells can

also depend on the metabolic activity due to growth phase [59],

substrate utilization [60], and redox state [61]. The strong PLFA

versus RQ correlation over a broad range of sediments suggests

that RQ concentration reflects mainly bacterial biomass but that

may have an additional component related to the activity/

metabolism of bacteria.

If RQ concentrations are also dependent on the activity of the

bacteria, RQ concentrations relative to PLFA concentrations (the

RQ/bacterial PLFA ratio) may also depend on the quality and

quantity of the OM in the sediment as these two factors directly

influence bacterial activity [36,62,63]. We investigated this

relationship through assessment of the correlation between the

RQ/bacterial PLFA ratio versus OM quantity (total OC content)

for all samples and OM quality (i.e. DI, the amino acid-based

degradation index) for the Japanese sediments (Fig. 3b). The

absence of a clear correlation between OC content and the RQ/

bacterial PLFA ratio for the full dataset (Fig. 3a) indicates that this

ratio was not influenced by OM quantity. In addition, we also

investigated the relationship between the RQ/bacterial PLFA

ratio versus OM quality for the Japanese samples. The OM quality

was determined by the degradation index (DI), which is based on

the relative composition of hydrolysable amino acids in the

sediment [47]. This index provides an indication of the quality (or

‘freshness’) of the organic matter in the sediment with most

negative values indicating relatively low quality (or ‘refractory’)

material. Despite the wide range of observed DI values (21.10 to

20.02), which indicates substantial variation in OM quality

between samples for both the natural and fish farm sediments

(Fig. 3b), there was no correlation between DI values and the RQ/

bacterial PLFA ratio for the natural sediments and only a weak

correlation for the fish farm sediments (Fig. 3b). Overall, our

results indicate that there was no strong control of bacterial activity

on the RQ/PLFA ratio by both quantity and reactivity of the OC

pool.

Still, the RQ/bacterial PLFA ratios for Japanese fish farm

sediments were clearly higher than the natural sediments.

According to previous studies, the ratio between total RQ and

total PLFA concentration has been used to indicate mainly two

aspects: a presence of aerobic bacteria and facultative heterotro-

phic bacteria and a respiratory activity in comparison with

fermentation processes [38,40,41]. Further investigation of the

Figure 3. Relationships between: a) organic carbon and RQ/bacterial PLFA ratio in the sediment with different sample sets,
b) degradation index and RQ/bacterial PLFA ratio in the Japanese coastal natural- and fish farm sediments.
doi:10.1371/journal.pone.0096219.g003
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RQ/PLFA ratio, combined with a study on bacterial metabolism

in marine sediments, is needed to explain the observed residual

variation and the role of these two aspects.

Linking PLFA and Quinone Biomarkers
The cluster analysis as shown in Fig. 5 was conducted to

investigate the co-variation between the bacterial PLFAs and RQs

Figure 4. Summarized compositions of a) PLFAs and b) quinones with different sample sets. More than 3 mol% of components to total
pool of each PLFAs and RQs were indicated as others. Note that the full range of PLFAs and quinones analyzed is shown here, meaning that this
includes both bacteria-specific and non-specific compounds.
doi:10.1371/journal.pone.0096219.g004
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in the different sediments and their association with specific

bacterial groups. The cluster analysis showed two main groups:

cluster-1 comprised UQs, which are specific for Gram-negative

Proteobacteria (see Table 2). Cluster-2 comprised almost all

partially saturated MKs, which are predominantly present in

Gram-positive bacteria, thereby indicating that cluster-2 was

dominated by Gram-positive bacteria (Fig. 5 and Table 2). Based

on the taxonomic assignment of PLFAs and RQs in Table 2, the

subcluster can be analyzed in more detail. Subcluster-1a

comprised UQ-10, indicating that this cluster was dominated by

members of the class Alphaproteobacteria. Subcluster-1b was

characterized by the presence of MK-6, i15:0, 10Me-16:0, and

cy17:0, indicating that this cluster was predominance of the class

Deltaproteobacteria. Subcluster-1c was characterized by UQ-8

and 18:1v7c, indicating that it comprised mainly members of the

class Gamma- and Beta-proteobacteria. Betaproteobacteria are

well known to be a minor group in marine sediment [36],

therefore, Subcluster-1c must have been dominated by mainly

members of the class Gammaproteobacteria. Cluster-2a was

characterized by MK-10, MK-9(H8), and i17:0, indicating that

this cluster is relatively rich in members of the Actinobacteria.

Subcluster-2b was characterized by MK-8, MK-9, and a15:0,

indicating that this cluster comprised members of the Bacter-

oidetes. Our study is the first to demonstrate a general agreement

in the chemotaxonomic classification based on bacterial PLFAs

versus RQs. This strengthens the use of these biomarkers for

characterization of the sediment bacterial community. Although

taxonomic resolution of both analyses is limited to identify

phylogenetic groups of bacteria (low phylogenetic resolution), the

value of this approach can be in combination with stable isotope

probing to allow researchers to trace the flow of elements within

communities [23].

Bacterial Communities of the Different Sediments
The cluster analyses as shown in Fig. 6 were performed to

investigate the resolution of the two types of bacterial biomarkers

and their ability to distinguish between bacterial communities

from different sediments. In general, the bacterial PLFA- and RQ

profiles revealed a similar classification pattern in bacterial

community differences in our wide range of marine sediments

(Fig. 6). However, there is a clear difference in the resolution of

both methods with sample classification based on the RQ profile

distinguishing 37 groups, whereas classification based on of the

bacterial PLFA profile distinguishes only 13 groups. In other

words, the level of dissimilarity between RQ profiles was

substantially higher than the level of dissimilarity between the

PLFA profiles.

The higher sample discrimination in the RQ profile can be

explained by the higher specificity of the RQs for specific bacterial

groups (see Table 2) as well as the more pronounced differences

between RQ profiles of different bacterial groups (that are

typically dominated by one RQ while PLFA profiles typically

comprised 5,17 PLFAs) [38,64,65]. In addition to this general

trend, there were also some notable differences in the classification

of the deep sea sediments (AS-1, AS-2, and GB), Japanese natural

coastal sediment (JC-N-9), Japanese fish farm sediment (JC-FF-10

and JC-FF-13), North Sea sediment (NS-2), and Dutch natural

intertidal sediment (DI-N-K) (Fig. 6).

Two groups of RQs that were particularly important for the

higher level of dissimilarity in RQ profiles are UQ-n and the

Figure 5. Cluster analysis of the pattern of differences among samples in the individual bacterial PLFAs and RQs. The mean mole
percentage value indicates the mean mole fraction among all samples.
doi:10.1371/journal.pone.0096219.g005
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Figure 6. Classification of profiles based on the dissimilarity value matrix data calculated from the mole fractions of a) the bacterial
PLFAs and b) the RQs of the sediments. Abbreviation of each sample indicates the system and other information of the sample (see Table 1).
Parentheses in the abbreviation indicate the depth layer at the sampling station.
doi:10.1371/journal.pone.0096219.g006
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partially saturated MKs. UQs are good markers for Alpha-, Beta-,

and Gamma-proteobacteria, whereas as for PLFAs, the only

specific marker for proteobacteria is 18:1v7c (see Table 2).

Partially saturated MKs, which exist in Actinobacteria, Deltapro-

teobacteria, and Epsilonproteobacteria, showed most variation

between sample sets, especially, MK-8(H2), MK-9(H2), MK-7(H4),

MK-9(H4) and MK-9(H8) which were present in more than 29

samples (15.469.2 mol% in the total RQ pool). Actinobacteria

generally show a larger variation in MKs than PLFAs (e.g. [66]).

Thus, higher sample discrimination in RQ profile could be due to

presence of compounds originated from members of mainly

Proteobacteria (UQ-n) and Actinobacteria (MK-n(Hx)).

Overall, we demonstrated that both concentration of bacterial

PLFAs and RQs are good indicators for bacterial biomass and RQ

profile can discriminate community difference more clearly than

the bacterial PLFA profile. Thus, the combination between PLFA

analysis (in combination with the stable isotope probing (SIP)

technique) and quinone profiling method is a good strategy for

studies on the role of bacteria in sediment biogeochemistry. These

methods, and their applications, can be further expanded with the

development of a method for stable isotope analysis of quinones so

that quinones can also be applied in combination with stable

isotope probing.
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