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We present an experimental/numerical study of a dipolar flow structure in a shallow 
layer of electrolyte driven by electromagnetic forcing and subjected to background 
rotation. The aim of this study is to determine the influence of a non-conservative 
body force on the range of applicability of the classical Ekman boundary layer theory 
in rapidly rotating systems. To address this question, we study the response of the 
flow to the three control parameters: the magnitude of the forcing, the rotation rate of 
the system, and the shallowness of the layer. This response is quantified taking into 
account the magnitude of the flow velocity (represented by the Reynolds number), 
the symmetry between both vortex cores, and the vertical profile of the horizontal 
velocity. As in the case without background rotation, the response of the flow exhibits 
two scaling regimes (a linear and a nonlinear regime) in which the flow exhibits 
different vertical profiles of velocity. The transition between the two regimes occurs 
when the convective acceleration becomes of the same order as the viscous damping. 
This suggests that the applicability of the Ekman theory depends on the existence of 
a balance between the forcing and the damping due to the Ekman layers and does 
not depend solely on the value of the Rossby number as for decaying flows. On the 
other hand, the cyclone/anticyclone asymmetry is governed exclusively by the Rossby 
number.© 2012 American Institute o f  Physics. [http://dx.doi.org/10.1063/L4766818]

I. INTRODUCTION

Despite their relatively small thickness, Ekman boundary layers play an essential role in the 
evolution of flows subjected to background rotation since their influence can extend over the whole 
fluid depth, and hence, they can determine the overall behavior of the flow. The clearest example 
might be the case of spin-up/down, which is perfectly explained in a simple and elegant way by 
the Ekman boundary layer theory (see, e.g., Ref. 1). This theory was developed to explain the 
structure of oceanic and atmospheric boundary layers, and it implies a balance between viscous 
forces and the Coriolis force within the boundary layer.2 Commonly, the Ekman layer theory 
is said to be valid when a geostrophic balance (i.e., a balance between the Coriolis force and 
the pressure gradient force) exists outside the boundary layer. This is assumed to be the case if 
the value of the Rossby number, which characterizes the ratio of the magnitude of the convective 
acceleration to the magnitude of the Coriolis acceleration, is much smaller than unity. In the case
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of a decaying monopolar vortex, the Rossby number is associated with the relative thickness of the 
Ekman boundary layer with respect to that of the boundary layer in the case without background 
rotation. In this case, the Ekman theory is applicable if the Ekman boundary layer is thicker than the 
boundary layer for a similar vortex without background rotation.3

The fact that the validity of the Ekman theory rests on the existence of simple force balances 
raises the question of the influence of additional non-conservative body forces (e.g., when electro­
magnetic or buoyancy forces are present). These type of forces drive flows in different geophysical 
settings like rotating turbulent convection and magnetohydrodynamic (MHD) flows inside plane­
tary cores, which are strongly dependent on Ekman boundary layer dynamics. For example, King 
et al,4 have shown experimentally that there is a transition between two different regimes in rotating 
Rayleigh-Bénard convection when the thermal boundary layer becomes thicker than the Ekman 
layer, and Kunnen et al,5 have attributed an increase in heat transfer to Ekman pumping.

Both convective and MHD flows subjected to background rotation present very complex dynam­
ics due, in particular, to the fact that the forcing depends on the flow itself. This makes isolating the 
effect of a simpler non-conservative body force on the Ekman boundary layer difficult. To overcome 
this difficulty in the current paper, we study a flow in an electrolyte, which is driven by electromag­
netic forcing and subjected to background rotation. This particular type of forcing in electrolytes 
presents several advantages: it is not modified by the flow; its magnitude can be measured easily; 
its spatial distribution can be computed analytically; and it can be included as a source term in the 
Navier-Stokes equations (see, e.g., Refs. 6 and 7). These characteristics allow establishing a clear 
relationship between the forcing and the response of the flow. For example, for a flow similar to the 
one studied here but without background rotation, the response of the flow to the forcing presents 
two scaling regimes: a linear regime and a non-linear regime, which can be explained using simple 
dimensional arguments and balances of forces.7

Further interest in the flow studied in the current paper arises from the use of electromagnetic 
forcing in recent laboratory experiments to reproduce geophysical flows such as zonal jets in the at­
mosphere and the oceans.8,9 One clear difference between such experiments and oceanic/atmospheric 
flows is the nature of the forcing. For example, surface ocean currents are mainly driven by wind 
stress— for which case the Ekman theory was actually developed— as opposed to a force acting on 
the whole fluid volume in the laboratory setups. This difference raises several questions. Are there 
any dynamical differences when a flow is driven by a non-conservative body force? Are the classical 
theories for rotating flows still applicable? Is the Ekman theory, in particular, still applicable? As 
we shall show here, even a simple non-conservative body force can have an important effect on the 
Ekman boundary layers. In particular, we draw attention to the fact that the value of the Rossby 
number does not determine solely the applicability of the Ekman theory in this case.

II. EXPERIMENTAL SETUP

The experimental setup, similar to the one described in Ref. 7, consists of a water tank 
with a base of 34 x 30 cm2 that, in this case, is placed on top of a rotating table. The tank is 
filled with a salt (NaCl) solution with a concentration of 178 g/1 (with a kinematic viscosity1" 
V =  1.50 x IO-6 m2 s_1 and a density p =  1190 kg m-3 ) to a depth H  and covered with a transparent 
perspex lid to avoid free-surface deformations (see Fig. 1). The depth of the fluid was varied for 
different experiments taking the values H  =  1.2, 2.0, and 3.2 cm.

To force the flow, two titanium electrodes are placed along two opposite sides of the tank, 
and three 30 x 10 cm2 rectangular magnets are placed 1.1 cm underneath the tank bottom. The 
magnitude of the magnetic field of each of these magnets is 0.023 T just above their center. The 
electrodes are placed in compartments that are connected to the measurement area of the tank by 
a system of thin horizontal slits through which the electric current can easily pass, but that isolates 
the chemical reaction products generated at the electrodes from the flow to be studied. As shown 
in Fig. 1(b), the magnet at the center has its north pole facing up, while the two side magnets have 
their north pole facing down. A constant electric current is applied through the fluid using a power 
supply with a precision of IO-2 A. Due to the interaction of the electric current and the magnetic
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30 cm

FIG. 1. Schematic representation of the experimental setup, (a) Vertical cross-section of the experimental setup, (b) Upper 
view of the experimental setup.

field of the magnets, a Lorentz force acting on the fluid is generated

F  = J  x B, (1)

with J  the current density, and B  the magnetic field. For the experiments studied here, the induced 
current density and induced magnetic field are considered to be negligible. In other words, the current 
density J  is only due to the injected electric current, and that magnetic field B  is only due to the 
permanent magnets. This is a good approximation for these experiments as shown in Ref. 6.

For each experiment, the rotating table is set to a constant speed £2 until the fluid reaches 
solid-body rotation. Then, the electric current is switched on to start the forcing. The flow is then left 
to develop until it reaches a steady state. Particle image velocimetry (PIV) is used to measure the 
horizontal velocity field of the flow in a plane at mid-depth. To perform these measurements, the fluid 
was previously seeded with 106-150 /um polymethylmethacrylate particles which are illuminated 
at mid-depth with a laser sheet produced by a double-pulsed Nd:YAG laser mounted on the rotating 
table. Images of the central 34 x 28 cm2 area of the tank are taken, using a Megaplus ES 1.0 camera, 
at different time intervals (ranging from 10 ms to 1.3 s) depending on the maximum velocity in the 
flow. These images are then cross-correlated using PIV software from PIVTEC GmbH, Göttingen, 
Germany to calculate the horizontal velocity field.

III. GOVERNING EQUATIONS AND NON-DIMENSIONAL PARAMETERS

A. Governing equations

We assume that the flow is governed by the Navier-Stokes equation which includes the Coriolis 
force and the Lorentz force,

dv 1 1
, (v • V) V +  2 ft x V =  V P  +  vV“v -|— J  x B,

3 1 p  p

and by the continuity equation for an incompressible fluid,

V • v =  0,

(2 )

(3)

where v is the flow velocity, ft =  (0, 0, Í2) is the rotation vector of the system, and P = p  — p i 22(.T 
+  y2)/2 is the modified pressure.

For the interpretation of the results, it will be useful to also consider the vorticity equation

8(0 1
+  [(» • V)w +  (co ■ V)h] +  2(ft • V)v =  vV“w -|— V x ( /  x B),  

Ul p

which is obtained by taking the curl of Eq. (2).

(4)
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B. Considerations on the Lorentz force

Whenever the current density /  is spatially uniform, the Lorentz force given in Eq. (1) can be 
written as

F  = J  x B  =  V ( /  • A) -  ( J  • V)A, (5)

where A  is the vector potential for B  such that B  =  V x A.  In addition, we have considered the 
Coulomb gauge V • A  =  0 without loss of generality.

The term V ( J  ■ A ) in Eq. (5) can be absorbed in the pressure term of the Navier-Stokes
equation (2), which then becomes

dv 1 1
 1- (v ■ V) i; +  2SÍ x  v =  W(P — J  ■ A)  +  vV ~v-( /  • V)A, (6)
iii p p

and it does not contribute to the generation of vorticity since V x [V ( /  • A)] =  0. In other words, 
this term is a conservative contribution. Hence, vorticity is generated by the term - ( /  • V)A, which 
is divergence-free.

For a permanent magnet that is magnetized along the z-direction (as in the case considered in the 
current paper), A  contains only horizontal components (A- =  0) (see, e.g., Ref. 11). Since J  = J  j  in 
our experiments, then ( /  • V) A  = Jd  A / d y  implying that vorticity is driven solely by the horizontal 
components of the Lorentz force. Furthermore, the Lorentz force term in the vorticity equation (4) 
can be simplified to

d B
V x ( /  x B ) =  J  —  . (7)

3 y

Since the velocity measurements are taken on a horizontal plane, we shall focus on the vertical 
component of the vorticity &>- that, as seen in the previous equation, can be produced by the gradient 
in the y-direction of the vertical component of the magnetic field B-.

In addition, the vertical component of the Navier-Stokes equation (2) can be written as

dv- 1 dP*
~ ^  + ( v  V)m =  —  —  +  v V V , (8)
dt p dz

where the term V ( / - A )  has been absorbed in the pressure gradient term, such that 
P* = p  — p i 22(.t2 +  v2)/2  — J  A.  The governing Poisson equation for P*

-  - V 2P* = T r ( e 2) -  - o r  -  2 ñ  • w (9)
p 2

with e the rate-of-strain tensor, is obtained by taking the divergence of Eq. (6) and assuming an 
incompressible fluid [Eq. (3)].

Equation (9) implies that the z-dependence in P* is inherited from the z-dependence of co or 
e. Without background rotation this source term is nonlinear in nature. With sufficiently strong 
background rotation, the term - 2 ñ  • co = —2Í2&>- becomes dominant and is linear in nature leading 
to a different scaling of vertical flow (recirculation) than in the non-rotating case. This means that 
the Lorentz force does not drive vertical motions (i.e., recirculations and secondary flows); these are 
driven by a z-dependent pressure as for vortical flows that are not driven by a Lorentz force such as 
the ones discussed in Refs. 3 and 12.

Finally, we rewrite the Lorentz force [Eq. (1)] in terms of the components of the magnetic field 
for the particular experimental setup discussed in the current paper

(  d Ay d A X\  d Ay ~
F  = J x B = J ( — ^  ? +  / — - k  = JB - Î  -  J B xk.  ( 10)

V dx dy J  dz

The magnitude of the Lorentz force driving the flow in the horizontal direction is characterized by 
[/B-] =  IBI(LxPl), where Lx =  34 cm is the length of the tank along the electrodes; the brackets 
denote the order of magnitude; and /  is the magnitude of the total electric current through the fluid. 
We define B =  (|ZL(.t, y, PH2)|) with (•••) the spatial average over the horizontal plane since the 
measurements are carried on the plane at half-depth. To calculate the spatial average of B-, we
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assume that the spatial distribution of the magnetic field is given by the analytical model described 
in the Appendix, and then, the magnitude is normalized using the measured value right on top of the 
center of the magnet. The Lorentz force term in the vertical direction, J B xk  in Eq. (10), is absorbed 
by the pressure gradient as discussed before.

C. Non-dimensional parameters

Dimensional analysis shows that three independent dimensionless parameters can be defined as 
the control parameters of the problem. The Chandrasekhar number,

I B H
C h =  - ,  (11)

p v -

characterizes the electromagnetic forcing and represents the ratio of the Lorentz force to the viscous 
force. The Ekman number,

Ek =  — , (12)
Í2  H-

characterizes the system’s rotation rate and represents a ratio of the Coriolis force to viscous forces. 
The aspect ratio

H
5 =  —  (13)

Lx

is a geometrical parameter that characterizes the shallowness of the flow. The horizontal length 
scales of the tank, which have a ratio L JL y =  1.13, remain unchanged for all experiments since the 
study of their effect is outside the scope of the current paper.

In the current paper, we consider exclusively the case of a shallow layer (5 1). This has two
important implications: horizontal viscous dissipation is negligible with respect to vertical viscous 
dissipation particularly due to the boundary layers, and the magnitude of the magnetic field varies 
little within the fluid layer. In fact, for the deepest configuration the magnitude of the magnetic field 
above the center of the magnet just below the lid is 19% weaker than at the bottom of the tank; for
the shallowest configuration the difference is only of 5%. For large values of 5, electromagnetically
forced electrolytes can present richer dynamics, as observed in experiments on rotating turbulence 
using electromagnetic forcing.13,14

To characterize the response of the flow, we define the Reynolds number,

U L X
Re = ------ ,  (14)

v

which gives a ratio of inertia forces to viscous forces, with (/being a typical velocity scale of the flow. 
In the current paper, U =  ( |r( i, x , y, z = H / 2)|), where the upper bar denotes the time average, |...| 
denotes magnitude, and (•••) denotes the average over the horizontal plane. The time average was 
computed from 28 image pairs taken after the flow reaches a steady state. This number of image 
pairs is large enough so that the value of Re does not vary if more images are taken into account. 
Note that the definition of U differs from that in Ref. 7, where only the velocity along the symmetry 
axis y =  0 was taken into account. In the current paper, the velocity over the entire measurement 
plane is used since the symmetry with respect to y =  0 may be broken due to background rotation.

The Rossby number Ro, which is also commonly used to characterize flows subjected to 
background rotation, can be obtained from a combination of the other parameters

U 1
Ro EE =  -R eE ká2. (15)

2Í2 L x 2

The Rossby number represents a ratio of the convective acceleration to the Coriolis acceleration, 
and it is a response parameter as the Reynolds number.
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IV. NUMERICAL SIMULATIONS

Numerical simulations were performed to obtain the three-dimensional velocity field of the flow, 
and particularly, the vertical profile of the horizontal velocity. The flows obtained in the laboratory 
experiments where reproduced by setting the fluid properties as in the experiments; defining the 
dimensions of the numerical domain equal to those of the tank; and applying no-slip boundary 
conditions. In addition, the simulations allowed us to explore regions of the parameter space that 
were outside the experimental limits by reaching higher forcing magnitudes (i.e., reaching higher 
Ch-values).

Equations (2) and (3) were solved using a finite difference code (COMSOL15). The domain 
was discretized using a mesh with 15 000 elements, which is equivalent to solve for approximately 
350 000 degrees of freedom. In the horizontal a triangular mesh was used, while in the vertical a 
swept rectangular mesh with 10 levels was used. In this way, we obtain a good spatial resolution 
in both directions while keeping computational costs low. Both the spatial and temporal resolution 
were checked by increasing them until the solution converged.

The electromagnetic forcing was introduced in the simulations using the analytical model for 
the magnetic field described in the Appendix. Figure 2(a) shows the calculated distribution of the 
vertical component of the magnetic field at half-depth for a simulation with S =  0.035. In this figure, 
the three magnets are clearly distinguishable. In Fig. 2(b), dBJdy,  the gradient in the y-direction 
of the vertical component of the magnetic field is plotted for the same plane. Figures 2(c) and 2(d) 
show the horizontal velocity and the vertical vorticity fields in the case without background rotation 
(Ek =  oo) from a numerical simulation with S =  0.035 and Ch =  228, while Figs. 2(e) and 2(f) show 
the same fields from an experiment with S =  0.035 and Ch =  672. As can be seen, from the velocity 
field, a dipolar flow structure is created with velocity in the positive .y-direction above the central 
magnet and velocity in the negative .y-direction above the side magnets. Furthermore, it can be seen

( b )

( f )

FIG. 2. Comparison of the analytically obtained magnetic field distribution with results from numerical simulations and 
laboratory experiments for low Ch-values. Analytically obtained distributions of (a) the vertical component of the magnetic 
field Bz and (b) of dBzfdy. (c) Horizontal velocity and (d) vertical vorticity fields at half-depth for a numerical simulation 
with Ek =  oo, S =  0.035, and Ch =  228. (e) Horizontal velocity and (f) vertical vorticity fields at half-depth measured in a 
laboratory experiment with Ek =  oo, S =  0.035, and Ch =  672.
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Re

- 2

FIG. 3. Measured values of the Reynolds number Re as a function of the Chandrasekhar number Ch (the axes have been 
scaled with S2). Experimental results for Ek =  oo and S =  0.035 (Q). and E k =  oo and S =  0.059 (<]). The filled circles 
(•) denote numerical results for Ek =  oo and S =  0.035. The dashed lines represent the analytical scaling relations given by 
Eqs. (16) and (17).

that the vorticity distribution corresponds well with the spatial distribution of —dB-ldy. However, 
this correspondence only exists for low Ch-values, as we shall show below in more detail.

V. THE CASE WITHOUT BACKGROUND ROTATION (Ek =  oo)

For the case of no background rotation, it has been previously shown7 that there are two different 
scaling regimes

Re «  C h /jr2 (16)

for weak forcing (52Ch <  7r4), and

Re «  Ch1/2/á  (17)

for strong forcing (S2Ch >  7r4). These results are clearly reproduced with the définitions of Re and 
Ch used in the current paper, as shown in Fig. 3. In this figure, we plot the obtained values of 
the Reynolds number Re as a function of the Chandrasekar number Ch for the case of no rotation 
(Ek =  oo) and two different values of the aspect ratio (5 «  0.035 and 0.059). A collapse of the 
curves for both values of 5 is observed when the axes are scaled by S2. In addition, there is a good 
agreement between experimental and numerical results.

In Ref. 7, it was argued using dimensional analysis that the transition between the two regimes 
could be explained by a change in the vertical profile of the horizontal velocity. This is here 
supported by the results from numerical simulations. Figure 4 shows the vertical profiles of the 
horizontal velocity averaged over time and on horizontal planes for two numerical simulations: one 
for S2Ch < t v 4 [weak forcing, Fig. 4(a)] and one for S2Ch >  7t4 [strong forcing, Fig. 4(b)]. For weak 
forcing, the Poiseuille-like profile is clearly observed, while for strong forcing the flow consists of

(b)

0 0.5 1
 ___(\vw(z=H/m

FIG. 4. Vertical profiles of the horizontal velocity obtained numerically from simulations with Ek =  oo, S =  0.035 (a) 
Ch =  228 and (b) Ch =  1.66 x IO6, vh  = (vx , vy , 0); the over-bar denotes the time average; and {•••) denotes spatial 
average of a horizontal plane. The vertical profile is normalized by the value of {|u# |) at half-depth. The dashed lines in (b) 
denote the thickness of the boundary layers tJH  =  =  7r/(2<5Re1/2).

 ___{\vw(z=H/m

Dow nloaded 02 Oct 2013 to 145.1.205.92. This article is copyrighted a s  indicated in the  abstract. R eu se  of AIP con ten t is sub ject to the  term s at: http://pof.aip.org/about/rights_and_perm issions

http://pof.aip.org/about/rights_and_permissions


116602-8 Duran-Matute et al. Phys. Fluids 24, 116602 (2012)

an inviscid interior and two boundary layers (one at the bottom and one at the top). The definition 
for the thickness of these boundary layers (as proposed in Ref. 7)

-  ¿ 2  <18)

gives a good estimate for the actual physical thickness of these boundary layers. The transition 
between the two regimes occurs when /¡Re «  1/2, and it is explained by the fact that inertia forces 
become dominant over viscous forces away from the upper and lower boundaries.

VI. THE CASE WITH BACKGROUND ROTATION

Figure 5 shows the response of the flow (given by ReS2) as a function of the forcing (given by 
S2Ch) for different experiments and numerical simulations with Ek =  3.5 x IO-3 . The experiments 
were carried out with three different aspect ratios 5 =  0.035,0.058, and 0.094, while the simulations 
were performed for 5 =  0.035 and 0.094. It can be observed that there is similar behavior as in the 
non-rotating case in that there are two clear distinct scaling regimes, and that the curves for the same 
Ek-value but different 5-value collapse if both Re and Ch are scaled by S2.

To explain these regimes, we assume that, for this Ek-value, the damping in the interior is mainly 
due to the linear contribution to the vortex stretching induced by Ekman suction (see Ref. 16). This 
form of damping is commonly known as Ekman damping or Ekman friction. In other words, we 
assume that the most important contribution to viscous damping for the vertical component of the 
vorticity equation (4) is given by a term

—2Ek1/2£2&>;

and not by molecular viscous diffusion. The factor 2 in the Ekman damping term is included to 
account for the presence of both the bottom and top boundary layers.

We then presuppose a balance between Ekman friction and the Lorentz force, i.e.,

2Ek1/2£2 U  I- ^ —  (19)
p L x H

which yields

Re ~  Í E k 1/2Ch. (20)

This relationship is shown in Fig. 5, where it can be seen that this scaling relation agrees well with 
numerical and experimental results within the first regime.

20'

10

o
0

-10

-20 o i 2 3 4

52Ch

FIG. 5. Values of the Reynolds number Re as a function of the Chandrasekhar number Ch (the axes have been scaled with 
S2). Experimental results for Ek =  3.5 x IO-3 and 8 =  0.035 (□), 0.054 (0), and 0.094 (☆). The equivalent filled symbols 
denote numerical results for the same Ek and 8 values. The dashed lines denote the analytical scaling relations given by 
Eqs. (20) and (22).
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For strong forcing, we presuppose that there is a balance between convective acceleration and 
the Lorentz force, i.e.,

I B  U2
p L x H

which yields

(21)

Ch1/2
Re ~  (22)

as in the case of no background rotation. The relationship (22) is also shown in Fig. 5, which reveals 
a good agreement between this scaling relation and the experimental and numerical results for large 
values of S2Ch. Furthermore, Eqs. (20) and (22) give good estimates for the value of the Reynolds 
number.

We define a typical non-dimensional thickness /¡Ek for the boundary layer in the rotating case.
As for the case without background rotation, the boundary layers are said to exist if their thickness
is smaller than half the total depth (i.e., if /¡Ek < 1/2). In this way,

/t Ek =  ^ E k 1/2. (23)

Note that the only difference with the typical definition of the Ekman boundary layer thickness is 
the prefactor 7t2/4, which is added to fit the condition that the Ekman damping is equal to the one 
due to the Poisseuille-like profile at hEk ^  1/2, i.e.,

Ch 1 1
Re «  —  « -E k ^ -C h  for h Ek «  - .  (24)

7T“ 2 2

Clearly, in the case when a vertical Poiseuille-like profile exists over the whole depth, the Ekman 
theory and Eq. (20) do no longer hold since there are no Ekman boundary layers at all.

Figure 6 shows the response of the flow in terms of 52R eE k1/2/2  as a function of S2C hEk/4. 
In this figure, we have included the data previously shown in Fig. 5, a set of experiments with 
Ek =  3.5 x IO-2 , 5 =  0.035 and several Ch-values, a set of numerical results for simulations with 
Ek =  4.1 x IO-2 , 5 =  0.035 and different Ch-values, and a set of numerical results for simulations 
with Ek =  4.0 x IO-2 , 5 =  0.018 and different Ch-values. Due to the correct scaling of the axes, the 
curves for different Ek-values and 5-values collapse. Furthermore, the transition between the regimes 
occurs at 52R eE k1/2/2  «a 52C hE k/4  «s 1. This gives confidence in the validity of Eqs. ( 20) and ( 22) 
for different Ek-values up to Ek «s 4/7t4 ( /zEk ^  1/2).

10

,010

-210

-2 1 ,0 1 ,210 10 10 10 10'
52 C hE k/4

FIG. 6. Response of the flow given by the parameter T  Re kk v/2 as a function of the control parameter T C h  I ’k /4 for 
laboratory experiments and numerical simulations with different values of Ek, Ch, and S. The markers denote the same 
experimental and numerical results as in Fig. 5 with the addition of experiments with Ek =  3.5 x IO-2 , 8 =  0.035, and 
several Ch-values (>); numerical simulations with Ek =  4.1 x IO-2 , 8 =  0.035 and several Ch-values (+); and numerical 
simulations with Ek =  4.0 x IO-2 , 8 =  0.018 and several Ch-values (*). The dashed lines represent the scaling relations 
(20) and (22).
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( l ^ l )  <EZI>
<|vFC==ii/2)|> ( \ V W( z =H/ 2 ) \ )

FIG. 7. Vertical profiles of horizontal velocity obtained numerically for two simulations: (a) Ch =  228 and (b) Ch 
=  1.66 x IO6, Ek =  3.5 x IO-3 , S =  0.035. vh  = (vx , vy , 0); the over-bar denotes the time average; and {•••) denotes 
spatial average over a horizontal plane. The vertical profile is normalized by the value of (|T/71) at half-depth. The dashed 
lines denote the thickness of the boundary layers given by z/H  =  /îrê, and the dotted line denotes the thickness of the boundary 
layer given by zJH =  hEk-

Figure 7 shows the vertical profile of the horizontal velocity for two different simulations with 
Ek =  3.5 x IO-3 . The same Ch and 5 values as in Fig. 4 for the case without background rotation 
have been used. For Ch =  228 [Fig. 7(a)], we observe the typical profile for flows subjected to 
strong rotation composed of a geostrophic interior where dv /dz  ^  0 and two Ekman boundary 
layers which are characterized by the velocity maximum at z/H «s /¡Ek. On the other hand, for 
Ch =  1.66 x IO6 [Fig. 7(b)], the typical profile with the Ekman boundary layers is lost and a profile 
similar to that shown in Fig. 4(b) for the case of zero background rotation and strong forcing is 
recovered. Furthermore, we observe in Fig. 7(b) that the thickness of the Ekman boundary layers /¡Ek 
is close to that for the non-rotating case /¡Re. Fiowever, /¡Re > hEk, which suggests that the transition 
does not occur when /¡Re becomes smaller than hEk as for decaying vortices.3

The transition between the two regimes can be obtained by the intersection of the two lines 
given by Eqs. (20) and (22), which occurs when

1 , n  Ch1/2
-E k  7 Ch « -. (25)
2 S

For the non-rotating case, the transition between the two regimes can be explained by the dominance 
of inertia forces over viscous forces in the nonlinear regime. Fiowever, the physical explanation for 
the case of strong rotation, which depends on the parameter

1 I B H
Fli EE -5  Ch Ek ss ------  , (26)

4 4 p L 2xvU

is more complex since the magnitude of the forcing, viscosity, and the rotation rate must all be taken 
into account. The condition for the applicability of the linear Ekman theory is then

1Ü! =  -5  C hEk <  1 (27)

provided that also /¡Ek <  1/2 [i.e., Ek <  4/7t4 «s 4.1 x IO-2]. An equivalent condition can be ex­
pressed in terms of the response parameters of the problem (Re and Ro)

Ro 1 ^  , n U v 1' 2 ^
EE EE — — =  -5  ReEk / =   <  1. (28)

“ Ek1/2 2 Qr/2L XH  ~

The dependence of the transition on I ii clearly indicates that the presence of a non-conservative 
body force is critical for the applicability of the Ekman boundary layer theory. Furthermore, the limit 
for the applicability of the Ekman boundary layer theory does not depend exclusively on the Rossby 
number as for flows without a body force. This means that the transition is not due to convective 
acceleration becoming dominant over the Coriolis force. Actually, since the critical Rossby number
at which the transition occurs decreases with the square root of the Ekman number, the transition
can occur already for Ro 1.
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To further understand the physical meaning of the transition between the two regimes, we 
consider the vertical component of the vorticity equation (4)

J  d B
(v ■ V)ry- +  2 [(ß  • V)i>] • íe =  - 2 E k 1/2£2ry- + ------ T  (29)

'  '  P 3.V
where we have made the following assumptions: the flow is steady; horizontal viscous diffusion is 
negligible with respect to Ekman friction; and vortex stretching is only due to Ekman pumping.

We define the non-dimensional variables (denoted by primes)

U , 1 ,
v = Uv  , &>, =  — co., V =  — V , B , =  B..J 4, J ^ -C^X ^X

These variables are substituted into Eq. (29) to obtain the non-dimensional equation

, , - mi , C hEk dB'.
Ro(u • V V -  +  [(* • V i r  ] • k  =  - E k l' 2oJ. +  a ; . (30)

2Re dy'

Substituting the scaling for the Reynolds number in the regime of weak forcing and strong rotation 
Re =  Ek1/2C h/2 into Eq. (30), yields

jE k C h  5 V  • V V -  +  • V i r  ] ■ k  = -coi +  . (31)4 '  Ek1/- '  dy'

In this equation, the non-dimensional parameter I ii is recovered in front of the convective acceler­
ation term. On the other hand, both Ekman friction and the forcing are of order unity. This implies 
that the magnitude of the convective acceleration with respect to these two terms will grow as I ii. 
However, the relative magnitude of the Coriolis force with respect to the same two terms will grow 
as Ek~1/2.

Equation (29) can also be written in terms of the Rossby number

^ ' ■ v > ¡  +  i ¿ 75< « v v ) . í  =  -« ,;  +  i | .  ,32)

From this equation, it can be seen that the magnitude of the convective acceleration with respect to 
that of the Ekman friction and the electromagnetic forcing increases with R oEk_1/2. Furthermore, 
the ratio between the magnitude of the convective acceleration and the magnitude of the Coriolis 
acceleration is given, as expected, by the Rossby number Ro.

VII. CYCLONE/ANTICYCLONE ASYMMETRY AND THE ROLE OF THE ROSSBY NUMBER

A typical characteristic of flows subjected to background rotation is the emergence of an 
asymmetry between cyclones and anticyclones. This can, for example, be due to differences in the 
stability of the vortices (see, e.g., Ref. 17) or due to nonlinear Ekman effects (see, e.g., Ref. 18). 
In the experiments discussed in the current paper, a cyclone/anticyclone asymmetry is observed 
for certain values of the parameters of the problem if the flow is subjected to background rotation. 
Figure 8 shows the vorticity field for three different experiments with the same value of Ek and 5 
(Ek =  3.5 x IO-2 , 5 =  0.035), and three different Ch-values. As can be seen, the symmetry between 
the cyclone and anticyclone is broken for the larger values of Ch. The asymmetry observed is 
characterized by a strong and compact anticyclone and a weak and enlarged cyclone, which can 
be explained by the asymmetric nature of the Ekman pumping as the Rossby number approaches 
unity.18

To quantify the cyclone/anticyclone asymmetry in the flow, we consider the probability distri­
bution for the vertical component of the vorticity P(coz), and we define the quantity

S =  j  \P(oh ) -  P ( - o h )\doh , (33)

such that S =  0 if the probability distribution is perfectly symmetric, and S  increases if an asymmetry 
develops.
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FIG. 8. Vertical vorticity field for three different experiments with Ek =  3.5 x 10 ” , S =  0.035, and (a) Ch =  4.95 x 10 
(b) Ch =  1.35 x IO4, (c) Ch =  3.67 x IO4. The color denotes the value of the non-dimensional vertical vorticity: cn-J2Í2.
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0.4

O o0.2
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FIG. 9. Cyclone/anticyclone asymmetry as given by S  as a function of the Rossby number Ro. The markers denote the same 
experimental results and numerical results as in Fig. 5. Additional data correspond to experiments with Ch =  2.94 x 10s , S 
=  0.035, and several Ek-values (O).

Figure 9 shows the value of S  as a function of the Rossby number for the same experiments and 
numerical simulations presented in Fig. 6 plus an additional set of experiments where the Ch-value 
is kept fix at Ch =  2.94 x IO5, 5 =  0.035, and the value of Ek is varied. As can be seen, the value 
of S  exhibits a similar behavior for the different simulations and experiments when it is plotted 
as a function of the Rossby number. In particular, we can observe that as the value of Ro reaches 
Ro «  1(T2, the value of S  sharply increases until it reaches a maximum at around Ro «  10_1. Then, 
the asymmetry decreases as the Coriolis force starts to become negligible.

Even though the value of Ro governs the asymmetry in the flow, the value at which the asymmetry 
attains its maximum is still one order of magnitude smaller than unity (as seen in Fig. 9). This is due 
to the fact that the asymmetry arises locally when |&>-/2£2| «s 1. This can be observed in Fig. 8 where 
it is precisely when |&>-/2£2| «s 1 in the regions of high vorticity along the edges of the magnets that 
the asymmetry starts to be observed. The asymmetry occurs when the Rossby number Ro, as defined 
in Eq. (15) using the average horizontal velocity magnitude over the whole plane at mid-depth, is 
much smaller than unity because there are large regions where &>- «  0.

VIII. CONCLUSIONS

We have studied numerically and experimentally the response of a generic shallow flow to 
a non-conservative body force (electromagnetic forcing in an electrolyte) and to background ro­
tation. We have shown that two scaling regimes— a linear and a nonlinear regime—exist for the 
Reynolds number (flow velocity) as a function of the Chandrasekhar number (forcing magnitude) 
independently of the rotation rate.

For sufficiently strong rotation (Ek <  4 / n 2), the linear Ekman theory is only applicable within 
the linear regime and the transition between the two regimes depends on the value of the parameter 
Iii =  52ChEk/4. This dependence clearly indicates that the limit for the applicability of the Ekman 
theory is affected by the presence of a non-conservative body force, and that it does not depend 
exclusively on the value of the Rossby number Ro (i.e., on the relative magnitude of convective
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acceleration with respect to the Coriolis acceleration) as in decaying flows. In the experiments and 
simulations reported here, the Rossby number does, however, govern the appearance and magnitude 
of a cyclone/anticyclone asymmetry.

The previous conclusions have important implications for laboratory experiments on electro- 
magnetically forced flows subjected to background rotation, in that having a small Rossby does not 
guarantee that the Ekman layer theory is applicable. However, according to the values presented 
in previous experimental work on flows of electrolytes forced electromagnetic ally and subjected to 
background rotation,9 these experiments are within the regimes where the Ekman boundary layer 
theory is applicable.

The flow studied in the current paper exhibits an important similarity between the case with 
strong background rotation and the case without rotation: the existence of the linear and the nonlinear 
scaling regimes. Furthermore, it is possible to describe a generic physical explanation for such 
behavior in both cases. First, in the linear regime convective acceleration is negligible with respect 
to the viscous damping and the forcing. The transition between the two regimes occurs when 
nonlinear effects become of the same order as the viscous damping. This transition translates 
into the modification of the vertical profile through advection and a resulting increase in viscous 
dissipation. In this way, the mean flow tends towards a steady state even for large Re-values.

APPENDIX: SPATIAL STRUCTURE OF THE MAGNETIC FIELD

The relevant equations to compute the magnetic field of the permanent magnet are

V • B =  0, (Al)

V x H =  J  free = 0  H  =  -V4>, (A2)

B = ii0(H + M) ,  (A3)

with <f> the magnetic potential, no the magnetic permeability, H  is the magnetic field strength, and
M  the magnetization.

We consider a rectangular magnet with thickness d  and sides 2Lm and 6L„, which is uniformly 
magnetized in the z-direction, such that

M  = Mok  for |.y I <  3L m, |y| <  L m and — d  <  z  <  0 (A4)

with M0 the magnitude of the magnetization.
From now on, we will use the following dimensionless variables denoted by a tilde:

1 $  ~ M  ~ B B d
(„y, v, z)  = — („t, v,z),  = -------- , M = — , B = ----------=  — , iï = — (A5)

L m ■ L mM 0 Mo im, Mo B0 L

with Bo = ßoMo as the typical magnitude of the magnetic field. From now on, the tildes will be 
omitted to simplify the notation.

Combining Eqs. (A Í)—(A3) results in a Poisson equation for the magnetic potential

V7 /l/f Í S d { Z  +  1]) ~  &D { Z )  f 0 r  W < 3  n  l-y l <  1V“4> =  V • M  = \ , (A6)j 0 for |„v| > 3 U I v| > 1

where SD is the Dirac delta function, and M  = k,  for |.v| < 3, |y| < 1, and - / )  < z < 0. The solution 
to Eq. (A6) is given in terms of Green’s function for the Laplace operator and found to be given by

4>(.v, y, z) = F(x,  y, z) -  F(x,  y, z + n) (AÍ )

with

1 f x+3 f y+1 1
F ( x , y , z ) = — l dK g = ,  (AS)

J x - 3  J y - 1  x/ k -  +  Ç -  +  Z -

Dow nloaded 02 Oct 2013 to 145.1.205.92. This article is copyrighted a s  indicated in the  abstract. R eu se  of AIP con ten t is sub ject to the  term s at: http://pof.aip.org/about/rights_and_perm issions

http://pof.aip.org/about/rights_and_permissions


116602-14 Duran-Matute et al. Phys. Fluids 24, 116602 (2012)

from which the solution for the magnetic field in the x  and y directions easily follows. However, here 
we shall not develop the solution for By, the magnetic field in the y-direction, since it is parallel to 
the electric current and does not contribute to the forcing. To calculate Bx, the magnetic field in the 
.y-direction, we first integrate (AS) with respect to f , so that

j px+3
F(.y, y, z) = -— /  dic[ln(y +  1 +  x/k2 +  (y +  I)2 +  z2)

■ An Jx _ 3 • •

-  ln(y -  1 +  V k2 +  (.v -  I)2 +  z2)] (A9)

and
9 $

Bx = = P(x  +  3, y +  1, z +  /)) -  P(x  +  3, y -  1, z +  /))
dx

+P(.x -  3, y -  1, z +  /)) -  P(x  -  3, y +  1, z +  /j)

- P i x  +  3, y +  1, z) +  Pix  +  3, y -  1, z)

- P ( x  -  3, y -  1, z) +  P( x  -  3, y +  1, z) (A10)

with

Pix ,  y, z) =  - i -  ln(y +  x /x2 + y 2 +  z2). (Al l )
47T

To calculate B-, the magnitude of the magnetic field in the z-direction,

d F  1 Í
dz An Jx

-Ï+3 /  j
d,K

-Ï—3 \ y  +  1 +  a//c2 +  (y +  I)2 +  z2 ^/k2 +  (y +  I)2 +  z2

______________ I____________  x  2_________ \
y -  1 +  o/ k2 + (y -  I)2 +  z2 x/ k2 + (y -  I)2 +  z2 /

which yields after integration 

dF

with

(A 12)

=  W(x +  3, y +  1, z) -  W(x -  3, y +  1, z) (A13)
dz ’ ’

1 t /  V.v2 +  z2 -  y x /x2 + y 2 + z2 -  / v 2 +  z2 \
W(.x, v, z) =  —  arctan  ------------------ x   2- .

2n \ z x  J

Finally, the magnitude of the magnetic field in the z-direction for the rectangular magnet considered 
is given by

B- = W(x  +  3, y +  1, z +  /)) -  W(x -  3, y +  1, z +  /))

- W ( x  +  3, y -  1, z +  /)) +  W(x -  3, y -  1, z +  /))

- W ( x  +  3, y +  1, z) +  W(x -  3, y +  1, z)

+ W(x  +  3, y -  1, z) -  W(x  -  3, y -  1, z). (A14)
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