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ABSTRACT: We analysed the diversity and abundance of ammonia-oxidizing Archaea (AOA) and
Bacteria (AOB) in the shallow warm-water sponge Halisarca caerulea and the deep cold-water
sponges Higginsia thielei and Nodastrella nodastrella. The abundance of AOA and AOB was ana-
lysed using catalyzed reporter deposition-fluorescence in situ hybridization and (real-time) quan-
titative PCR (Q-PCR) targeting archaeal and bacterial amoA genes. Archaeal abundance was sim-
ilar between sponge species, while bacterial abundance was higher in H. caerulea than in N.
nodastrella and H. thielei. Q-PCR showed that AOA outnumbered AOB by a factor of 2 to 35, sug-
gesting a larger role of AOA than of AOB in ammonia oxidation in sponges. PCR-denaturing gra-
dient gel electrophoresis was performed to analyse the taxonomic affiliation of the microbial com-
munity associated with these sponges. Archaeal and bacterial amoA genes were found in all 3
sponges. The structure of the phylogenetic trees in relation to temperature and sponge species
was analysed using all published amoA sequences retrieved from sponges. Temperature was an
important factor influencing the distribution of nitrifiers in sponges. Both archaeal and bacterial
amoA sponge sequences tended to cluster with sequences retrieved from habitats of similar tem-
perature. This is the first time that similarity in AOB diversity is described between distantly
related species (H. thielei belonging to the class Demospongiae, and N. nodastrella to Hexactinel-
lida). The results described here support the idea of a relatively uniform microbial community
between distantly related sponges and suggest that temperature (rather than phylogenetic dis-
tance) is determining the diversity of AOA and AOB in sponges.
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INTRODUCTION

Nitrification is the first step in the nitrogen cycle, in-
volving the oxidation of ammonia (NHj3) to nitrite
(NO;7) and subsequently to nitrate (NO37). These 2
steps are catalysed by distinct groups of microorgan-
isms: ammonia oxidizers and nitrite oxidizers. It is
now well established that some marine sponges (phy-
lum Porifera) live in association with microorganisms
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which are able to nitrify (Corredor et al. 1988, Diaz &
Ward 1997, Diaz et al. 2004, Jiménez & Ribes 2007,
Taylor et al. 2007, Southwell et al. 2008, Van Duyl et
al. 2008, Hoffmann et al. 2009, Schlappy et al. 2010,
Hentschel et al. 2012). Ammonia-oxidizing Bacteria
(AOB) and nitrite-oxidizing Bacteria (NOB) have
been observed in sponges (Taylor et al. 2007 and ref-
erences therein). Ammonia-oxidizing Archaea (AOA)
have also been receiving increasing attention since
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the discovery of the ammonia-oxidizing thaumar-
chaeote Cenarchaeum symbiosum associated with
the sponge Axinella mexicana (Preston et al. 1996).
Thaumarchaeotes, in particular, appear capable of
oxidizing ammonia (Bayer et al. 2008, Turque et al.
2010, Liu et al. 2011, Pester et al. 2011 and references
therein). Recently, the presence of AOB and AOA
was described for a diverse range of sponges from the
Pacific, Caribbean, Mediterranean and North Atlan-
tic (Bayer et al. 2008, Meyer & Kuever 2008, Steger et
al. 2008, Lopez-Legentil et al. 2010, Mohamed et al.
2010, Liu et al. 2011, Radax et al. 2012). Nitrification
by sponges may well be significant in coral reef eco-
systems, considering the high biomass of sponges in
such systems (Diaz & Ritzler 2001, Reitner & Hoff-
mann 2003, Van Soest et al. 2007a).

The tropical shallow-water sponge Halisarca cae-
rulea (Vacelet & Donadey 1987) (class Demo-
spongiae, order Halisarcida, family Halisarcidae)
and the cold deep-water sponges Higginsia thielei
(Topsent, 1898) (class Demospongiae, order Hali-
chondrida, family Heteroxyidae) and Nodastrella
nodastrella (until recently known as Rossella nodas-
trella Topsent, 1915; Dohrmann et al. 2012) (class
Hexactinellida, order Lyssacinosida, family Rosselli-
dae) are common inhabitants of Atlantic coral reefs.
Nitrification has been reported in the latter 2 species,
most likely being mediated by sponge-associated mi-
crobes (Van Duyl et al. 2008). H. thielei and N. noda-
strella harbor relatively high amounts of Archaea
and Bacteria (ca. 7 to 30% Archaea and 36 to 65%
Bacteria of the total microbial counts with DAPI
staining; Van Duyl et al. 2008). Furthermore, evi-
dence for microbial bicarbonate fixation by these
sponges in the dark ocean suggests that sponge-
associated microorganisms may be involved in
ammonia oxidation in these areas. H. caerulea also
harbours sponge-associated microorganisms (De
Goeij et al. 2008). This sponge lives in cryptic habi-
tats in the reef, like crevices, which have shown net
release of nitrate (Van Duyl et al. 2006). Since
sponges cover up to 50% of the calcareous rock in
these crevices (Scheffers et al. 2004) and several
tropical reef sponges have already been reported to
nitrify (e.g. Corredor et al. 1988, Diaz & Ward 1997,
Southwell et al. 2008), it is assumed that the meas-
ured nitrate efflux was at least partly coming from
cavity sponges including H. caerulea. Despite these
suggestions, it is still unknown whether microorgan-
isms associated to H. caerulea, H. thielei and N.
nodastrella could be directly involved in the N-cycle.
16S rRNA genes and the ammonia-monooxygenase
subunit A (amoA) gene have been commonly used to

detect the presence of ammonia-oxidizing microor-
ganisms in sponges (see Taylor et al. 2007 and refer-
ences therein, Bayer et al. 2008, Cheng et al. 2008,
Meyer & Kuever 2008, Mohamed et al. 2008, 2010,
Steger et al. 2008, Hoffmann et al. 2009).

Ammonia-monooxygenase (AMO) is an integral
membrane protein occurring in ammonia oxidizers,
which is composed of 3 subunits (A, B and C) and
various metal centres (Hyman & Arp 1992, McTavish
et al. 1993, Klotz et al. 1997). The amoA subunit con-
tains the active site of AMO (Hyman & Arp 1992).
Despite the fact that fewer studies have used amoA
when compared to 16S rRNA, the amoA gene has the
advantage that it encodes a protein involved directly
in ammonia oxidation and is, therefore, a functional
gene important to the nitrification process (O'Mullan
& Ward 2005). In the present study, we analysed the
diversity and abundance of the amoA functional
gene in Higginsia thielei, Nodastrella nodastrella
and Halisarca caerulea with the aim of assessing
whether (1) these sponge species harbour bacterial
and archaeal nitrifiers and (2) the diversity of the
ammonia-oxidizing microbial community is mainly
sponge related or temperature related. Since this
study includes sponges belonging to different taxo-
nomic classes (1 hexactinellid sponge and 2 demo-
sponges), the diversity of AOA and AOB associated
with phylogenetically distant host sponges was also
analysed.

Here, ‘sponge-associated’ microorganism refers
merely to the presence of a certain microorganism in
the sponge, assuming nothing regarding the exis-
tence of interaction or dependence.

MATERIALS AND METHODS
Study site, species and sampling

The marine sponge Halisarca caerulea is a thin
encrusting sponge living in coral cavities and com-
mon in shallow waters (2 to 25 m) of the Caribbean
Sea (Vacelet & Donadey 1987, Collin et al. 2005, De
Goeij et al. 2008). H. caerulea were carefully chis-
elled out of coral cavities under coral slabs or coral
rock overhangs on the forereef slope of Curacao,
southern Caribbean. Material was collected between
15 and 17 m depth from the walls of dead end cavities
of 50 to 250 1 volume at the Carmabi reef (Buoys 0
and 1) in February 2003 and at Blue Bay in April to
May 2004. In addition, samples of 2 to 31 of water sur-
rounding the sponges were collected (for details of
collected samples see Table S1 in the supplement at
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www.int-res.com/articles/suppl/a068p215_supp.pdf).
Water samples were first pre-filtered through a 0.8 pm
pore size polycarbonate filter (Poretics) and then fil-
tered through a 0.2 pm pore size polycarbonate filter
(Poretics). Filters were wrapped in clean aluminium
foil and kept frozen at —80°C until DNA extraction.
Total DNA was extracted as described below.

The marine sponges Higginsia thielei and Nodas-
trella nodastrella are present in deep-water coral
mounds (up to >1000 m depth) off the Azores and in
the south-eastern Rockall Bank, in the North East
Atlantic (Van Soest et al. 2007b, 2012). H. thieleiis a
small, round and rigid sponge, while N. nodastrella is
a large, thin-walled, tubular, trumpet-shaped sponge
(Van Soest et al. 2007a,b). These sponges were col-
lected on the south-eastern part of Rockall Bank
(Logachev mounds) from 24 June to 12 July 2006
with a box corer (stainless steel cylindrical barrel:
50 cm inner diameter, 55 cm high) at a depth be-
tween 558 and 578 m (for details on methodology see
Van Duyl et al. 2008). Due to the large size of N.
nodastrella, 2 to 3 samples per box core were taken;
these were considered to belong to the same colony.
In the case of H. thielei, each sample corresponded to
a different colony (Table S1 in the supplement).

The species names of sponges were determined on
the basis of morphological characteristics, spicula
morphology and composition (Van Soest 1978,
Kobluk & Van Soest 1989, Hooper & Van Soest 2002).

Microbial abundance in sponges
and surrounding seawater

Sponge samples of 6 specimens of Halisarca
caerulea were fixed with paraformaldehyde (4 g per
100 ml) in phosphate-buffered saline solution (1x
PBS) for up to 12 h at 4°C. After washing twice with
1x PBS, samples were stored in a PBS/80 % ethanol
mixture (1:1) at —20°C. To determine the microbial
abundance in the sponge tissue, a small piece of
sponge (0.5 cm? and 2 mm thick) representing a vol-
ume of ca. 100 mm? was crushed with a rubber stick
in a reaction vial containing 200 pl Lysis T solution
(Sigma-Aldrich) to dissociate the sponge tissue and
release the microbial cells. Subsequently, several
washing steps with artificial seawater (ASW) and
centrifuging were conducted to collect microorgan-
isms in the supernatant. Pellets were checked on fil-
ters for remaining microorganisms with 4',6-
diamidino-2-phenylindole (DAPI). From the water
surrounding H. caerulea, 7 samples were taken and
fixed with 37 % formaldehyde (final concentration:

2%). Microorganisms in the supernatant, as well as
samples from the water surrounding the sponge,
were collected on GTTP filters (0.2 pm, 25 mm dia-
meter) and stained according to the catalyzed
reporter deposition—fluorescence in situ hybridiza-
tion (CARD-FISH) protocol by Pernthaler et al.
(2002). The following probes were applied for target-
ing Bacteria: EUB338 (Amann et al. 1990), EUBmix
(mixture of EUB338, EUB338Il and EUB338 III;
Daims et al. 1999) and NonEUB338 (an oligonucleo-
tide probe which is complementary to the probe
EUB338 and serves as a control for non-specific bind-
ing; Wallner et al. 1993). For targeting Archaea the
following probes were used: EURY806 (Euryarchaea)
and Cren 537 (Crenarchaea, now Thaumarchaea)
(Teira et al. 2004).

In short, the protocol comprises the following steps.
(1) Cells were embedded in the filter by dipping them
into low-gelling-point 0.1 % agarose and drying them
upside down in a Petri dish, followed by a dehydra-
tion step with 95 % ethanol. (2) Cell walls were made
permeable by incubation in a solution of lysozyme for
Bacteria and proteinase K for Archaea during 1 h at
37°C. Filters were washed with Milli-Q and incubated
in 0.01 M HCI at room temperature for 20 min (Teira
et al. 2004), and filters were cut into sections to allow
incubations with different solutions and probes. (3) A
hybridization buffer was used, containing 55% for-
mamide for EUB and NonEUB probes and 20 % for-
mamide for archaeal probes. Hybridization took
place in the dark at 35°C for 14 h. (4) Fluorescent dye
(tyramide-Alexa488) was added to amplify the signal
by incubating the samples for 45 min at 37°C. After
amplification, filter pieces were washed in PBS-T
(0.05% Triton) in the dark at room temperature for
25 min, followed by washing with Milli-Q and dehy-
dration with 95 % ethanol. When filters were dry, they
were mounted in a drop of DAPI-mix (DAPI solution
in 1x PBS with Vectashield and Citifluor anti-fading
reagents) on a glass slide and stored at —20°C. Slides
were analysed with an epifluorescent Zeiss Axioplan
microscope. For quantification of bacterial cells, 6 fil-
ter sections were analysed for Halisarca caerulea and
7 for the surrounding water. For quantification of ar-
chaeal cells, 4 filter sections were analysed for H.
caerulea and 2 for the surrounding water. Total
counts (DAPI) and specific probe counts were made
in 20 randomly selected fields per filter section. Per
filter section, >400 microorganisms were counted for
DAPI and EUB probes and >70 for EURY and CREN
probes (for an example see Fig. S1 in the supplement
at www.int-res.com/articles/suppl/a068p215_supp.
pdf). To circumvent problems related to auto-fluores-
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cence, a double-labelled NonEUB338 probe (Wallner
et al. 1993) was applied on a separate filter section
and visualized under the same conditions as de-
scribed above for the CARD-FISH protocol. No
signals were detected with the NonEUB338 probe,
indicating that all signals detected with the EUB338
probe were Bacteria. Microbial abundance in H.
caerulea and the surrounding water was compared
with data from Van Duyl et al. (2008) on microbial
abundance in Nodastrella nodastrella, Higginsia
thielei and the surrounding water.

DNA extraction

DNA was extracted from ethanol-preserved sponges
(5 samples of Halisarca caerulea, 4 samples of Hig-
ginsia thielei and 8 samples of Nodastrella nodas-
trella) and water sample filters surrounding H.
caerulea (2 samples) using the UltraClean Soil DNA
isolation kit (Mo Bio). About 2 mm?® of sponge was
grinded with a mortar in Lysis solution (UltraClean
Soil DNA isolation kit, Mo Bio). Resulting cell sus-
pension was added to the tube with mineral beads,
and DNA extraction was done according to the
Mobio kit's protocol for maximum yield, involving
10 min of bead beating and binding of the DNA to a
silica column. Filters of water samples were cut into
small pieces with sterile scissors and processed in a
similar way as the sponges.

PCR for DGGE-sequencing

Amplification of bacterial and archaeal amoA
genes was performed using 2-step amplification pro-
tocols. For Bacteria, the PCR protocol and the primers
were used as described by Hornek et al. (2006), with
modifications: in 20 pl reactions we used 10 pmol of
each degenerate primer amoA-1F (5'-GGG GHT
TYT ACT GGT GGT-3'; H=not G, Y =T or C) and
amoAr NEW (5'-CCC CTC BGS AAA VCC TTC
TTC-33S=GorC,V=GorAorC,B=CorGorT),
1 U Picomaxx enzyme and 1x Picomaxx buffer (Strat-
agen), 5 nM of each dNTP and 8 pg of bovine serum
albumin (BSA) for the first step amplification. The
annealing temperature was increased to 60°C for
maximum specificity, and a total of 33 cycles were
run to generate template for the second reaction. The
second step was performed with a GC-clamp on the
forward primer amoA-1F and with the inosine primer
amoAr-i (6'- CCC CTCiGi AAAICCTTCTTC-3i=
inosin) in order to reduce complex band patterns in

the denaturing gradient gel electrophoresis (DGGE).
For this second reaction, we added 1 U of Genescript
tag polymerase, MgCl, to a final concentration of
2.0 mM and 5 pmol of each primer. We ran 20 cycles
with an annealing temperature of 60°C and added a
final 30 min extension step.

For Archaea, the PCR protocol and the primers
were described by Wuchter et al. (2006). For the first
PCR step, we used 4 pmol of each primer Arch-
amoA-for (5'-CTG AYT GGG CYT GGA CAT C-3')
and Arch-amoA-rev (5'-TTC TTC TTT GTT GCC
CAG TA -3'), 1 U Picomaxx enzyme, 5 nM of each
dNTP and 8 ng BSA. The annealing temperature was
57°C. The second step was performed with a GC-
clamp on the reverse primer (Arch-amoA-rev) and
with a newly developed inosine variant of the Arch-
amoA-for primer, amoAf-i-BA (5'-CTG AiT GGG CiT
GGA CAT C-3'; present paper). This was done to
reduce the complexity of the DGGE banding pattern
(Hornek et al. 2006). Conditions were as described
for the second step of bacterial amoA amplification,
except for an optimized annealing temperature of
51.8°C.

DGGE

DGGE for Bacteria was performed as described by
Hornek et al. (2006), by using approximately 100 ng
of the product from the second step PCR on a 20 to
80 % urea-formamide (UF) denaturing gradient gel.
For Archaea, DGGE was performed as described by
Wuchter et al. (2006) by using around 100 ng of the
product from the second step PCR on a 10 to 50 % UF
denaturing gradient gel. Electrophoresis was per-
formed using a D-Code system (Bio-Rad) with 1x
Tris-acetate-EDTA (TAE) buffer (pH 8.3) at a con-
stant temperature of 55°C and a voltage of 10 V for
10 min plus 200 V for 5 h for Bacteria, and at a con-
stant temperature of 60°C and a voltage of 10 V for
15 min plus 200 V for 3 h for Archaea. Gels were
stained with a solution of 2x SYBR gold in 1x TAE to
visualize banding patterns. All clear bands in each
sample were excised from the gel. Excised bands
were soaked in 50 pl sterile 10 mM TRIS-buffer (pH
8.0) for a minimum of 48 h at 4°C. Of this 50 pl vol-
ume, 0.4 pl was used in a re-amplification reaction
according to the protocols described for the second-
step PCR, but without GC-clamps.

For cycle-sequencing reactions, we used the Big
Dye Terminator solution V1.1 (Applied Biosystems).
Products were analyzed on the ABI prism 310 genetic
analyzer.
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Sequence analyses

Electropherograms were inspected manually for
ambiguities. If the height of a second peak was at
least 50% of the highest peak then the ambiguity
was uncorrected. In addition, when sequences with
double peaks were seen, these were always due to a
combination of 2 sequences (without double peaks)
present lower in the gel; therefore, double peak
sequences were discarded. Consensus sequences
(assembled forward and reverse sequences) were
aligned using the BLAST algorithm (Altschul et al.
1997) and, together with their close relatives, im-
ported into the program ARB (Ludwig et al. 2004).
Other relevant marine amoA sequences present in
GenBank were also imported. A multiple alignment
was made of the nucleotide sequences. Nucleotide
sequences were translated into amino-acid sequen-
ces which could be easily aligned. No gaps were
found in the alignment of amino-acid sequences;
therefore, the nucleotide sequences were aligned ac-
cordingly. Different nucleotide and protein sequences
were considered when >1 substitution was found
compared to another sequence in the database.

Non-redundant bacterial amoA nucleotide sequen-
ces from this study (n = 17) were compared with all
non-redundant bacterial nucleotide sequences from
marine sponges, sequences from water and sedi-
ment, and from cultivated Nitrosomonas spp. and
Nitrosospira spp., available in GenBank (date of Sep-
tember 2012). In total, 115 nucleotide sequences
were considered. The backbone was constructed
using 105 sequences with 387 informative positions
and was analysed with Rapid Maximum-Likelihood
(RaxML-VI Version 2.2.1; Stamatakis 2006) and
neighbour-joining (NJ) algorithms implemented in
ARB. Trees were calculated to visualize the affiliation
of the derived sequences. Other (shorter) sequences
were added to the reference tree using ARB parsi-
mony, starting with the longest sequence and ending
with the shortest (377 to 387 bp, from Dysidea avara;
Ribes et al. 2012), using the respective sequence as
a filter. Bootstrap analyses (1000 runs for NJ and
100 runs for RaxML) were used to estimate the
support of the affiliations.

Non-redundant archaeal amoA nucleotide sequen-
ces from this study (n = 14) were compared with non-
redundant sequences present in Genbank (date of
September 2012) of other marine sponge-associated
Archaea, including ‘Candidatus Cenarchaeum sym-
biosum' (Hallam et al. 2006), of water, sediment and
corals, and of Nitrosopumilus maritimus (Koénneke et
al. 2005). In total, 158 nucleotide sequences were con-

sidered. The backbone, consisting of 130 sequences of
550 bp, was used to construct the tree topology using
RaxML and NJ algorithms with bootstrap analyses (100
and 1000 replicates, respectively). Then, 28 shorter se-
quences (161 to 217 bp, including our own sequences)
were inserted in the reference tree via ARB Parsimony,
one by one, starting with the longest sequence.
Sequence data have been submitted to the Gen-
Bank database under Accession Numbers GQ353375
to GQ353399 and GQ353427 for Bacteria (n = 26),
and GQ353400 to GQ353426 for Archaea (n = 27).

Q-PCR analysis

Quantification of archaeal and bacterial amoA
gene copies in samples from Halisarca caerulea (5
samples) and the surrounding water (2 samples), Hig-
ginsia thielei (4 samples) and Nodastrella nodastrella
(7 samples) were performed by (real-time) quantita-
tive PCR (Q-PCR) analysis using primers described
by Wuchter et al. (2006) for Archaea and by Hornek
et al. (2006) for Bacteria (see previous subsections).
Cycling conditions were the ones described above for
PCR reactions. The reactions were performed in a
CFX96 system (Bio-Rad, Hercules). Calibration curves
were prepared from the nearly complete amoA gene
of Nitrosopumillus maritimus (940 bp; dilution series:
1 to 1 x 107 copies per microlitre) and from a partial
fosmid of the amoA gene of Nitrosomonas eutropha
(490 bp; dilution series: 1 to 1 x 107 copies per mi-
crolitre). Efficiency was 88 % (r> = 0.99, linear stan-
dard curve over 7 decades) for the archaeal amoA
gene and 67 % (r2 =0.98, linear standard curve over 6
decades) for the bacterial amoA gene. All DNA ex-
tracts were analysed in triplicate. No samples were
excluded from the analysis.

Statistical analysis

To analyse the structure of the phylogenetic trees in
relation to temperature (warm, cold, temperate) and
sponge species, distance matrixes were exported
from ARB into the PRIMER 6.1.7 software package
(Primer-E Ltd). Within PRIMER, non-parametric per-
mutation tests (ANOSIM, analysis of similarity) were
done according to Clarke (1993). Two-way nested
ANOSIMs were performed to test the null hypotheses
that there is no structure in, respectively, AOA and
AOB communities between different temperatures,
considering differences in AOA and AOB community
structure related to different sponge species. Because
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the interpretation of ANOSIM results has limitations
(e.g.itis based on ranks) 2-way nested PERMANOVA
tests (permutational multivariate analysis of variance)
were conducted as well. For that, PERMANOVA+
add-on package was used in PRIMER (Anderson et al.
2008). Monte Carlo (MC) sampling was used to stress
the problem of limited possible permutations. Because
of the unbalanced design, tests were done using Type
IIT sums of squares. Additional PERMANOVA tests
were conducted to test whether the distribution of AO
microorganisms was related to their substrate (sponge,
coral, water, sediment).

RESULTS
Abundance of AOA and AOB

Total microbial abundance (DAPI) in Halisarca
caerulea was on average 12.3 x 108 + 7.1 x 10® (SD)
cm™ of sponge (Table 1). For comparison, cell abun-
dance data for Higginsia thielei and Nodastrella
nodastrella collected in 2005 at the same locations as
in the present study (Van Duyl et al. 2008) are also
presented in Table 1. Total microbial abundance was
higher in H. caerulea than in H. thielei (2.0 x 10® + 1.4
x 10%) and N. nodastrella (2.5 x 10® £ 1.1 x 10%),
CARD-FISH results revealed that the abundance of
sponge-associated Bacteria was higher in H. caeru-
lea (9.7 x 10% + 6.3 x 108%) than in the 2 cold-water spe-
cies (1.0 x 10% to 1.4 x 10%), while the abundance of
sponge-associated Archaea (Euryarchaea + Thaum-
archaea, i.e. total Archaea) was comparable between
H. caerulea (0.2 x 10% + 0.1 x 10%) and the 2 other spe-
cies (0.3 x 10% to 0.4 x 10% total Archaea cm™ of

sponge) (Table 1). Numbers of Thaumarchaea were
slightly lower in H. caerulea (0.06 x 108 + 0.05 x 108)
than in N. nodastrella and H. thielei (~0.2 x 108).
About 25 % of the DAPI counts of sponge-associated
microorganisms could not be identified with the bac-
terial and archaeal CARD-FISH probes applied. The
concentration of microorganisms was (1000x) higher
in the sponge tissues than in the surrounding water.
Thaumarchaeota were (10x) more abundant in water
surrounding N. nodastrella and H. thielei than in
water around H. caerulea (Table 1).

Q-PCR results showed that there were always
more (2 to 35) archaeal amoA copies than bacterial
amoA copies in the tested sponges (Table S2 in the
supplement at www.int-res.com/articles/suppl/a068
p215_supp.pdf), suggesting a larger role of AOA
than of AOB in ammonia oxidation in sponges. On
average, AOA/AOB ratios in the tropical sponge Hal-
isarca caerulea (mean ratio = 5; individual ratios: 2 to
10 £ 1 to 3 SD) were lower than in the cold-water
sponges Higginsia thielei (mean ratio = 16; individual
ratios: 4 to 25 + 1 to 5 SD) and Nodastrella nodastrella
(mean ratio = 11; individual ratios: 4 to 35 + 1 to 6 SD).
Bacterial amoA copies in the water surrounding H.
caerulea were below the detection limit in 1 of the 2
samples. In the water sample where bacterial amoA
was detected, archaeal amoA copies were 81 + 9 (SD)
times higher than bacterial amoA copies (Table S2).

Diversity of sponge-associated AOA
The tropical sponge Halisarca caerulea hosted a

higher diversity of archaeal amoA (8 different
nucleotide sequences) than the cold-water sponges

Table 1. Calculated number (n) of Bacteria, total Archaea (Euryarchaea + Thaumarchaea) and Thaumarchaea related to total
microbial counts (DAPI) in Halisarca caerulea, Higginsia thielei and Nodastrella nodastrella (n cm~3), and in the water (n ml™!).
Standard deviations for H. caerulea data are in parentheses

Type Temperature Microbial counts Bacteria Total Archaea Thaumarchaea
Sponge
H. caerulea Warm 12.28 x 108 9.71 x 108 0.15 x 108 0.06 x 108
(7.14 x 108) (6.34 x 108) (0.11 x 10%) (0.05 x 108)
H. thielei® Cold 2.00 x 108 0.96 x 108 0.36 x 108 0.24 x 108
N. nodastrella® Cold 2.53 x 108 1.39 x 108 0.28 x 108 0.23 x 108
Ambient water
H. caerulea Warm 11.01 x 10° 5.77 x 10° 0.14 x 10° 0.004 x 10°
(1.59 x 10°) (1.80 x 10°) (0.11 x 10°) (0.004 x 10°)
H. thielei® Cold 3.14 x 10° 0.88 x 10° 0.06 x 10° 0.06 x 10°
N. nodastrella® Cold 4.83 x 10° 1.55 x 10° 0.11 x 10° 0.09 x 10°
“Data from Van Duyl et al. (2008)
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Nodastrella nodastrella (5 nucleotide sequences) and
Higginsia thielei (1 nucleotide sequence) (Fig. 1,
Table 2). Different methods (NJ and RaxML) resulted
in similar tree topologies (no significant difference
between them in 90% of 10000 permutations) for
both nucleotides and amino acids. Therefore, only
the results of the RaxML trees will be described in
the following paragraphs.

Sequences of sponge-associated AOA retrieved
from excised DGGE bands (Figs. S2b & S3b in the
supplement at www.int-res.com/articles/suppl/a068
p215_supp.pdf) grouped with sequences retrieved
from other cold- and warm-water sponges, corals,
sediment and water (Fig. 1). All archaeal amoA se-
quences obtained corresponded to the Thaumar-
chaeota group. Phylogenetic analysis revealed 6 well-
supported clusters (bootstrap value =70 %), some of
them including the sequences obtained in this study.
Cluster 1 includes sequences from the cold-water
sponge Nodastrella nodastrella and sequences from
water surrounding Halisarca caerulea, but also se-
quences from other cold- and warm-water marine
sponges and sequences from corals and water of many
different origins. We found 99 % identity between a
nucleotide sequence present in water surrounding H.
caerulea (Waterl_B27) and a sequence retrieved from
the marine sponge Siphonochalina sp. collected in the
Coral Sea (Australia). Another sequence found in wa-
ter (Waterl_B27) was identical (100 % similarity) to a
sequence retrieved from a warm-water coral (Fungia
granulosa). Cluster 2 includes amoA sequences re-
trieved from the Mediterranean sponge Agelas
oroides and sequences from a warm-water coral
(Porites astreoides, Caribbean) and a warm-water
sponge (Luffariella sp., Coral Sea). Cluster 3 includes
amoA sequences retrieved from H. caerulea and the
surrounding water and sequences retrieved from N.
nodastrella and Higginsia thielei. In this cluster, there
are also sequences retrieved from the cultivated AOA
Nitrosopumilus maritimus. Also archaeal amoA se-
quences retrieved from a warm-water coral (Diploria

Table 2. Number of nucleotide (nuc.) and amino-acid (a.a.)

sequences determined by PCR-DGGE-sequencing in the

warm-water sponge Halisarca caerulea and the cold-water

sponges Higginsia thielei and Nodastrella nodastrella.

AOA: ammonia-oxidizing Archaea; AOB: ammonia-oxidiz-
ing Bacteria

Sample AOAnuc. AOA a.a. AOBnuc. AOBa.a.
H. caerulea 8 6 3 2
H. thielei 1 1 4 4
N. nodastrella 5 4 10 8

strigosa, Caribbean), a warm-water sponge (Hy-
meniacidon heliophila, Atlantic), a cold-water sponge
(Phakelia ventilabrum, Atlantic) and sequences re-
trieved from water and sediment are part of this clus-
ter. Clusters 4, 5 and 6 do not include any amoA se-
quences retrieved from H. caerulea, H. thielei, or N.
nodastrella. These clusters include mainly sequences
from other warm-water sponges and corals. Archaeal
amoA gene sequences from H. caerulea, H. thielei
and N. nodastrella showed 82 to 94 % sequence iden-
tity (90 to 96 % on an amino-acid level) to the amoA
sequence of N. maritimus and 74 to 79 % identity (92
to 93 % on an amino-acid level) to the amoA sequence
of ‘Candidatus Cenarchaeum symbiosum'. The pres-
ence of silent mutations in different nucleotide se-
quences resulted in the reduced amino-acid diversity
of 6 different amino-acid sequences in H. caerulea, 4
in N. nodastrella and 1 in H. thielei (Table 2, Fig. S4 in
the supplement at www.int-res.com/articles/suppl/
a068p215_supp.pdf).

Diversity of sponge-associated AOB

Higher bacterial diversity was found in Nodastrella
nodastrella (10 different nucleotide sequences) than
in Higginsia thielei (4 nucleotide sequences) and
Halisarca caerulea (3 nucleotide sequences) (Fig. 2,
Table 2). Similarly, as for Archaea, description of
diversity of sponge-associated AOB is only described
for RaxML trees.

Sequences of sponge-associated AOB retrieved
from excised DGGE bands (Figs. S2a & S3a in the
supplement) were grouped in 10 well-supported
clusters (bootstrap value >70%; Fig. 2). AmoA se-
quences retrieved from Halisarca caerulea fell into 2
clusters (Clusters 5 and 9) which were closely related
to sequences derived from the tropical sponges My-
cale laxissima and Ircinia strobilina. In both clusters,
sequences retrieved from H. caerulea (Hal2_B24 and
Hal3_B2) were highly similar to sequences from My-
cale laxissima (99 % identity). In Cluster 9, 99 % iden-
tity was also found between nucleotide sequences of
H. caerulea (Hal2_B24) and the surrounding water
(Water2_B5). AmoA sequences retrieved from Nodas-
trella nodastrella and Higginsia thielei fell into 4 clus-
ters (Clusters 1, 3, 6 and 8) and were closely related to
published sequences of the sponges Polymastia cf.
corticata (Cluster 1) and Dysidea avara (Cluster 3). In
Clusters 6 and 8, identical sequences (100 % identity)
were found in H. thielei and N. nodastrella. In Cluster
6, these were also identical to a sequence found in
cold water from the Pacific. Clusters 2, 4, 7, and 10 did
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Fig. 1. Maximum-likelihood tree based on nucleotide sequences of amoA genes of Thaumarchaeota retrieved from sponges,
corals, sediment and water. Sequences derived from the present study are shown in bold. Red-coloured sequences originate
from habitats with warm-water temperatures (winter temperatures >18°C) and blue-coloured sequences originate from habitats
with cold-water temperatures (summer temperatures <12°C); sequences which do not fit in these categories (temperate) are in

black. Open circles: bootstrap values

>70 %; filled circles: bootstrap values =90 %. Scale bar indicates 10 % sequence divergence.

The out-group (not shown) contained amoA sequences of Thaumarchaeota isolated from warm-water sediments (DQ5010xx),
cold-water sediments (EU885xxx) and the corals Porites astreoides and Colpophyllia natans (EF382xxx). Inset: a multidimen-
sional scaling plot of the distance matrix underlying the tree (only sponges), with numbers referring to the identified clusters




Cardoso et al.: Ammonia-oxidizing microorganisms in sponges 223

@® Warm
v Cold
X Temperate

[

<
<

4%
<

B

2D Stress: 0.145

f:i

<
44~

Hig3_BS55, Hig2_B6, Hig4_B44, Higginsia thielei
HigZ_B9, Hig1_ B24, Higginsia thielei
EU005623, sediment, Caribbean Sea
EU005622, sediment, Caribbean Sea
EU005634, sponge, Polymastia cf. corticata, Caribbean Sea
EU005633, sponge, Polymastia cf. corticata, Caribbean Sea
EU005632, sponge, Polymastia cf. corticata, Caribbean Sea
EU005640, sponge, Polymastia cf. corticata, Caribbean Sea
EU005631, sponge, Polymastia cf. corticata, Caribbean Sea
EU005636, sponﬁe, Polymastia cf. corticata, Caribbean Sea
EU005638, sgonge, Polymastia cf. corticata, Caribbean Sea
EU005637, sponge, Polymastia cf. corticata, Caribbean Sea
EU005639, sponge, Polymastia cf. corticata, Caribbean Sea
EU005635, sponge, Polymastia cf. corticata, Caribbean Sea
EU005629, sgonge, Polymastia cf. corticata, Caribbean Sea
EU005628, sponge, Polymastia cf. corticata, Caribbean Sea

AB272870, sediment, Pacific
AB289397, sediment, Japan Sea

AB272868, sediment, Pacific
AY785989, hydrothermal vent water, Pacific

EU005630, sponge, Polymastia cf. corticata, Caribbean Sea

Nod1_B37, Nodastrella nodastrella
Nod2 B52, Nodastrella nodastrella

Nod3_B40, Nodastrella nodastrella
Nod3_B49, Nodastrella nodastrella

NodT_B50, Nodastrella nodastrella

EF529630, sponge,
EF529646, sponge,
EF529634, sponge, Aplisina aerophoba, Adriatic Sea 2
EF529638, water,Mediterranean Sea

EF529631, sponge, Aplysina aerophoba, Mediterranean Sea
AY736940, water, Pacific

AY702570, sediment, Atlantic

EF529629, sponge, Aplisina aerophoba, Mediterranean Sea
EF529641, sponge, Xestospongia muta, Atlantic
EF529648, sponge, Theonella swinhoei, Pacific

EF529636, water, Mediterranean Sea
AY736930, water, Pacific
JN409491, sponge, Dysidea avara, Mediterranean Sea
JN409495, sponge, Dysidea avara, Mediterranean Sea
JN409493, sponge, Dysidea avara, Mediterranean Sea

JN409502, sponge, Dysidea avara, Mediterranean Sea

JN409501, sponge, Dysidea avara, Mediterranean Sea
JN409482, sponge, Dysidea avara, Mediterranean Sea

JN409499, sponge, Dysidea avara, Mediterranean Sea
Nod3_B42, Nodastrella nodastrella
Nod1_B45, Nodastrella nodagtrella
AB272852, sediment, Pacific T

AB261616, sediment, Pacific

L AB272842, sediment, Pacific

AB272849, sediment, Pacific
AB272850, sediment, Pacific
AB261615, sediment, Pacific
JN409509, sponge, Dysidea avara, Mediterranean Sea
JN409507, sponge, Dysidea avara, Mediterranean Sea
DQ289945, sediment, Atlantic

EU125518, sediment, Pacific
EU125521, sediment, Pacific
JN409511, sponge, Dysidea avara, Mediterranean Sea
EF529635, sponge, Aplysina aerophoba, Adriatic Sea
A_f»l/sma aerophoba, Mediterranean Sea

heonella swinhoei, Pacific

4

FJ652557, sponge, Mycale laxissima, Atlantic
Hal2_B24, Hal1_B23, Halisarca caerulea
FJ652554, sponge, Mycale laxissima, Atlantic |9
FJ652552, sponge, Mycale laxissima, Atlantic
Hal2_B10, Halisarca caerulea
AY702580, sediment, Atlantic

EU239079, water, Arctic Ocean
EU239066, water, Southern Ocean
EU239080, water, Arctic Ocean
EU239068, water, Southern Ocean
EU239081, water, Arctic Ocean
EU239074, water, Arctic Ocean
EU239075, water, Arctic Ocean 6
EU239084, water, Arctic Ocean
EU239083, water, Arctic Ocean
EU239082, water, Arctic Ocean

EU00562

Nod3_B17, Nodastrella nodastrella
AY795818, soil, Germany I
AY702589, sediment, Atlantic 7
Higd_B29, Hig4_B28,Higginsia thielei 8
Nod1 B27, Nodastrella nodastrella
EU239086, water, Arctic Ocean
EU239065, water, Southern Ocean
AB289395, sediment, Japan Sea
EU239090, water, Arctic Ocean Bootstrap
AY785973, water, Pacific
EF617305, sediment, East Sea O 270%
'mastia cf. corticata, Caribbean Sea ® > 90%
olymastia cf. corticata, Caribbean Sea = o
EU005624, sponge, Polymastia cf. corticata, Caribbean Sea
EU005621, sponge, Polymastia cf. corticata, Caribbean Sea
EU005627,Fs\Ponge, Polymastia cf. corticata, Caribbean Sea

EU005626, sgzonge, Pol
, sponge,

Nod1_B26, Nodastrella nodastrella
lHi 1.B3, Hig2_B4, Hig3_B8, Higginsia thielei
AY736916, water, Pacific

652555, sponge, Mycale laxissima, Atlantic
FJ652563, sponge, Ircinia strobilina, Atlantic
FJ652561, sponge, Ircinia strobilina, Atlantic 9

L 4F

Hal3_B2, Hal1_B
Water2_B5

J652560, sponge, Ircinia strobilina, Atlantic I 10
FJ652566, sponge, Ircinia strobilina, Atlantic

0.10

FJ652551, sponge, Mycale laxissima, Atlantic
, Halisarca caerulea

Fy AJ298715, Nitrosospira briensis
T——— AF042171, Nitrosolobus multiformis

Fig. 2. Maximum-likelihood tree based on nucleotide sequences of amoA genes of Betaproteobacteria retrieved from sponges,

sediment and water. Sequences derived from this study are shown in bold. Red-coloured sequences originate from habitats with

warm-water temperatures (winter temperatures >18°C) and blue-coloured sequences originate from habitats with cold-water

temperatures (summer temperatures <12°C); sequences which do not fit in these categories (temperate) are in black. Open cir-

cles: bootstrap values 270 %; filled circles: bootstrap values 290 %. Scale bar indicates 10 % sequence divergence. The out-group

(not shown) contained amoA sequences of cultivated Nitrosomonas spp. and Nitrosospira spp. Inset: a multidimensional scaling
plot of the distance matrix underlying the tree (sponge species only), with numbers referring to the identified clusters
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not contain any of our own sequences,
but 2 of these clusters (2 and 10) did
contain sequences retrieved from
sponges. Bacterial amoA gene se-
quences retrieved from H. caerulea,
H. thielei and N. nodastrella showed

Table 3. PERMANOVA and 2-way nested ANOSIM results (p-value) for test-

ing the effects of sponge species and temperature on the existence of structure

in the community composition of sponge-associated ammonia-oxidizing Ar-

chaea (AOA) and ammonia-oxidizing Bacteria (AOB) in nucleotide and

amino-acid trees. All: all sponge species in the trees; >2x: only species that oc-

cur more than twice; nuc.: nucleotide sequence; a.a.: amino-acid sequence.
NS: not significant; bold: based only on 35 permutations

73 to 77 % sequence identity (88 to

91% on an amino-acid level) to the Factor All >2x All >2x
amoA sequence of the cultured AOB nuc. - nuc. a.a. a.a.
Nitrosospira briensis, and 75 to 77 % AOA

sequence identity (87 to 93% on an PERMANOVA (MC) Temperature  0.0070 0.0080 0.0370 0.0540
amino-acid level) to the amoA se- Species(Temp.) 0.0001 0.0001 0.0001 0.0001
quence of Nitrosolobus multiformis. ANOSIM Temperature 0.0290 0.0290 0.0290 0.0700
For H. caerulea and N. nodastrella, non Species(Temp.) 0.0100 0.0010 0.0001  0.0001

amino-acid trees revealed lower di-
versity than nucleotide trees, showing
8 different amino-acid sequences in
N. nodastrella and 2 in H. caerulea

ANOSIM

PERMANOVA (MC)

Temperature 0.0020 0.0002 <0.0001 0.0002
Species(Temp.) 0.0004 0.0020 0.0500 0.0900

Temperature 0.0080 0.0040 0.0010 0.0040
Species(Temp.) 0.0270 0.0090 NS NS

(Table 2, Fig. S5 in the supplement at
www.int-res.com/articles/suppl/a068
p215_supp.pdf). In H. thielei each different nucleo-
tide sequence was also a different amino-acid se-
quence (4 different amino-acid sequences were re-
trieved). Overall, similar clustering was observed
between nucleotide and amino-acid trees.

Eifect of host species and
temperature on AOA and AOB diversity

Two-way nested PERMANOVA and ANOSIM tests
were performed using all non-redundant amoA
sequences retrieved from sponges and available in
GenBank up to September 2012. For Archaea, both
tests showed a significant effect of sponge species on
the structure of archaeal amoA trees (p <0.01 for
nucleotides and amino acids; Table 3). Taking into
account the effect of species, temperature also signif-
icantly influenced the distribution of sponge archaeal
amoA sequences in the nucleotide trees (p = 0.0001,
PERMANOVA test), although the effect of tempera-
ture was not very strong (only slightly significant in
cases when all sponge sequences were considered)
in the amino-acid tree (0.037 < p < 0.054; Table 3).
The ANOSIM test was not very strong due to the low
number of permutations. For Bacteria, sponge spe-
cies significantly affected the structure of amoA
nucleotide trees (p < 0.05), but not amino-acid trees
(p > 0.05) (Table 3). Temperature significantly
affected the distribution of sponge bacterial amoA in
nucleotide and amino-acid trees (p <0.001).

PERMANOVA tests done on the distribution of
archaeal and bacterial amoA genes in relation to

habitat type (sponge, coral, sediment and water)
revealed that for both Archaea and Bacteria, habitat
and temperature have a highly significant effect on
the distribution of AOA and AOB (p < 0.0001; Table S3
in the supplement at www.int-res.com/articles/suppl
/a068p215_supp.pdf). Further pair-wise tests sug-
gested that the distribution of bacterial amoA did not
differ significantly between sponge and sediment,
while the distribution of archaeal amoA did not differ
significantly between sponge and water (not shown).
However, these tests are not statistically strong due
to an unbalanced dataset and should, therefore, only
be used as an indication.

DISCUSSION

Our results reinforce the notion that sponges har-
bour microbial organisms with metabolisms that are
important to the N-cycle in tropical and cold-water
coral reef communities (see reviews by Taylor et al.
2007 and Hentschel et al. 2012). Both bacterial and
archaeal amoA dgenes were found in Halisarca
caerulea, Higginsia thielei and Nodastrella nodas-
trella, showing that AOB, as well as AOA, reside in
these sponges. In terms of abundance, numbers of
AOA were higher than those of AOB in all 3 studied
sponge species (on average 5- to 16-fold more AOA
than AOB). In 3 other cold-water sponge species, the
numbers of AOA per gram of sponge were about 150
times to 4 x 10° times higher than those of AOB
(Radax et al. 2012). AOA were also found to be the
main ammonia-oxidizing microbes in the warm-
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water sponge Phakelia fusca (Han et al. 2012). Our
results suggest that AOA may be responsible for a
major part of the ammonia oxidation, not only in
cold-water sponges, as previously suggested by
Radax et al. (2012), but also in tropical sponges.
Archaeal amoA genes in the water surrounding H.
caerulea were about 2 orders of magnitude higher
than bacterial amoA genes. Previous studies describe
archaeal amoA copy numbers in Atlantic and Medi-
terranean waters as being 1 to 3 orders of magnitude
higher than those of bacterial amoA (Wuchter et al.
2006, De Corte et al. 2009), and up to 4 orders of
magnitude higher in the Pacific (Mincer et al. 2007).
Our data support the idea that AOA play a major role
in nitrification, not only in the ocean, but also in
sponges.

Microbial abundance

In terms of total microbial abundance, Bacteria
were seen to dominate the microbial community in
Halisarca caerulea, showing much higher densities
than Archaea. The same has been observed in Hig-
ginsia thielei and Nodastrella nodastrella (Van Duyl
et al. 2008). Bacteria were also seen to dominate the
microbial community in Agelas oroides and Chon-
drosia reniformis (Ribes et al. 2012) and in Phakellia
fusca (Han et al. 2012). However, in other sponges,
Archaea were more dominant than Bacteria (Margot
et al. 2002, Pape et al. 2006). The use of different
probes in different studies may be one of the reasons
for the differences in abundance of Archaea versus
Bacteria in sponges. In addition, due to the lack of
data on microbial abundance of many sponge spe-
cies, as recently emphasized by Simister et al. (2012),
a general trend is difficult to find.

Bacterial and total archaeal abundance varied con-
siderably between specimens of Halisarca caerulea
(as shown by the large standard deviation observed).
Variability in bacterial abundance was larger than
described for Higginsia thielei and Nodastrella noda-
strella (Van Duyl et al. 2008). Differences in microbial
abundance between specimens could be due to sam-
pling of different tissues within a sponge. In the
sponge Polymastia cf. corticata, high variability in
bacterial and archaeal communities was associated
with different tissue sections (Meyer & Kuever 2008).

In Halisarca caerulea, about 1.3 % of FISH-positive
microorganisms were total Archaea (Euryarchaea +
Thaumarchaea), from which less than half were
Thaumarchaea. This value is much lower than for
Nodastrella nodastrella and Higginsia thielei. In

these 2 cold-water sponges 11 to 18% of the DAPI
counts were total Archaea, with a dominance of
Thaumarchaea (Van Duyl et al. 2008). The presence
of Euryarchaea in marine sponges has been reported
in a few studies. Euryarchaea were detected in
Rhopaloeides odorabile (Webster et al. 2001) and 3
other sponges (Holmes & Blanch 2007) from Aus-
tralia. Also Agelas oroides (Ribes et al. 2012) hosted
Euryarchaea. Apparently, Euryarchaea also form a
substantial fraction of the total archaeal community
in H. caerulea.

Diversity of sponge-associated AOA and AOB

Archaeal and bacterial amoA sequences retrieved
from Halisarca caerulea, Nodastrella nodastrella and
Higginsia thielei were compared with sequences
retrieved from other sponges, corals and environ-
mental samples (sediment, water). Archaeal amoA
sequences were distinct from those found in other
sponges (Bayer et al. 2008, Meyer & Kuever 2008,
Steger et al. 2008, Hoffmann et al. 2009, Loépez-
Legentil et al. 2010, Turque et al. 2010, Liu et al.
2011, Han et al. 2012, Radax et al. 2012, Ribes et al.
2012). The closest relative to sequences retrieved
from the tropical sponge H. caerulea was from the
coral Diploria strigosa (Beman et al. 2007), while
amoA sequences from water surrounding the sponge
were similar to sequences retrieved from the warm-
water sponge Siphonochalina sp. (Steger et al. 2008)
and the warm-water coral Fungia granulosa (Siboni
et al. 2008). AOA in the cold-water sponge H. thielei
were closest to AOA found in the cold-water sponge
Phakelia ventilabrum (Radax et al. 2012), and the
closest relative of archaeal sequences retrieved from
N. nodastrella were found in water from the Antarc-
tic (Kalanetra et al. 2009). There was no clear bio-
geographic effect, with many of the sponge-derived
sequences forming large clusters comprising se-
quences from many different locations, such as the
Red Sea, Atlantic, Caribbean, Mediterranean, China
Sea and more. A widespread distribution of archaeal
sequences retrieved from sponges has also been
observed in earlier studies (Steger et al. 2008, Ribes
et al. 2012). The 6 well-supported clusters contained,
not only amoA sequences retrieved from sponges,
but also sequences from corals, sediments and/or
water. No clear sponge-specific clusters were ob-
served either. Cluster 4 included, however, mainly
sequences retrieved from sponges, excluding 1
sequence from a coral. It seems, therefore, that most
archaeal communities in sponges may be acquired,
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above all, horizontally via sediment or water. Never-
theless, Archaea have also been found in sponge
larvae and gametes, indicating that some AOA may
be vertically transmitted (see review by Webster &
Taylor 2012 and references therein). The high simi-
larity between archaeal 16S rRNA sequences
retrieved from the sponge Polymastia cf. corticata
and sequences from other sponge species (Meyer &
Kuever 2008) supports the existence of sponge-spe-
cific clusters and vertically acquired Archaea within
sponges. The existence of sponge-specific associated
Archaea has also been suggested for other sponge
species (Preston et al. 1996, Holmes & Blanch 2007,
Bayer et al. 2008, Hoffmann et al. 2009, Turque et al.
2010, Radax et al. 2012).

Bacterial amoA sequences retrieved from Halis-
arca caerulea showed high similarity to sequences
retrieved from the tropical sponges Mycale laxissima
and Ircinia strobilina (Mohamed et al. 2010), while
sequences retrieved from Higginsia thielei and
Nodastrella nodastrella were similar to sequences
obtained from the deep-water sponge Polymastia
corticata (Meyer & Kuever 2008). The closest rela-
tives of sequences retrieved from the tropical sponge
H. caerulea were found in the sponge M. laxissima
(Mohamed et al. 2010) and in the water surrounding
H. caerulea. Identical AOB sequences were found in
H. thielei, N. nodastrella and in cold water from the
Pacific (O'Mullan & Ward 2005). Similar to the
archaeal amoA tree, no clear biogeographic effect is
seen in the AOB tree. Sequences retrieved from
sponges fall in clusters containing sequences from
different locations. Cluster 2 includes sequences
from sponges collected in the Mediterranean, Adri-
atic, Atlantic and Pacificc And AOB sequences
retrieved from N. nodastrella in Cluster 3 group with
sequences from Dysidea avara from the Mediterran-
ean. Such diverse distribution of bacterial communi-
ties has also been reported in earlier studies, with
geographically distant sponges showing similar
sponge-associated Bacteria (Montalvo & Hill 2011,
Yang et al. 2011, Ribes et al. 2012). Two of the well-
supported clusters (Clusters 1 and 2) contained
mainly sequences from sponges and sediment, while
Cluster 6 contained only sequences from sponges
and water. High similarity in bacterial composition
between sediment and sponges has also been previ-
ously reported (Turque et al. 2008). The distribution
of bacterial amoA does not seem to differ signi-
ficantly between sponge and sediment, as sug-
gested by the PERMANOVA test. This fact supports
the idea that bacterial communities may be horizon-
tally acquired via the sediment. The fact that 1 clus-

ter contains only sequences from H. thielei, N. nodas-
trella and water, suggests the acquisition of AOB via
water as well. In addition, several clusters contain
only sequences retrieved from sponges, suggesting
the existence of sponge-specific AOB. The grouping
of sequences retrieved from H. thielei and N. nodas-
trella in 1 cluster suggests the existence of cold-
water, sponge-specific AOB. Our results corroborate
earlier reports that AOB may also be vertically trans-
mitted in sponges (Turque et al. 2008, review by
Webster & Taylor 2012 and references therein). In 3
Great Barrier reef sponges, many previously called
‘sponge-specific’ bacterial clusters were detected in
seawater, suggesting that both vertical and horizon-
tal transmission might operate together (Webster et
al. 2010).

In general, considering the 3 species, the bacterial
community was more diverse than the archaeal com-
munity. Seventeen different bacterial nucleotide
sequences in contrast to 14 archaeal nucleotide
sequences were retrieved from the studied sponges.
However, it should be taken into account that some
Bacteria may present multiple copies of the amoA
gene (Norton et al. 2002), which will influence the
real number of different nucleotide sequences found.
It should also be kept in mind that the sequences pre-
sented here were obtained by DGGE analysis of PCR
products, and our diversity assessment is therefore
based on very short fragments. In addition, primer-
introduced amplification bias cannot be excluded as
one of the reasons for the observed differences in
diversity of AOA and AOB in relation to other stud-
ies. The primers used may also have influenced the
formation of the distinct sequence clusters.

Eifect of temperature on AOA and AOB diversity

Temperature significantly affected the distribution
of sponge sequences in both archaeal and bacterial
amoA trees. The effect of temperature on the compo-
sition of bacterial and archaeal assemblages has
been mentioned in several studies. In the Mediter-
ranean sponge Aplysina aerophoba, temperature
partially explained the increase in ammonium excre-
tion rates from spring to the end of summer (Bayer et
al. 2008), suggesting that seasonal differences in
community composition of sponge-associated micro-
organisms may be responsible for the observed vari-
ations. In fact, water temperature was the environ-
mental variable that best explained spring, summer
and winter archaeal assemblage structure in fresh-
water lakes (Auguet et al. 2011). Also in sulphurous
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lakes (Casamayor et al. 2001, Llirés et al. 2008),
North Sea waters (Wuchter et al. 2006, Herfort et al.
2007) and estuarine sediments (Sahan & Muyzer
2008) temperature was seen to control the diversity of
Bacteria and Archaea (including AOB and AOA).
Nevertheless, in Mediterranean Sea waters (De
Corte et al. 2009) and in soil (Tourna et al. 2008), no
effect of temperature on bacterial or archaeal amoA
diversity was observed, indicating that other envi-
ronmental factors also affect the presence of nitrify-
ing microorganisms.

In bacterial amoA trees (nucleotide and amino-acid
trees) clear clustering could be seen between sponge
sequences retrieved from habitats with similar tem-
peratures (cold, warm, or temperate). Phylogeneti-
cally similar sponge-associated bacterial communi-
ties originating from similar habitats have been
reported in earlier studies. The bacterial communi-
ties associated with the geographically distant warm-
water sponges Xestospongia muta and X. testudi-
naria were seen to be similar (Montalvo & Hill 2011).
On the other hand, sponge-associated Bacteria from
the shallow Caribbean Sea were found to be signifi-
cantly distinct from Bacteria retrieved from sponges
from deep-water environments of the Caribbean Sea.
Therefore, our results suggest the existence of tem-
perature-related, sponge-specific associated Bacte-
ria. In archaeal amoA trees the effect of temperature
in structuring the distribution of AOA was also signif-
icant, although in terms of the amino-acid tree the
temperature effect was not as strong as for the bacte-
rial tree. Archaeal amoA sequences from habitats
with similar temperature conditions tended to group
together, but in smaller sub-clusters. In earlier stud-
ies, archaeal phylotypes retrieved from cold-water
sponges were found to be related to sequences from
deeper and colder waters (Radax et al. 2012). Also,
distinct archaeal communities retrieved from sponges
from the same area suggested that environmental
conditions have an effect on sponge-associated
microbial communities (Turque et al. 2010). Overall,
our results suggest the existence of sponge-associ-
ated archaeal and bacterial communities adapted to
different temperatures.

The relatively high similarity between the micro-
bial community of Nodastrella nodastrella and Hig-
ginsia thielei (often grouping in the same cluster) is
quite interesting considering the fact that they are
phylogenetically distant species. H. thielei belongs to
the class Demospongiae, while N. nodastrella belongs
to the class Hexactinellida. Similarities in microbial
communities have often been described in closely
related sponges (review by Taylor et al. 2007). Nev-

ertheless, phylogenetically distant sponges (although
both Demospongiae) such as Aplysina aerophoba
and Theonella swinhoei were also seen to contain
similar microbial communities (Hentschel et al.
2002). To the best of our knowledge, the present
study describes for the first time the diversity of AOA
and AOB in a hexactinellid sponge. Our results sup-
port the idea of a relatively uniform microbial com-
munity between distantly related sponges and sug-
gest that temperature (rather than phylogenetic
distance) determines the diversity of AOA and AOB
communities in sponges.
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