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Various data mining techniques are designed for extracting significant and valuable patterns from huge
databases. Today databases are often divided between several organizations for the reason of limitations
like geographical remoteness, but the most important limit is preserving privacy, unwillingness of data
disclosing. Every party involved in analysis wants to keep its own information private because of legal
regulations and reasons of know-how. Secure multiparty computations are designed for data mining
execution in a multiparty environment, where it is extremely important to maintain the privacy of the
input (and possibly output) data. A self-organizing map is the data mining method by which analytics
can display patterns on two-dimensional intuitive maps and recognize data clusters. This article presents
protocols for preserving privacy in the process of building self-organizing maps. The protocols allow the
implementation of a self-organizing map algorithm for two parties with horizontally partitioned data and
for several parties with vertically partitioned data.
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Introduction

Clustering is widely used in data analysis in many examples of applied and theoretical re-
search [1]. In some cases of this research information may be split between several organizations
or individual users. This information may be private, so traditional conducting of a cluster analy-
sis will disclose private data to all (or almost all) other participants. The database partition may
be horizontal, when each party owns a full dataset of some objects, or vertical, when each party
owns some attributes of each object. In these situations it is necessary to use secure multiparty
protocols for processing private input data.

Building of self-organizing maps is one of the most common and used methods of data analysis
in which analytics may face the problem of keeping the privacy of input data. These maps are
built by a neural network and solve the task of clustering. The main advantage of this data
mining algorithm is the projection of multidimensional space on several two-dimensional maps,
which show the evident final result. This clustering algorithm is particularly relevant at the stage
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of "exploratory" analysis, when analytics have huge arrays of raw information, but they do not
know anything about patterns in it. Nowadays there is one protocol of preserving the privacy
of self-organizing maps in the vertical partition for two parties [2], but this algorithm cannot be
extended to any other number of parties or to the horizontal partition.

The main contribution of this article to the research area of secure multiparty computations is:
1. A protocol developed for any number of parties with vertically partitioned data. The data

of any party should not be disclosed even if all other parties collude with each other and combine
their knowledge.

2. A protocol developed for two parties with horizontally partitioned data.
Both developed protocols should correspond to the following condition: preserving privacy

should not bring inaccuracy into the result of analysis. In other words, the protocols should allow
a correct building of self-organizing maps as it would be built for one huge database without
preserving privacy.

This article is organized as follows: Section 1 contains a review of related work in privacy-
preserving clustering. Section 2 focuses on the algorithm of self-organizing maps. Section 3
describes the use of a secure dot product as the basis for preserving data in the developed
protocols. Sections 4 and 5 describe protocols for vertical and horizontal data partitioning
respectively. This is followed by a conclusion and directions for further research in Section 6.

1. Related work

Andrew Yao first postulated the problem of secure multiparty computation in [3] and devel-
oped a mathematically proven solution. Yao’s work describes a hypothetical situation, when two
millionaires want to find who is richer, but both of them do not want to disclose the exact amount
of their fortunes. The first work of privacy-preserving in data mining algorithm was given by [4]
and describes the ID3 algorithm for decision tree building. Within a few years different authors
published several more works of secure multiparty algorithms like the Bayes classifier [5] and
association rules [6].

To the best of our knowledge, there are two works to date related to preserving the privacy
of self-organizing maps (hereinafter SOM). In [2], the authors suggested a privacy-preserving
protocol for only two parties with only the vertical data partition. Achieving data privacy, the
authors use one of the protocols of secure dot product (hereinafter SDP) for finding the winner
neuron. According to this SDP protocol [7] the parties should perform three interactions in each
computation session.

In other work related to preserving the privacy of SOM [8], authors did not present any secure
multiparty protocol, they only suggested the main idea: using principal component analysis
for decreasing the count of data dimensions. According to the authors, principal component
analysis “hides” private data, but it is not clear how parties should interact and how to disclose
intermediate data (like the positions of neurons) during the algorithm. Also using principal
component analysis does not allow fully corrected cluster analysis as it is provided without any
previous data modification.

Due to the fact that there is no full analogue of our work, we should focus attention on other
clustering privacy-preserving algorithms like K-means. This clustering algorithm has a lot of
privacy-preserving protocols for any data partition and participant count [9].

Each work uses a different scheme of preserving privacy. Several solutions [10, 11] are based
on a scheme with non-colluding parties that is usually unwanted in the real world. If some of
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these parties collude with each other then they can reveal the secret value of other parties.
Some of other works are designed for an arbitrary data partition like [12, 13], but this partition

is rare in practice. Also these solutions are redundant when it is used with vertical or horizontal
partition because it is required to protect all steps of the original algorithm. In contrast, protocols
designed for just one partition should protect only part of the K-means steps, which decreases
computational and communication complexity of secure protocols.

There are two popular ways of protecting private input in distributed computations: homo-
morphic encryption and random values. Homomorphic encryption has a huge computational
cost compared with simple mathematical operations on small numbers; it is usually based on the
mathematical difficulty of calculating inverse function, but theoretically an attacker may decom-
pose it using large computing power. In contrast, random values hide private data by increasing
the count of unknowns. It is impossible to definitely solve the undetermined system of linear
equations when it has more unknowns than equations.

The most appropriate scheme for our work is presented in [14]. This solution is based on
random values and it does not have any number of non-colluding parties while using the secure
dot product [15]. Another advantage of the solution is that the dot product protocol requires
only two interactions in each computational session unlike in [7]. The original solution was
modified in [16] — there is an explanation of using three-dimensional vectors in SDP instead of
two-dimensional and real numbers instead of finite fields.

2. Self-organizing maps

Self-organizing maps allows analytics to display clusters of data objects on several two-
dimensional images [17]. The basic principle of the algorithm is taking into account the mutual
location of neurons during the training of the neural network. Algorithm 1 shows the scheme of
building SOM for a local database by only one participant of analysis.

Algorithm 1: Building SOM
Data: dataset X, two-dimensional network of neurons K, function for change h(t), threshold

number of iterations T .
Result: set of two-dimensional maps for every dimension; aggregate two-dimensional map for all

dimensions
1 Initialization (random or by any rule) of parameters of all neurons kj , count = 0;

while count < T do
2 Random selection of object xi from X;
3 Finding closest neuron kj to object xi: dijmin = |xi − kj |;
4 Updating coordinates of closest neuron and its neighbours with respect to the object xi using

function for change h(t), where t is iteration number: k′
j = kj + h(t) ∗ |xi − kj |;

5 count = count+ 1

The stop condition may differ from described in the Algorithm 1, but typically it is reaching a
certain number of iterations. There may be other stop conditions, but usually they are protected
by the same tools that preserve privacy in described following steps.

During the building of SOM it is required to find the shortest distance between the object
data and the neuron; it allows to find the nearest neuron to the object on each iteration. The
cryptographic primitive that protects this step should provide a result of the comparison of two
distances with each other. As a cryptographic primitive that is capable of this, it is proposed to
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use a modified secure dot product, based on [15]. This SDP protocol allows the dot product to
be calculated without disclosing multiplied vectors (Equation 1):

x⃗ · y⃗ = (x1, x2, ..., xn) · (y1, y2, ...yn) =
n∑

i=1

xiyi (1)

Using SDP for calculating the sum of several summands is listed in Section 3 and is almost
the same as the scheme described in [14] except that it uses three-dimensional vectors instead
of two-dimensional and real numbers instead of finite fields, as described in [16]. Section 3 has
no new developments, but it is necessary for understanding the mechanisms of data protection
listed in Sections 4 and 5.

3. Using SDP for finding multiparty sum

The sum of two private summands x1 + x2 can be represented as a product of two private
multipliers r1 · r2 according to Algorithm 2.

Algorithm 2: The sum of two summands
1 Party 1 generates random numbers r1 ̸= 0 and z, and then creates vector

X1 = (
x1 − z

r1
;
z

r1
;
1

r1
)

2 Party 2 creates vector
X2 = (1; 1;x2)

3 Parties 1 and 2 run SDP, and Party 2 gets the result

r2 =
x1 + x2

r1

The sum of three private summands x1 + x2 + x3 can be represented as a product of three
private multipliers r1 · r2 · r3 according to Algorithm 3.

Similarly, as the sum of three summands, analytics can convert the sum of any number of
summands into the product of the same number of multipliers (Equation 2):

n∑
i=1

xi =

n∏
i=1

ri, (2)

where xi and ri are known only by Party i.

4. Algorithm with vertical partition

With vertically partitioned data each party owns only some of the dimensions of each data
object xi, and the same dimensions of each neuron kj . Thus, there is no need to protect step 4
of the Algorithm 1, because each party can locally (without data exchange with other parties)
"move" the neurons in those dimensions that the party has. However, step 3 must be protected,
because the distances between the objects and the neurons are calculated in all dimensions of all
parties.
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Algorithm 3: The sum of three summands
1 Party 1 splits its own data x1 into two random parts x1 = x12 + x13 and generates random

number r1 ̸= 0;
2 Parties 1 and 2 sum their summands x12 and x2 according to the Algorithm 2. Party 2 gets the

result
s2 =

x12 + x2

r1

3 Parties 1 and 3 sum their summands x13 and x3 according to the Algorithm 2. Party 3 gets the
result

s3 =
x13 + x3

r1

4 Party 2 generates random number r2 ̸= 0;
5 Parties 2 and 3 sum their summands s2 and s3 according to the Algorithm 2. Party 3 gets the

result
r3 =

s2 + s3
r2

6 Thus, together parties convert sum of three summands into product of three multipliers:

x1 + x2 + x3 = r1 · (s2 + s3) = r1 · r2 · r3

We denote the set of dimensions of the object x, belonging to Party i, as {xi1, xi2, ..., xim},
where m is the number of dimensions stored by Party i. The set of dimensions of neuron kj stored
by Party i is denoted as {kij1, kijm, ..., kijm}. Firstly, each party calculates its own local distance
between object x and neuron kj in its own dimensions. For example, the local distance dij is
calculated according to Equation 3:

dij = |xi1 − kij1|A + |xi2 − kij2|A + ...+ |xim − kijm|A, (3)

where A is the degree used in the metric (1 in Manhattan distance, 2 in Euclid distance etc.).
The local distance dij between the data object and the neuron is private. All parties should

sum together their local distances which in result will give them the full distance between the
object and the neuron. The distance between x and kj is shown in Equation 4:

|x− kj | = d1j + d2j + ...+ dPj , (4)

where P is the number of parties.
In the same way parties may get other distances between object x and other neurons. How-

ever, according to algorithm of building SOM there is no need to find these distances, because
analytics should only compare the distances with each other for finding minimum. It is necessary
to subtract one distance from another, as it is shown in Equation 5, for the determination of
which neuron is closer to object x:

|x− kj | − |x− ks| = (d1j − d1s) + (d2j − d2s) + ...+ (dPj − dPs) (5)

The computation of difference dij −dis is performed by each party locally too and is private.
That is why Equation 5 may be represented as the sum of several private summands; each party
has only one of these summands. Using Equation 2 parties represent the difference between
distances |x−kj |− |x−ks| as the product of several private multipliers. Parties need to multiply
only the signs of their private multipliers for the determination of which distance is greater than
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another (Equation 6):

|x− kj | < |x− ks| ≡
P∏
i=1

sign(ri) < 0 (6)

It should be noted that in some metrics the sum of local distances (presented in Equation 4)
is put under the root, but this mathematical operation does not affect the comparison of two
distances, because (Equation 7):

a < b ⇒ n
√
a <

n
√
b (7)

if n > 0, a > 0, b > 0.
In this way analytics will find the closest neuron to the data object x. Using this algorithm

parties cannot disclose the private data of another party or even distances between objects and
neurons. Even if P − 1 parties collude against one victim party, they will find only a very long
approximate interval which contains a victim’s local difference dij − dis and nothing else.

Thus, step 3 of the Algorithm 1 is protected, therefore the developed protocol preserves
information privacy during the process of building a SOM by any number of parties with the
vertical partition.

5. Algorithm with horizontal partition for two parties

With the horizontal partition, each party has its own set of data objects, but neuron data
is not belonged for any concrete party. During building of SOM parties at one time manipulate
with only one data object belonged only one party. Other party can indirectly determine data
of private object by neuron’s relocation during the building of SOM — so neuron’s data should
be encrypted. It it suggested to split neuron’s data into random shares (in this protocol — into
two shares) between parties. Since the neuron data is split, the protocol should protect only
the steps that use mathematical operations with neuron data. These are steps 3 and 4 of the
Algorithm 1.

Parties may disclose to each other these random shares of the neurons only by mutual agree-
ment and only after the SOM has finished being built. The disclosure of the locations of neurons
will slightly help parties in the analysis of the results: for example, disclosure will show the
coordinates of the so-called "dead" neurons — neurons that are not closest to any data object of
each party. However, this disclosure may also help a curious party to better determine the ap-
proximate location of some data objects of another party, so such disclosure is not recommended
for analytics even after building the SOM.

5.1. Finding closest neuron

Suppose that analytics at step 3 of the Algorithm 1 randomly select data object x kept by
Party 1, (for objects kept by Party 2 the following scheme will be changed mirror-like). We will
denote the set of dimensions of data object x kept by Party 1 as {x1, x2, ..., xm}, where m > 1 is
amount of dimensions. Neuron kj is split into two random shares kj1 and kj2, each share has a
full set of dimensions; the sum of two private vectors kj1 + kj2 will give original neuron kj . For
each dimension i of data object x parties calculate the distance between the object and neuron kj
according to Equation 8:

(xi − kj1i)− kj2i = rj1i · rj2i (8)

where xi − kj1i Party 1 calculates locally.
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The final calculation of the difference between object x and neuron kj is presented in Equa-
tion 9:

|x− kj | = |rj11 · rj21|+ |rj12 · rj22|+ ...+ |rj1m · rj2m| (9)

For comparing two distances like |x− kj | − |x− ks| parties should calculate the result of the
dot product (Equation 10) using SDP:

(|rj11|, ..., |rj1m|, |rs11|, ..., |rs1m|) · (|rj21|, ..., |rj2m|,−|rs21|, ...,−|rs2m|) (10)

SDP is conducted in this way that the result of comparing distances is attained by Party 1
who owns the object x. Despite the fact that Party 1 knows exactly how much closer (in the
Manhattan metric) object x is to neuron kj , than to neuron ks (or vice versa), it is impossible
to calculate the locations of neurons, because Party 1 still doesn’t know the neuron data kept by
Party 2.

Comparing pairwise distances from the object x to the different neurons, Party 1 calculates
the nearest neuron to the object. At the further step 4 of the Algorithm 1 Party 2 anyway
will know which neuron is the winner (at step 4 only the winner neuron’s coordinates and its
neighbours’ coordinates will be updated), so it does not make sense for Party 1 to hide the results
of pairwise comparisons of neurons from Party 2. The advantage of this situation is that it is
enough to calculate only the K−1 comparings of the distance to find the winner neuron; parties
shouldn’t compare all distances with each other, that will take (K · (K − 1))/2 comparings,
where K is the number of neurons.

During step 3 of the Algorithm 1 Party 2 has learned just which neurons are closest to the
data object x. After that, if Party 2 during future iterations will have one or more objects that
are close to the same neurons, then Party 2 will be able to say that "an object" of Party 1 is
placed "relatively close" in space. But Party 2 cannot say this more definitely because neurons
move in space during the execution of the protocol.

5.2. Updating neurons’ coordinates

At the previous step 3 of the Algorithm 1 Party 1 finds the closest neuron k to the object x.
There is a need to update the coordinates of neurons in proportion to the difference between x

and k in each dimension. During the search for the winner neuron parties presented differences
between neurons and objects for each dimension in the product of two multipliers, as shown in
Equation 8.

Firstly, both parties add random numbers to their shares of the neuron’s dimension so that
k′1i = k1i + z1; k

′
2i = k′2i + z2. Then parties apply Equation 8 again, and in SDP Party 2 uses the

same multiplier r2i, as at step 3 of the Algorithm 1. However, Party 1 gets another multiplier r′1i.
If multiplier r′1i is suddenly equal to the original multiplier r1i, parties randomly select another
z1 and z2 and the procedure repeats.

The multiplier r′1i should be equal to h(t) · r1i. However, in reality, r′1i and h(t) · r1i are most
likely not equal, so Party 1 calculates how many times the difference in dimension i between
object and neuron xi− kj1i has decreased or increased. That allows both parties to correct their
own random numbers z1 and z2. The correction is shown in Equation 11:

z′ = z · r1i · h(t)
r1i − r′1i

(11)

During step 4 of the Algorithm 1 parties still do not know the locations of neurons or any
exact information about the objects of other parties.
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6. Conclusions

Building self-organizing maps is a popular method of data clustering; due to its clarity it
makes data analysis easier, even if there is not enough knowledge about the possible nature of
patterns. In many cases, preserving the privacy of such data is very important, which results
in development and using secure protocols. This article presents a description of the developed
protocols that provide the private building of a self-organizing map with the vertical partition
(for any number of parties) and the horizontal partition (for two parties). These protocols are
based on the secure dot product protocol, allowing the calculation of sums of several private
summands without their disclosure, and to securely compare sums with each other.

In further research it is acceptable to improve these protocols, for example, for the acceleration
of these protocols, and to create a protocol for the horizontal partition for any number of parties.
Also there are many other different clustering algorithms, that haven’t proven secure protocols.
The protection of hierarchical clustering seems especially perspective. Most likely, the data
protection of these clustering algorithms will be based on the same principles as in this article.
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Построение самоорганизующихся карт с сохранением
конфиденциальности

Алексей В. Вашкевич
Вадим Г.Жуков

Евгений С. Семенкин

Существует множество алгоритмов анализа данных, предназначенных для поиска значимых
закономерностей в больших базах данных. Такие базы данных часто бывают разбиты между
несколькими организациями по различным причинам например, из-за географической удаленно-
сти, но, как правило, самая важная причина — обеспечение конфиденциальности, нежелание
раскрывать данные друг другу. Каждый участник анализа хочет сохранить свои данные конфи-
денциальными, чтобы выполнить требования нормативно-правовых актов или сохранить ноу-
хау. Конфиденциальные многосторонние вычисления разработаны для проведения анализа данных
несколькими участниками, когда крайне важно сохранить конфиденциальность входных (и ино-
гда выходных) данных. Самоорганизующиеся карты — это метод анализа данных, с помощью
которого аналитики могут отобразить закономерности на двумерных интуитивно понятных
картах и визуально распознать кластеры данных. В статье представлено описание протоколов
обеспечения конфиденциальности при построении самоорганизующихся карт. Эти протоколы
позволяют строить самоорганизующиеся карты двум участникам при горизонтальном секцио-
нировании данных и нескольким участникам при вертикальном секционировании.

Ключевые слова: конфиденциальные многосторонние вычисления, безопасное скалярное произве-
дение, кластерный анализ, самоорганизующиеся карты.
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