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ABSTRACT 

Cultured meat is produced by culturing animal muscle tissue in a laboratory without growing the whole animals. Its development is 

currently in a research stage. An earlier study showed that cultured meat production could potentially have substantially lower greenhouse 

gas emissions, land use and water use compared to conventionally produced meat. The aim of this paper is to amend the previous study 

by considering alternative production scenarios. The impacts of replacing cyanobacteria based nutrient media with plant based media are 

assessed. This paper includes more specific modelling of a bioreactor suitable for cultured meat production. Further, this study estimates 

the water footprint of cultured meat based on a method that is compliant with life cycle assessment. The environmental impacts of 

cultured meat are compared with conventionally produced meat and with plant based protein sources. It is concluded that regardless of the 

high uncertainty ranges cultured meat has potential to substantially reduce greenhouse gas emissions and land use when compared to 

conventionally produced meat.  
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1. Introduction  
 

Livestock production contributes 15% of global greenhouse gas (GHG) emissions (Gerber et al. 2013), 33% 

of the global land use (FAO 2006), and 27% of the global water footprint (Mekonnen & Hoekstra 2011). The 

consumption of livestock products has been predicted to increase by 70% between 2010 and 2050 (Gerber et al. 

2013). Conversion of forests to feed production is one of the main drivers of deforestation and degradation of 

wildlife habitats.  

Tissue engineers have started developing in vitro technologies for producing edible meat. Their aim is to 

culture animal muscle tissue in a laboratory without growing the whole animals. Currently, cultured meat 

technology is in a research stage, and the first commercial products are predicted to be available within a decade. 

An earlier study showed that cultured meat production could potentially have substantially lower GHG 

emissions, land use and water use compared to conventionally produced meat (Tuomisto & Teixeira de Mattos 

2011).  

The aim of this paper is to amend the previous study by considering alternative production scenarios. The 

impacts of replacing cyanobacteria based nutrient media with plant based media are assessed. Cyanobacteria 

based growth media for tissue culturing is still under development, whereas plant based alternatives are currently 

available. The previous study had high uncertainty in the estimates of the energy requirements for the bioreactor 

used for culturing the cells. In this paper, the impacts of a different type of bioreactor, hollow fiber bioreactor, 

are assessed. Further, this study estimates the water footprint of cultured meat based on a method that is 

compliant with life cycle assessment (LCA) (Kounina et al. 2013). The environmental impacts of cultured meat 

are compared with conventionally produced meat and with plant based protein sources.  

 

2. Methods 
 

2.1. Goal of the study 

 

The goal of this study is to estimate the energy use, GHG emissions, land use and water use for industrial 

scale production of cultured meat. LCA methodology based on ISO14040 and ISO14044 (2006) guidelines is 

used. The production is assumed to take place is Spain.  

The water footprint method was based on recommendation by Kounina et al. (2013) to include only blue 

water footprint and use country specific water scarcity characterization factors. Both direct and indirect water 
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use is included. Direct water use refers to the direct water inputs used in the process, whereas indirect use refers 

to the water needed for production of energy sources used in the process. 

 

2.2. Scope definition 

 

The functional unit (FU), towards which all the impacts are allocated, is 1000 kg of cultured meat with dry 

matter (DM) content of 30% and protein content of 19 % of mass. The cultured meat process described in this 

paper produces minced-beef type of product as the production technologies for steak type of products are under 

development. The muscle cells are grown in a bioreactor on a medium composed of a plant-based energy and 

nutrient source supplemented with the growth factors (proteins that stimulate cellular growth) and vitamins.  

The system boundaries cover the major processes from input production up to the factory gate, including 

production of input materials and fuels, production of the feedstock, and cultivation of muscle cells. The 

production of growth factors and vitamins are not included in the study as the quantities needed are small (under 

0.1% of the DM weight of the media), and therefore, the environmental impacts are assumed to be negligible.   

Land use category includes the land requirement for cultivation of feedstock. The indirect land use associated 

with land use change and the production of energy inputs are not included in the study. The production of the 

animals that donate the initial cells for cultured meat is not included in the study due to the low number of cells 

needed.  

The GHG emissions are assessed as global warming potential (GWP) by using the IPCC (2006) impact 

factors for 100-year timescale. The electricity and fuels used are converted to primary energy by using 

conversion factors that describe the amount of primary fuels required for extraction and supply of fuels. In this 

study it is assumed that electricity is used for sterilization and muscle cell cultivation. The emission of electricity 

production are based on an average European electricity generation portfolio.  

 

2.3. Feedstock production 

 

Three alternative feedstock sources of nutrients and energy for muscle cell production are compared: 

cyanobacteria, wheat and corn. Cyanobacteria are assumed to be cultivated in open artificial ponds. The details 

of cyanobacteria production are explained in Tuomisto and Teixiera de Mattos (2011). The data for wheat and 

corn production are based on Williams et al. (2006). After harvesting, the feedstock is sterilized and hydrolyzed 

in order to break down the cells. It was assumed that 2 kg of wheat or corn was needed for producing 1 kg of 

cultured meat. This is most likely an overestimate, but more accurate data was not available. The feedstock was 

assumed to be sterilized by using autoclaving before it was hydrolyzed. The data for blue water consumption or 

wheat and corn is taken from Mekonnen and Hoekstra (2011). The water scarcity characterization factors were 

based on data from Pfister et al. (2009), which give index of 0.715 for Spain.  

 

2.4. Bioreactor 

 

To achieve large scale production of cultured meat it is necessary to select the bioreactor configuration that 

provides a suitable physiological environment. The hollow fiber bioreactor replicates the capillary system found 

in most tissues. It has the added advantage of having the highest surface area to volume ratio of all bioreactors 

thereby reducing space and consumables costs. 

Heating and pumping energy was balanced against heat energy generated by cell growth. The analysis 

included a best case and a worst case scenario. In the best case 95% cell viability with maximum theoretical cell 

yield of 2 x 108 cells/mL were assumed and 1 x 106 cells as the starting population. In the worst case 80% cell 

viability with half-maximum theoretical cell yield of 1 x 108 cells/mL and 2 x 104 cells as the starting population 

were assumed. The populations under all conditions were assumed to double every two days, and receive the 

required amount of nutrients and oxygen to achieve these cell densities. 

Different sizes of reactors were assumed to be used during the 90 days production period, with increasing the 

size based on magnitude of volume required. The media was assumed to have the physical properties of water at 

37 C. The bioreactor material was 5mm thick stainless steel and lagging was 25mm thick glass wool. The 

hollow fibers membranes were made from polylactide. The fiber volume was negligible compared to the media 
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volume and therefore ignored in the heat requirement calculations. The theoretical pumping requirements were 

calculated and a low efficiency of 0.5 was assumed; selection of the correct pump will improve this efficiency.  

The nutrition media was initially heated from 4 C to 37 C for the bioreactor volume and for the media that 

is added during the culture period. The energy required to maintain a temperature of 37 C is equal to the heat 

loss to the surroundings, and it was calculated based on the material properties, surface area and temperature 

differences. It was assumed that the surrounding temperature was 25 C and that an electrical heating elements 

were used. The nutrition media was assumed to be changed every three days. 

Taking the value of energy released per mole of electrons transferred to be 115kJ, the amount of energy 

released from the consumption of one mole of oxygen is 460 kJ. Therefore, the heat of reaction, assuming the 

cell culture is a fully aerobic system, is -460 kJ mol-1 of O2 consumed (Doran 2013). The average oxygen uptake 

of cells in a culture can be taken as  5.455 x 10-12 mol cell-1 day-1 (Goudar et al. 2011). This could then be 

multiplied by the heat of reaction to find the total amount of energy released in a day.  

 

2.5. Comparison with other products 

 

The results of cultured meat production were compared with livestock and vegetable products based on data 

from literature. The data about GHG emissions and land use of livestock products was from Nijdam et al. 

(2012), energy use from Williams et al. (2006) and water use from Mekonnen and Hoekstra (2010). When the 

results were reported in live weights or carcass weights, the conversion factors presented in Table 1 were used to 

attribute the impacts to edible meat. An economic allocation was used to allocate the impacts between the edible 

and non-edible parts of the animal. Non-edible part of the animal generally accounts for around 10% of the 

market value of the animal, and therefore, 90% of the impacts of producing the whole animal were allocated to 

the edible part.  

The results of GHG emissions and land use of cultured meat production were also compared with livestock and 

vegetable products per unit of protein based on data from Nijdam et al. (2012).  

 

Table 1. Conversion factors used to convert animal live weight or carcass weight to edible meat. 

 Beef Pork Sheep Poultry 

Carcass weight of live weight 0.53 0.75 0.46 0.7 

Edible meat of carcass weight 0.7 0.75 0.75 0.8 

 

3. Results 
 

The major energy input in the cultivation of cultured meat consists of heating energy required to heat the 

nutrition media and maintain the bioreactor temperature at 37 C (Table 2).  

 

Table 2. The results of energy requirements for hollow fiber bioreactor in the best and worst case scenarios.  

 Best case Worst case 

 GJ/FU GJ/FU 

Heating of reactors and media vessels* 8.12 14.60 

Mixing media vessels 1.09E-04 1.95E-04 

Aeration of media 0.07 0.13 

Media pumping 1.93E-06 0.06 

Total  8.22 14.78 

*This is a balance of initial heating then maintaining the temperature of the media, and the energy released by 

the cells. 

 

The results of the full LCA impacts of cultured meat are presented in Table 3. When comparing the feedstock 

source options, cyanobacteria had the lowest GHG emissions and land use, wheat had the lowest water footprint 

and corn the lowest primary energy requirement. Bioreactor energy use had the highest contribution to the 

energy input of cultured meat production. For GHG emissions, land use and water footprint, muscle cultivation 

and feedstock production had the highest contribution depending on the scenario.  
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When comparing the results of cultured meat with other livestock products, it was found that energy input 

requirement was at the same level with beef production, whereas GHG emissions and land use were lower than 

any of the livestock products (Figure 1). Water footprint was at the same level with poultry.  

 

Table 3. Results of LCA impacts of cultured meat per functional unit (FU) of 1000 kg cultured meat.  
 Primary 

energy 

GHG Land use Indirect 

water use 

Blue water for 

cultivation 

Total water 

use 

 GJ/FU kg CO2-eq/FU ha/FU m3/FU m3/FU m3/FU 

Feedstock       

Cyanobacteria 8.1 611 0.046 6.1 249.5 255.7 

Wheat 4.9 1608 0.260 3.7 68.1 71.8 

Corn 3.9 1300 0.282 3.0 580.1 583.1 

Biomass transportation 0.4 26  0.4  0.4 

Sterilization 2.9 144  7.6  7.6 

Materials for bioreactor 1.0 108  2.6  2.6 

Muscle cell cultivation      

Best case 26.3 1380  57.1 193.1 250.1 

Worst case 48.5 2493  57.1 193.1 250.1 

Totals      

Cyanobacteria-best case 38.7 2268 0.046 73.8 442.6 516.4 

Wheat-best case 35.5 3266 0.260 71.4 261.1 332.5 

Corn-best case 34.5 2958 0.282 70.6 773.2 843.8 

Cyanobacteria-worst case 60.9 3381 0.046 73.8 442.6 516.4 

Wheat-worst case 57.7 4379 0.260 71.4 261.1 332.5 

Corn-worst case 56.7 4071 0.282 70.6 773.2 843.8 
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Figure 1. Comparison of environmental impacts of cultured meat with European livestock meat. 

 

Figure 2 and 3 show the GHG emissions and land use of cultured meat compared with animal and plant based 

protein sources. The GHG emissions of cultured meat are at the same level with plant based protein and animal 

protein with the lowest carbon footprint. In terms of land use, cultured meat has the lowest land use 

requirements.   

 

 
Figure 2. Comparison of GHG emissions of cultured meat with animal and plant based protein sources.   
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Figure 3. Comparison of land use of cultured meat with animal and plant based protein sources. 

 

4. Discussion 
 

As cultured meat production is still in research stage, the results presented in this paper have high 

uncertainty. The main uncertainty is related to the design of the bioreactor and composition of the nutrition 

media. Both have major impact on the environmental contribution of cultured meat production. The results of 

the hollow fiber bioreactor use are only preliminary hypothetical calculations. The energy requirement may be 

reduced by modifying the process, for example, by using heat exchangers. More research is required for 

developing suitable bioreactors for large scale cultured meat production. 

Further research is also required for development of plant-based nutrition media for cell culturing. In this 

paper, only the impacts of producing the main ingredients of the nutrition media were included. More detailed 

assessment of impacts of producing the media should be performed once more information about a suitable 

plant-based media for cell culturing becomes available.  

When comparing the current study with the results of Tuomisto and Teixeira de Mattos (2011), the main 

differences can be found in the energy input and water footprint results. The reason for higher energy input of 

cultured meat in this study is explained by more accurate modelling of the bioreactor and inclusion of bioreactor 

heating requirement.  

The relative difference in the water footprint results is explained by updated methodology that includes only 

blue water footprint. Livestock production has high green water footprint, but relatively low blue water footprint.     

 

5. Conclusion 
 

We conclude that the uncertainties in the environmental impacts of cultured meat remain high. The 

alternative production scenarios compared in this paper help to better understand the sources of these uncertainty 

ranges. Regardless of the high uncertainty the results show that cultured meat could have substantially lower 

GHG emissions and land use when compared to conventionally produced meat. It is also important to take into 

account the consequential impacts of reduced land use requirements. If a large proportion of meat was produced 

by using cultured meat technology, land would be released from meat production for other uses. This land could 

potentially be used for provision of ecosystem services (e.g. for forests or natural conservation areas), which 

would increase the total environmental benefits of cultured meat production. More research on development of 

cultured meat technology is needed before more reliable estimates of the environmental impacts can be 

provided. 
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