
 on June 10, 2016http://rstb.royalsocietypublishing.org/Downloaded from 
rstb.royalsocietypublishing.org
Research
Cite this article: Di Marco M, Buchanan GM,

Szantoi Z, Holmgren M, Grottolo Marasini G,

Gross D, Tranquilli S, Boitani L, Rondinini C.

2014 Drivers of extinction risk in African

mammals: the interplay of distribution state,

human pressure, conservation response and

species biology. Phil. Trans. R. Soc. B 369:

20130198.

http://dx.doi.org/10.1098/rstb.2013.0198

One contribution of 9 to a Theme Issue

‘Satellite remote sensing for biodiversity

research and conservation applications’.

Subject Areas:
ecology, environmental science

Keywords:
biodiversity, conservation actions, habitat loss,

life history, random forest model, threats

Author for correspondence:
Moreno Di Marco

e-mail: moreno.dimarco@gmail.com
& 2014 The Author(s) Published by the Royal Society. All rights reserved.
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rstb.2013.0198 or

via http://rstb.royalsocietypublishing.org.
Drivers of extinction risk in African
mammals: the interplay of distribution
state, human pressure, conservation
response and species biology

Moreno Di Marco1, Graeme M. Buchanan2, Zoltan Szantoi3, Milena Holmgren4,
Gabriele Grottolo Marasini1, Dorit Gross3,4, Sandra Tranquilli5, Luigi Boitani1

and Carlo Rondinini1

1Global Mammal Assessment Program, Department of Biology and Biotechnologies, Sapienza Università
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Although conservation intervention has reversed the decline of some species,

our success is outweighed by a much larger number of species moving

towards extinction. Extinction risk modelling can identify correlates of risk

and species not yet recognized to be threatened. Here, we use machine learn-

ing models to identify correlates of extinction risk in African terrestrial

mammals using a set of variables belonging to four classes: species distri-

bution state, human pressures, conservation response and species biology.

We derived information on distribution state and human pressure from satel-

lite-borne imagery. Variables in all four classes were identified as important

predictors of extinction risk, and interactions were observed among variables

in different classes (e.g. level of protection, human threats, species distribu-

tion ranges). Species biology had a key role in mediating the effect of

external variables. The model was 90% accurate in classifying extinction risk

status of species, but in a few cases the observed and modelled extinction

risk mismatched. Species in this condition might suffer from an incorrect

classification of extinction risk (hence require reassessment). An increased

availability of satellite imagery combined with improved resolution and classi-

fication accuracy of the resulting maps will play a progressively greater role in

conservation monitoring.
1. Introduction
The state of biodiversity is deteriorating globally owing to increasing human

pressure and insufficient conservation responses [1], despite considerable

efforts and political engagement from local to global organizations and insti-

tutions [2,3]. The drivers of biodiversity decline are multiple (habitat loss,

overhunting, climate change, disease, invasive species, etc.), and affect species

groups differently [4]. Although conservation intervention has slowed down

or reversed the decline of some species, these efforts are outweighed by a

much larger number of species moving towards extinction [5]. For example,

one-quarter of the world’s carnivore and ungulate species have moved closer

to extinction in the past 40 years [6].

Extinction risk analysis has emerged in the past 15 years as a useful analyt-

ical tool for providing scientific support to ecologists and conservation biologists

[7]. It has been used to investigate the predictability of species’ extinction

risk from their biological characteristics (i.e. their life-history traits) and their

exposure to threats, mammals often being a model group [8–11]. A number of
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different techniques have been used to model the effect

of intrinsic and external variables, including phylogenetic

comparative methods [12], machine learning models [7] and

taxonomically informed generalized linear mixed models [13].

Various extinction risk analyses on mammals have focused

on teasing out the relative importance of biological (i.e. intrin-

sic) factors in predicting extinction risk [9,11]. Others have

shown that anthropogenic threats are important predictors of

extinction risk too, albeit their relative role in a predictive

model is generally lower relative to biological traits [14,15];

this is perhaps related to the complexity of measuring threat

impact on species compared to measuring species biological

traits [16,17]. The applicability of extinction risk analysis for

practical conservation outcomes can be enhanced by providing

conservation recommendations that are clearly interpretable by

conservation practitioners [18]. Large-scale extinction risk ana-

lyses require comprehensive datasets of different types of data.

These include species biological characteristics, distribution

ranges and habitat associations, environmental characteristics

and threats operating within the ranges. Biological character-

istics, including reproductive parameters (such as litter size)

and physical traits (such as body mass), are readily available

for groups such as mammals [19,20], but often the datasets

are incomplete (see §2a(iv)).

Assessments of habitat can be hard to gather at a contin-

ental scale, and even when they are available there may be

considerable inconsistencies in assessments between sites

[21]. Instead, remote sensing instruments continuously

record large amounts of data concerning land and vegetation

cover, topography and climate, many of them with global

coverage. The data and derived products are increasingly

freely available, providing cost-effective means to collect stan-

dardized information relevant to conservation purposes [22].

The usefulness of satellite-derived products in conservation

studies has already been demonstrated. For example, the Nor-

malized Difference Vegetation Index (NDVI) has been used to

test hypotheses on the recent trends in net primary productivity

[23], to relate elephant density and food availability [24], and to

predict habitat suitability for the reintroduction of species

extinct in the wild [25]. The Moderate Resolution Imaging Spec-

troradiometer (MODIS) and Landsat imagery have been used

in regional and global land cover studies to identify hotspots

of land cover change [26,27], to monitor forest [28,29] and

savannah [30] habitats, to infer their resilience [31] and to

assess the impact of habitat loss on birds [32]. Remote sensing

data have not yet been extensively used in extinction risk mod-

elling, but their improved use has the potential of overcoming

the historical problem of measuring the effect of threats (par-

ticularly habitat loss and alteration) on species’ extinction risk

[17]. Most satellite-derived data are available at regular inter-

vals, and can be used to produce assessments of change at

large scales. Satellite imagery can therefore be used to track

changes in environmental conditions owing to anthropogenic

impact, allowing their effect on extinction risk to be modelled.

The African mammalian fauna has been the subject of long-

standing scientific attention [33] and comprises some of the

most attractive species for tourists: lion (Pathera leo), leopard,

(P. pardus), African elephant (Loxodonta africana), Cape buffalo

(Syncerus caffer), rhinoceroses (Ceratotherium simum and Diceros
bicornis) and great apes (chimpanzees, Pan troglodytes; bonobos,

P. paniscus; and gorillas, Gorilla gorilla and G. beringei). None-

theless, it has been estimated that African large mammals

have lost 59% of their populations in the past 40 years even
within protected areas (PAs) [34], and African carnivores and

ungulates have faced a continental-scale deterioration in con-

servation status in the same period [6].

Legislative protection of sites by means of PA networks is

proving effective at reducing forest cover loss [35] and loss of

all natural land cover in African PAs [36]. Net deforestation

rates in Africa have been estimated at 0.14% per year in 2000–

2010 [37], and the rate of vegetation change was generally

faster outside than inside PAs, with some exceptions [38]. A

recent study [39] has demonstrated that long-term presence of

conservation efforts had a significant positive influence on the

persistence of African great apes in 109 PAs. However, conserva-

tion resources are limited and need to be substantially increased

[40]. A key step to increase the effectiveness of conservation

action is the identification of clear priorities through robust

analytical methods [41,42]. African mammals represent a prom-

ising model group to test a set of interacting correlates of

extinction risk.

We perform an extinction risk analysis to assess the contri-

bution of four classes of potential predictors of extinction risk

in African terrestrial mammals, we measured: (i) species distri-

bution state (e.g. suitable habitat availability and geographical

range size) as the current condition characterizing a species’

distribution; (ii) human pressures (e.g. habitat alteration

within a species’ range) through the use of various satellite

imagery products; (iii) conservation responses (e.g. PA cover-

age and levels of management in PAs) and (iv) biological

traits (e.g. body mass and weaning age), already known to cor-

relate with mammal extinction risk [11]. We assess the key role

that satellite imagery can play in measuring environmental

condition and change, allowing an improved prediction of

the extinction risk of species.

We use a set of multi-resolution satellite imagery, updated

conservation-relevant information and comprehensive bio-

logical characteristics to build our models. We assessed the

relative importance of these drivers and identified multiple

paths of interaction that determine a species’ extinction risk.

We calculate the accuracy of our prediction model in terms of

the proportion of species whose observed extinction risk was

correctly classified, and propose conservation-relevant inter-

pretations for those species with a mismatching classification

in our model.
2. Material and methods
(a) Variables and data sources
We focused our analyses on African terrestrial mammals (figure 1;

electronic supplementary material, figure S1). We assigned

species’ threat status categories (i.e. a proxy of extinction risk)

according to the Red List of the International Union for Conserva-

tion of Nature (IUCN) [43]. Following previous approaches [9,13],

we classified all species as being threatened (critically endangered,

endangered, vulnerable) or non-threatened (least concern, near

threatened) depending on their IUCN Red List categories [44],

after removing species classified as data deficient, extinct or extinct

in the wild; a total of 1044 species were included in the analyses.

Twenty three per cent of African mammals are currently threat-

ened with extinction according to the IUCN Red List, a condition

that is comparable with the global figure, where 25% of all

mammal species are threatened [45]. Only species having at least

50% of their global distribution range in Africa were included in

our analyses (all threatened species in the analyses are endemic

to Africa).

http://rstb.royalsocietypublishing.org/
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Figure 1. Richness of African mammal species (number of species in each 300 m grid cell). See the electronic supplementary material, figure S1 for a colour version.
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Following [1,11], we identified four main classes of variables

whose influence on mammals’ extinction risk can be modelled:

species distribution state, human pressure, conservation response

and species biology. For each species, we measured 18 predictor

variables, each belonging to one of the mentioned classes (see

also table 1 for a summary). We overlaid each spatial variable

with each species’ range, and measured a representative value

of the variable for the species (as described in the subsections

below). Spatial quantification of the variables was performed in

GRASS GIS [46].

(i) Distribution state
Variables of distribution state represent the current level of intact-

ness characterizing species distributions. We measured the

size of species geographical ranges from IUCN distribution

range polygons [43]. We also measured the current proportion

of suitable habitat within each species’ range, by using habi-

tat suitability models developed by Rondinini et al. [47]. Habitat

suitability models were based on habitat classifications accord-

ing to species preferences for land cover types and elevation

range, their tolerance for human disturbance and their water

requirements (at a 300 m spatial resolution).

We used the mean annual NDVI value as a proxy for the cur-

rent (year 2010) primary productivity within each species’ range,

as also done in previous publications [48]. The NDVI was calcu-

lated from composites of satellite imagery (at a 250 m spatial

resolution), by applying the mean compositing method [49] on

1 year of satellite imagery recorded by the MODIS instruments

aboard the Terra and Aqua satellites.
(ii) Human pressure
Variables of human pressure represent the level of anthropogenic

threat affecting biodiversity. We obtained changes in the proportion

of suitable habitat within species’ geographical ranges between 1970

and 2010 (at a 1 km spatial resolution), from [50]. We further esti-

mated, for each species, the net change in mean annual primary

productivity (NDVI, see §2a(i)) and tree cover between 2000 and

2010 (at a 250 m spatial resolution). Tree cover change was calculated

from the MODIS percent tree cover product [51], which quantifies

the percentage of tree cover in any 250 m pixel (see also §2c on the

relationship of this variable with species’ habitat preferences).

We also calculated the proportion of each species’ range over-

lapping with areas characterized by high values of the human

influence index (HII; at a 1 km spatial resolution) [52,53]. The

HII map was described as ‘the sum total of ecological footprints

of the human population’. It was derived from several different

data sources divided into four main types: population density,

land transformation, accessibility and electrical power infrastruc-

ture [52]. We defined high HII values as those being higher than

5, and then tested the effect of an increased threshold value

(HII . 10) following [16].
(iii) Conservation response
Variables of conservation response represent the level of conserva-

tion efforts implemented for biodiversity protection. We calculated

the percentage of each species’ range (from 0 to 96% observed)

and the percentage of suitable habitat (from 0 to 81% observed)

overlapping with PAs with IUCN categories I–IV (i.e. those

http://rstb.royalsocietypublishing.org/


Table 1. Description of the variables included in the extinction risk modelling. See Material and methods for an extended description of the variables and their
sources.

class variable description

extinction risk RlThreat the response variable, binary species threat status (threatened versus non-threatened in the IUCN

Red List)

distribution state RangeSize size of species geographical ranges

NDVI2010 mean NDVI value within a species’ range in 2010

SuitPrev proportion of suitable habitat within a species’ range

human pressure SuitLossa net change in the proportion of suitable habitat within a species’ range, between 1970 and 2010

NDVILossa net change in NDVI value within a species’ range, between 2000 and 2010.

TreeCovLossa net change in tree cover percentage within a species’ range, between 2000 and 2010

HII.5 proportion of a species’ range overlapping with areas having an HII.5

HII.10 proportion of a species’ range overlapping with areas having an HII.10

conservation

response

AvgCons average amount of conservation actions measured in PAs established within a species’ range

RangeProt proportion of a species’ range overlapping with PAs

SuitProt proportion of a species’ suitable habitat overlapping with PAs

species biology Order taxonomical order

DietBreadth number of dietary categories eaten by a species

HabitatBreadth number of habitat layers used by a species

AdultBM adult body mass

LitterSize number of offspring born per litter per female

NeonateBM neonatal body mass

WeaningAge age when primary nutritional dependency on the mother ends
aThe acronym ‘Loss’ was used to indicate the rationale of the variable, even if the net change in variable values over time was measured (i.e. including losses
and gains).
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areas more strictly targeting biodiversity conservation). This was

done by overlaying IUCN range polygons [43] and habitat models

[47] with PA polygons from the world database of PAs [54]. We rep-

resented missing-shape PAs (14% of the PAs in Africa totalling 1% of

the African PA surface) with circular polygons, centred on the

reported PAs’ coordinates and having a radius calculated from the

reported PAs’ size. We are aware that representing missing-shape

PAs with a circular buffer may have a (likely minor) influence on

our calculation of species’ PAs coverage [55], but we expect that

this would equally affect all species in our sample.

The level of actual conservation interventions was assessed

from management-related data for a total of 825 African PAs (elec-

tronic supplementary material, figure S2). Data on management

levels were collected by Birdlife for important bird areas (IBAs),

many of which are also overlapping with PAs [56] (see §2c on

the rationale for using this dataset). For each site, we considered

the information on implementation of conservation action avail-

able in the World Bird Database (WBDB) [56], scored from 0

(very little or no conservation action are in place), 1 (some limited

conservation initiatives are in place), 2 (substantive conservation

measures are being implemented but these are not comprehensive

and are limited by resources and capacity) to 3 (the conservation

measures needed for the site are being comprehensively and

effectively implemented). These data were then merged with

those from Tranquilli et al. [39], who scored levels of conserva-

tion intervention for a set of central African PAs characterized

by great apes’ past presence and current presence/absence.

We reconverted the latter dataset according to the WDBD

classification system before merging. For each species, we finally

calculated the average level of conservation action allocated to

PAs for the period 1990–2012.
(iv) Species biology
Biological variables, also referred to as life-history traits, represent

baseline biological characteristics of species. We accounted for

species taxonomy by including order as a categorical variable

[15]. We then used PanTHERIA [19] as a data source for biological

traits. PanTHERIA represents the most comprehensive dataset on

mammalian life-history traits, derived from over 100 000 single

records collected, yet it is characterized by missing data for all

the collected variables. Among all of the available variables, we

selected those for which missing data were completed with the

use of a multiple imputation procedure (as described in [11]), in

order to reduce the effect of data omission in our dataset while

still retaining all species in our sample. The resulting variables

were diet breadth, habitat breadth, adult body mass, litter size,

neonate body mass, weaning age. These variables are a represen-

tation of species’ physical characteristics (e.g. body mass) and

life-history speed, along the axes of ‘reproductive timing’ (e.g.

weaning age) and ‘reproductive output’ (e.g. litter size), as

described in [57].

(b) Extinction risk model
We used random forests (RFs) and classification trees (CTs)

to build our model of extinction risk prediction. RF, a machine

learning technique, has been introduced as a supportive tool for

macro-ecological analysis [7]. It has been successfully used in com-

parative extinction risk analyses for terrestrial [9] and marine [58]

mammals as well as for amphibians [59].

We used RF modelling to test the ability of our variables to

classify threatened and non-threatened African mammals,

based on their IUCN Red List categories [9,59]. RF models

http://rstb.royalsocietypublishing.org/
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combine a series of CTs (n ¼ 500, in our case) based on the pre-

dictor variables. Each CT classifies the species through a

recursive binary partitioning that aggregates them into regions

(or ‘nodes’) that are increasingly homogeneous with respect to

their extinction risk. At each step in fitting a CT, an optimization

is carried out to select a node, a predictor variable and a predict-

or cut-off that result in the most homogeneous subgroups of

species, as measured by the Gini index [7]. In this way, we

could quantify a series of model-related measures of accuracy,

together with relative variables importance and ‘classification

proximity’ among species, as described below.

We measured RF model classification accuracy by calculating

the proportion of correctly classified species (throughout a cross-

validation routine implemented in the RF model). We also verified

the model performance in terms of sensitivity (ability to classify

threatened species correctly) and specificity (ability to classify

non-threatened species correctly). We further calculated K statistics

and true skill statistics (TSS), both weighting overall sensitivity and

specificity performances [60]. We then measured the relative

importance of each variable for the RF model construction. The

importance of each variable in the RF model was measured

through its contribution to: (i) model accuracy for threatened

species, (ii) model accuracy for non-threatened species,

(iii) model accuracy for all species, and (iv) mean decrease in the

Gini index, across the RF trees [61].

Based on the final model classification, we calculated the

classification proximity of species in the RF model, i.e. a measure

of classification similarity between species, calculated from the

number of times in which two species ended up in the same term-

inal node of the RF trees, during model recursive partitioning. We

used this metric to represent species in a multidimensional scaling

(MDS) analysis (i.e. a principal coordinate analysis). We also inves-

tigated the presence of mismatching threat status classifications in

our RF model, i.e. threatened species classified as non-threatened

and vice versa in most of the RF trees.

We then created a single conditional inference CT of classifi-

cation to evaluate visually a representation of the interaction

between predictor variables in determining pathways of extinction

risk [62]. Statistical analyses, RFs and CTs, were performed in R

[63] using the packages ‘randomForests’ [64] and ‘party’ [62].

(c) Addressing limitations in the use of variables
Our use of geographical range size as a predictor of extinction

risk may lead to circularity with the IUCN Red List criteria, in

particular criterion B on restricted distribution range [44]. This

issue has previously been resolved by excluding species listed

under criterion B (in the IUCN Red List) from the analyses,

often a substantial proportion of species [9,65,66]. Other

approaches employed to resolve this issue include the use of

indices of relative geographical range decline as proxies of extinc-

tion risk [14], or IUCN Red List information on species

population trend [59], rather than Red List categories. Instead

of excluding a large number of species from our analyses (thus

reducing both the representativeness of the sample and the

sample size), we performed two tests, one including range size

as a predictor variable and one excluding it. We verified that a

weak relationship exists between range size and the other exter-

nal variables in our model (R2 , 0.05 for all relationships), so

that by excluding range size from the RF model it is likely that

we removed its effect almost entirely. We then followed the clas-

sical approach and repeated the analyses after excluding species

listed only under criterion B, to show the consistency among our

models (classification accuracy and variable importance).

Among general variables of habitat suitability and intactness,

we also tested the effect of tree cover change in determining

species’ extinction risk. We are aware that the role of this vari-

able would probably be more influential for forest-dependent

species rather than for savannah and grassland-related species.
Nonetheless, we believe that the tree cover loss in a certain

area has much broader impacts. In fact, it has been demonstrated

that habitat clearance has contagious effects in forest and grass-

land [67]. For this reason, we are confident that our measure of

tree cover change is likely to be influential on the extinction

risk of species with diverse habitat preferences.

Measuring the levels of conservation intervention by using

management information collected for IBAs that overlap with

PAs is probably not ideal for our study species. However, this

is one of a very few datasets of management information readily

available at a continental scale and directly related to conserva-

tion efforts, as well as a good geographical complement to the

information provided in [39] for central Africa. We used this vari-

able as a proxy of ‘conservation attention’ in PAs, which is

potentially also of broader relevance for mammals.

(d) Satellite information: testing the effect
of spatial resolution

Several low (30–1000 m), medium (4–30 m) and high (0.6–4 m)

spatial resolution optical sensors aboard different satellites pro-

vide imagery on a daily (MODIS, AVHRR), or regular basis

(ASTER, Landsat 7-8, MERIS, SPOT 4-5). We clarify that ‘low’

and ‘medium’ resolution are intended here in remote sensing

terms, rather than biological modelling terms. The imagery prod-

ucts from some of these sensors are freely available and are the

preferred choice for many biodiversity and conservation studies.

We tested the effect of using low-resolution satellite imagery

in our analyses. We compared the 250 m resolution MODIS per-

cent tree cover layer with a 30 m resolution Landsat-derived

forest classification. The latter product was obtained from a

classification of Landsat 5 TM and 7 ETMþ imagery, selected

using a web-service platform of the Joint Research Centre of

the European Commission (http://acpobservatory.jrc.ec.europa.

eu/content/land-cover-change). The best available imagery in

the period of 2008–2012 was selected for a sample of 47 African

PAs (electronic supplementary material, figure S3) and a 20 km

buffer surrounding each of them (1–5 Landsat scenes per

PA map were used). Pre-processing of the selected imagery

(radiometric calibration, cloud masking, topographic correction,

de-hazing, radiometric normalization, mosaicing and gap filling)

was based on the methodology described in [68,69].

The original Landsat-derived maps contained the following

classes: cloud/shadow, water, forest, shrubs, grass, bare soil,

burnt and other vegetation. We grouped these classes in a second

step into forest versus non-forest classes, and checked for their con-

sistency visually with the original Landsat imagery (electronic

supplementary material, table S1). Each classified PA map was

then validated to high-resolution imagery by visually comparing

a random selection of 50 points per map (including forested and

non-forested pixels) using Google Earth software (Google Earth).

For each classified PA, we calculated the overall classification

accuracy as well as combined TSS [60], accounting for both sensi-

tivity (correctly classified forested pixels) and specificity (correctly

classified non-forested pixels).

After the validation, we compared for each PA the mean pro-

portion of forest areas derived from Landsat with the value of tree

cover percentage derived from MODIS. Our aim was to verify

whether a linear relationship exists between these two products.
3. Results
(a) Classifying species’ extinction risk
The RF model on the full-species set had high classification

accuracy (93% correctly classified species in the cross-

validation procedure). The model performed well both in

http://acpobservatory.jrc.ec.europa.eu/content/land-cover-change
http://acpobservatory.jrc.ec.europa.eu/content/land-cover-change
http://acpobservatory.jrc.ec.europa.eu/content/land-cover-change
http://rstb.royalsocietypublishing.org/


Table 2. Performance statistics of the RF classification model. Both the
performance of the full model and the performance of the model without
the range size variable are reported.

parameter
all
variables

RangeSize
removed

no. species 1044 1044

proportion correctly classified 0.927 0.900

sensitivity 0.803 0.682

specificity 0.964 0.965

true skill statistic 0.767 0.647

K statistic 0.788 0.696
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terms of sensitivity (80% of correctly classified threatened

species) and specificity (96% of correctly classified non-

threatened species) (table 2). Overall, both TSS (0.77) and K
statistic (0.79) reported good performances (unity being the

maximum possible in both cases). When removing the vari-

able ‘range size’, the overall model accuracy decreased

slightly (from 0.93 to 0.90), yet model sensitivity and TSS

decreased more substantially (from 0.80 to 0.68 and from

0.77 to 0.65, respectively).

We calculated the importance of each variable according

to four measures, and reported a mean rank value for each

(figure 2a). Range size was the most important variable in our

model. Nonetheless, variables representing each of the four pre-

dictor classes (table 1) were all present among the most

important ones. This was observed also when removing

range size as a predictor of extinction risk (figure 2b). Two of

the satellite-derived variables were influential descriptors of

species extinction risk, with both tree cover change and NDVI

2010 coming into the first half of ranked variables in our RF

models (figure 3). In particular, tree cover change was import-

ant both in the models with range size (sixth most important

variable) and in the model without range size (third most

important variable).

When repeating the RF analyses on the full set of vari-

ables but excluding all threatened species listed only under

criterion B in the IUCN Red List, the degrees of freedom in

our model were reduced to 904 (electronic supplementary

material, table S2). This had little impact on overall RF

model accuracy (still over 90% of species were correctly

classified), but impacted more substantially the model sensi-

tivity (now 0.64). Additionally, this had very little impact on

our variables’ ranking: range size remained the most impor-

tant variable and eight out of the nine most important

variables remained the same with respect to the full-species

model (electronic supplementary material, figure S4).

(b) Classification proximity
A classical MDS analysis, based on the relative proximity

of each species in each terminal node of the RF, suggested

threatened species are clustered in one ‘arm’ of the coordinate

space, whereas non-threatened species are widely distributed

across the remaining plot area (figure 3). The two clusters are

not discrete, and there is partial overlap between threatened

and non-threatened species. This enabled us to identify

29 non-threatened and 47 threatened species (electronic

supplementary material, tables S3 and S4, respectively) with
a mismatching classification in our RF model (i.e. those

incorrectly classified in the majority of the RF trees).

(c) Interaction among extinction risk predictors
A conditional inference CT for the classification of extinction

risk in African mammals (figure 4) showed the complex inter-

action between multiple predictor variables in different classes.

For example, species having a relatively small distribution

range (less than 11 192 km2) that is substantially covered by

PAs (greater than 24% overlap) but is also largely overlapping

with areas of high human impact (greater than 47% overlap)

face a high probability of being threatened (�95%; see pathway

1–15–17–18 in figure 4). In contrast, rodent species with rela-

tively small overlap with PAs (less than 24%) but with a

relatively large distribution range (greater than 23 163 km2)

have a very low probability of being recognized as threatened

with extinction (�2%; see pathway 1–2–10–12–14 in figure 4).

(d) The effects of spatial resolution
For a sample of 47 PAs, we classified forest presence according

to Landsat scenes and validated the classification with Google

Earth. The validation process demonstrated good accuracy in

the classification of forested versus non-forested areas in all of

the maps. Proportion of correctly classified pixels, sensitivity

(ability to detect forest areas) and specificity (ability to detect

non-forest area) were all above 85% (table 3). We measured

the correlation between ‘medium-resolution’ satellite imagery

(forest cover from Landsat) and ‘low-resolution’ imagery (tree

cover percentage from MODIS) in our sample PAs. The two sat-

ellite products showed a good correlation in our test PAs (linear

model with zero intercept; ß ¼ 1.43, s.e. ¼ 0.13, R2 ¼ 0.72). On

average, the Landsat classification predicted a higher pro-

portion of forest cover compared with the tree cover

percentage detected by MODIS (figure 5).
4. Discussion
(a) Role of extinction risk predictors
We performed a comprehensive analysis of factors affecting

extinction risk of African mammals and followed Butchart

et al. [1] in considering multiple classes of factors influencing

extinction risk of species. The effects of all these factors are, ulti-

mately, mediated by species biology, which explains why some

species are less prone to endangerment than others, under

similar external conditions. The most important predictors of

extinction risk in our RF model were range size, proportion

of range in PAs, weaning age, neonatal body mass, proportion

of protected suitable area and change in tree cover (figure 2a).

Some of these variables, such as range size or weaning age,

have already been identified as important predictors of

mammals’ extinction risk [15]. Yet, the importance of other

variables, such as the change in tree cover as assessed from

remote sensing, are identified here for the first time. Collecting

tree cover data at a continental scale using methods other than

remote sensing would be impossible. Although monitoring

land cover changes automatically at continental scales remains

challenging [70], our results here highlight one of the potential

future application of global change data from satellites (see also

[29]) in conservation-related analyses.

The level of protection (both referring to the presence of

PAs within species ranges and within suitable habitat in the

http://rstb.royalsocietypublishing.org/
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ranges) was an important predictor in our model. The estab-

lishment of PAs has often been related to the protection of

charismatic species [71], which are generally large-bodied,

characterized by relatively slow life histories and affected

by a variety of threats (particularly habitat loss and hunting).

Our results suggest a link between establishment of PAs

and retention of a non-threatened status for mammals, yet

we could not fully explain whether this is due to the role of

the PAs in reducing habitat loss or other conservation

benefits linked to the PA, such as reduced poaching and

lower human disturbance.

The level of conservation effort in PAs did not have a strong

effect in our model. This may depend on the fact that the infor-

mation on conservation efforts was not properly defined to

be effectively linked to the conservation status of our study

species. Although we expected that the conservation efforts

data referred to important bird areas overlapping with PAs
could potentially be a broad proxy of conservation attention,

these data might not necessarily have a direct relevance for

mammals. Additionally, it is likely that, at the scale of our

analyses, the presence of the PAs inside the whole distribu-

tion range of a species is more important than the relative

levels of conservation efforts. Recent large- and local-scale

studies have demonstrated the crucial role of the different

conservation efforts on species protection inside PAs [4,39].

Improving the availability of conservation interventions data,

both inside and outside PAs, is strategic, since this has a poten-

tial to improve our understanding of the complex relationship

between threats–traits–conservation efforts.
(i) The role of geographical range size
The use of range size as a predictor of species threat status,

derived from IUCN Red List, may lead to model circularity.

http://rstb.royalsocietypublishing.org/
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Table 3. Results of the visual ground-truthing validation of the forest cover
in 43 African PAs (and surrounding buffer) as classified by interpretation of
the Landsat TM scenes. For each map, 50 random points (including forest
and non-forest) were extracted and visually compared with Google Earth
imagery. Separate statistics are reported for each area. It was not possible
to validate four additional maps, owing to the excessive presence of clouds.

parameter value

no. areas 43

proportion correctly classified 0.91 (s.d. 0.08)

specificity 0.89 (s.d. 0.12)

sensitivity 0.86 (s.d. 0.22)

true skills statistic 0.72 (s.d. 0.23)
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In fact, range size is used in the IUCN Red List assessment to

apply the criterion B on restricted distribution [44]. Yet,

restricted distribution is not itself sufficient to trigger criterion

B, and other conditions (such as severe fragmentation or on-

going population decline) must also be met at once to qualify

a species as threatened in the Red List. Nonetheless, various

methods have been proposed to avoid having potential circu-

larity in the use of range size as a model predictor (see §2c).

We tested our RF model on the whole set of predictor

variables, and then removed range size to repeat the test.

Additionally, we repeated the analyses after excluding

those threatened species listed only under criterion B. Our

comparisons critically showed that in all of our tests the over-

all accuracy and, most importantly, the sensitivity of the RF

models were higher with respect to previously published

extinction risk analyses on mammals (e.g. [9]). Nonetheless,

removing species listed only under criterion B or removing
range size from the variables reduced the ability to classify

threatened species correctly. In all tests, our measure of rela-

tive importance of variables confirmed that: (i) all of the four

different classes of variables were influential in predicting

extinction risk, (ii) the three RF models shared seven out of

the nine most influential predictors of extinction risk (with

only small changes in their ranked importance), (iii) range

size was the most important predictor even after removing

species listed only under criterion B, as also found in [65].

We acknowledge that the use of IUCN range polygons to

represent species distribution is probably subjected to poten-

tial errors and gaps in the data (e.g. [72]), yet this is the most

updated data source available for mammals (as well as many

other groups) globally. We thus stress the importance of

maintaining and ensuring a constant update and refinement

of this key information.
(ii) Using satellite imagery in extinction risk analysis
In our models, we tested the effect of multiple satellite-derived

maps of habitat state and habitat change (i.e. human pressure).

Previous extinction risk analyses have generally considered a

limited number of external correlates (especially threats) with

respect to intrinsic (biological) correlates. This is perhaps

related to the uncertainty affecting threat measurement, and

limited data availability [16,17]. Our results suggest that an

increased use of satellite imagery can contribute to enhancing

our understanding of how multiple factors drive species’

extinction risk at a large scale.

Remote sensing is a powerful and increasingly available

technology in conservation. Its tools and applications provide

opportunities to monitor changes in the conservation status

of threatened species in areas impacted by habitat conversion

[32] and can inform the classification of species’ extinction

http://rstb.royalsocietypublishing.org/
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risk, thus reducing the problem of outdated assessments in

the IUCN Red List [73] (see §4b).

Satellite imagery is available from a variety of sources;

however, the spatial and temporal resolutions, as well as its

cost, determine its applications. In our extinction risk analysis,

we used a series of satellite-derived products from freely avail-

able sources, with spatial resolutions ranging from 250 m (for

MODIS) to 1000 m (for the HII composite map). We also

showed that the classification of medium-resolution (30 m)

Landsat imagery produced reliable maps of forest cover for a

sample of African PAs. The Landsat-derived forest cover was

also well correlated with a MODIS-derived tree cover product

(250 m), one of the most important predictors in our model. A

higher spatial accuracy is now being reached in the classifi-

cation of forest cover change at a global scale [29], thus

improving our ability to track local drivers of habitat alteration,

such as non-industrial logging.

Our analysis illustrates the value of stronger links between

the remote sensing and the conservation scientific commun-

ities. Our extinction risk models benefitted from the use of

satellite-derived assessments of land cover condition and

forest change. Regular updates of both, and other land cover

variables, could contribute to more accurate extinction risk

modelling in the future; however, remote sensing specialists

are needed to produce the tools to undertake these large-scale

assessments and validations.

(b) Classification proximity and mismatching
classifications

In an MDS analysis, based on the frequency that pairs of

species are in the same terminal nodes of our RF model,

threatened species were generally clustered together and over-

lapped only partially with non-threatened species, which were

instead spread across the remaining coordinate space. This is

probably due to the fact that threshold levels of extinction

risk (i.e. characterizing threatened species in the IUCN Red

List) arise only when a limited set of conditions are met (e.g.

high threats and slow life history). This is also likely related

to the spatial (i.e. biogeographic) and evolutionary signal in

extinction risk [48].

Twenty nine non-threatened species (electronic supple-

mentary material, table S3) were misclassified as threatened

in our RF model (i.e. they are represented in the ‘high-risk’

branch of figure 3). This could be an effect of the model

being unable to consider some of the factors potentially miti-

gating threats impact on species. However, an alternative
explanation is that the current IUCN assessment for these

species may be erroneous and needs review, and some of

the currently non-threatened species are facing conditions

that may result in a substantial increase in their extinction

risk in the near future. In this latter case, our results are

pinpointing species in potential need of increased conserva-

tion attention. Incorrectly classified non-threatened species

in our model mostly included small mammals (such as the

near threatened Zambian mole rat, Cryptomys anselli) and pri-

mates (such as the aye-aye, Daubentonia madagascariensis,
which was until recently classified as endangered), but also

included the white rhinoceros, Ceratotherium simum, a charis-

matic species that suffers from high levels of poaching

(something with no direct surrogate in our current analysis)

despite receiving substantial conservation attention [74].

These species should be carefully considered for future

reassessments of their conservation status in the IUCN

Red List. We believe that a wider (both taxonomically

and spatially) application of our method can provide an

important tool for Red List (re-)assessments [73].

On the other hand, 47 threatened species (electronic

supplementary material, table S4) were misclassified as

non-threatened in our RF model (i.e. they are not represented

in the ‘high-risk’ branch of figure 3). A likely explanation for

this mismatch is that we were not able to consider all of the

threatening factors affecting mammal species extinction risk

in Africa. In fact, our use of satellite imagery allowed us to

consider a set of habitat loss-related drivers (such as the

loss of tree cover), while we could only approximate (e.g.

through the use of HII) harvest-related threats, such as perse-

cution, poaching and bushmeat consumption. Direct kill (in

its various forms) is a key driver of extinction risk for

mammal species globally [75] and is particularly severe for

African mammals [76]. Many of the threatened species with

a mismatching classification in our model are known to be

persecuted by locals as a preventive measure (or as a retalia-

tion) for livestock predation (e.g. the lion, Panthera leo), while

others are poached for their horns (e.g. the black rhino,

Diceros bicornis) [74], or are killed for their meat at unsustain-

able levels (e.g. Dorcas gazelle, Gazella dorcas) [43]. Other

threatened species in this group are affected by a combination

of direct kill and other drivers not included in our model, e.g.

the western gorilla (Gorilla gorilla) population is facing a rapid

decline owing to commercial hunting and spread of the Ebola

virus [77]. Despite providing a clear improvement in resol-

ution (for extinction risk analysis), habitat variables in our

model are likely to be significant at the landscape scale. On

http://rstb.royalsocietypublishing.org/
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the other hand, threatened small-bodied species incorrectly

classified in our model (i.e. some bats and rodents) may

also respond to finer scale habitat modification. As already

mentioned, it is also possible that the status of some of the

incorrectly classified threatened species in our model needs

to be reassessed in the IUCN Red List, again highlighting a

potential use of the proposed approach [73].

(c) Interaction among extinction risk correlates
Our analysis demonstrates that there are multiple routes to

extinction (figure 4). In all the described paths, interacting fac-

tors determine large changes in the probability of a species to

be threatened. For example, all other conditions being similar

(taxonomy, range size, level of protection), species character-

ized by a weaning age longer than 418 days are substantially

more likely to be threatened than those with a lower weaning

age value (figure 4, terminal nodes 8 and 9). Similarly, species

characterized by a significant level of protection but facing high

levels of human impact (e.g. outside PAs) may have a high or

moderate probability of being threatened with extinction,

depending on their range size being smaller or larger than

�11 000 km2 (figure 4, terminal nodes 18 and 19). Interestingly,

this same range size threshold has been already been identified

as a good predictor of threatened birds [78].

Candidate variables in our RF model correctly predicted

the extinction risk of over 80% of both threatened and non-

threatened species (i.e. high sensitivity and high specificity).

Our results demonstrate the combined effect of multiple classes

of drivers in shaping the current extinction risk of African

mammals. In previous extinction risk analyses [15,58], biologi-

cal factors played a central role in explaining model variance,

whereas external factors were generally less relevant. We

showed that using a number of satellite-derived measures of

human pressures and distribution state changes the situation.

Our measures of relative variable importance highlighted

that both biological and external factors are included among

the top-ranked variables in all our models (figure 2).
5. Conclusion
The current extinction risk in African mammal species can

largely be explained by the combined effect of multiple

correlates. The type and dimension of responses of species

to human disturbances and conservation actions are deter-

mined by their biology. Our work illustrates how the use of

multiple satellite imagery sources can improve our ability

to track external drivers of extinction risk. Our results suggest

that conservation interventions (e.g. establishment of PAs)

are beneficial in reducing species’ extinction risk, provided

that a combination of biological and external conditions is

verified. This evaluation is of practical significance, as advo-

cated by Cardillo & Meijaard [18], because conservation

planners can use our results as a guideline to improve the

allocation of conservation resources.

Our method can have broader applications, both for other

regions and for other taxa, and its application of extinction

risk analysis to inform Red List reassessments has great poten-

tial. We envisage that an increased availability of freely

accessible satellite data as well as an improved resolution and

classification accuracy of the resulting maps will play a substan-

tial role in future conservation monitoring and will increasingly

be part of an enhanced toolbox for conservation scientists.
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