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African forests within the Congo Basin are generally mapped at a regional

scale as broad-leaved evergreen forests, with the main distinction being

between terra-firme and swamp forest types. At the same time, commercial

forest inventories, as well as national maps, have highlighted a strong spatial

heterogeneity of forest types. A detailed vegetation map generated using con-

sistent methods is needed to inform decision makers about spatial forest

organization and their relationships with environmental drivers in the context

of global change. We propose a multi-temporal remotely sensed data approach

to characterize vegetation types using vegetation index annual profiles. The

classifications identified 22 vegetation types (six savannas, two swamp forests,

14 forest types) improving existing vegetation maps. Among forest types, we

showed strong variations in stand structure and deciduousness, identifying (i)

two blocks of dense evergreen forests located in the western part of the study

area and in the central part on sandy soils; (ii) semi-deciduous forests are

located in the Sangha River interval which has experienced past

fragmentation and human activities. For all vegetation types enhanced veg-

etation index profiles were highly seasonal and strongly correlated to rainfall

and to a lesser extent, to light regimes. These results are of importance to

predict spatial variations of carbon stocks and fluxes, because evergreen/

deciduous forests (i) have contrasted annual dynamics of photosynthetic

activity and foliar water content and (ii) differ in community dynamics and

ecosystem processes.
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1. Introduction
Climate and land-use changes have modified the structure and productivity of

ecosystems worldwide. In the next decades, African forests are predicted to

experience profound climatic changes with increased temperature, alteration

of rainfall patterns and possibly longer dry seasons [1–3]. There is thus an

urgent need to have a better understanding of how current climatic conditions

control vegetation structure and productivity, so as to predict the response to

the ongoing climate change. Predicting responses requires first a good knowl-

edge of the spatial distribution and characteristics of forest types, and second

a better understanding of what drives the functioning of these forests.

In Central Africa, national vegetation maps (see Letouzey [4] for Cameroon,

Boulvert [5] for the Central African Republic, Bégué [6] for the Republic of

Congo) differ greatly between countries, in terms of detail, scale and floristic/func-

tional terminology. These maps, as well as the large-scale forest inventories whose

development have been led by timber concessions [7] nevertheless evidence strong
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spatial variations in species and trait distributions [8], forest

composition [7] and forest structure such as above-ground bio-

mass [9,10]. These patterns are in part associated with

contrasted geological and soil features. A huge sandstone pla-

teau crossing the border of CAR and the Republic of Congo has

been shown to be a major landscape feature in the area, filtering

species with a particular set of functional traits such as slow

growth rates, high shade tolerance, evergreen leaves and

high wood density [8]. Such characteristics are likely to interact

with climate change to determine forest evolution in the future,

and need to be mapped at the regional scale. Existing regional

maps tend to gather the Central African forests within a ‘large

broad-leaved evergreen forest’ category, distinguishing

between terra-firme and swamp forest types [11,12], but

such broad classes are not enough to help decision-making.

A more detailed map evidencing forest types that may respond

differentially to climate drivers remains to be produced.

Recent improvements in remote-sensing sensors, such as

MODIS (moderate resolution imaging spectroradiometer),

give access to the structure and greenness (photosynthetic

activity), thus productivity, of tropical ecosystems [13–16].

Basal area and deciduousness are two key characteristics of

tropical forests that need to be considered when identifying

forest types with contrasting structure and greenness. The sea-

sonality of photosynthetic activity can be remotely sensed at

various scales and thus mapped over large areas [17]. Satellite

time series across the year provided by MODIS instruments

can help identify forests at a continental scale [18].

The climate drivers of forest greenness in Amazonia have

been hotly debated [19,20]. It has been reported that forest

greenness is maximum during the dry season when water

availability is low but light availability is high [15,16].

However, the report by Saleska [21] on the green-up in

Amazonia during the extreme drought during 2005 has

recently been criticized [22]. In Africa, mean values of rainfall

are lower than in Amazonia, and the rainfall regime is charac-

terized by a double dry/wet period alternation on most of the

Congo Basin [23,24], while a single alternation of a long dry

period and a long wet period occurs in Amazonia. Light avail-

ability has been little documented [25] and both the patterns

and drivers of African forests’ greenness remain to be clarified.

We thus had two aims in this study: (i) to identify spatial

patterns of vegetation structure and greenness in Central

Africa based on MODIS multi-temporal data, and validate it

with forest inventory data and an existing national vegetation

map and (ii) to evaluate the impact of current rainfall and light

regimes on vegetation greenness. The results should provide

decision-makers with a tool to better predict Central African

forest resilience facing future climate changes.
2. Material and methods
(a) Study area
The study area covers 30 million hectares (latitude 08–58 N and

longitude 138–198 E) distributed over south-eastern Cameroon,

southern CAR, north-eastern Gabon and northern Republic of

Congo (figure 1). The climate is tropical humid across the study

area, with a mean annual rainfall of 1400–1700 mm. The rainfall

seasonality is driven by the inter-tropical convergence zone

(ITCZ) that crosses the study area twice a year during equinoxes.

Altitude ranges from 300 to 800 (m).a.s.l. The vegetation belongs

to the Guineo-Congolian centre of endemism [26].
The density of the human population is very low in the study

area (less than 10 inhabitants per km2 except in the surroundings

of Bangui; http://www.afripop.org/ and figure S1 in the

electronic supplementary material). Selective logging [27] and

some clearance for cultivation occurs.
(b) Remote-sensing data
To quantify greenness, or photosynthetic activity, we used the

enhanced vegetation index (EVI) data from the MODIS sensor.

EVI was extracted from the ‘16-Day L3 Global 500 m product

(MOD13A1 c5)’ from January 2000 to December 2009. EVI is

directly related to photosynthetic activity [16,28] and compared

with other vegetation indices such as NDVI that quickly saturates

for high values of chlorophyll activity. EVI provides improved

sensitivity for high biomass areas such as tropical forests [15,29].

To separate forest from non-forest vegetation types (mainly

savannas and very open forests), we used the Surface Reflectance

satellite data ‘8-Day L3 Global 500 m product (MOD09A1 c5)’

from the MODIS sensor to calculate the shortwave infrared water

stress index (SIWSI) for the same period of time. SIWSI is related

to leaf water content [30] and allows the discrimination of forest

(with low canopy water content amplitude between dry and

rainy seasons) from non-forest vegetation types (with high

canopy water content amplitude between dry and rainy seasons).

Both EVI 16-day and SIWSI 8-day composites are based on the

minimum blue band reflectance, which reduces atmospheric

biases.

We reconstructed a 10 year time-series mosaic and then

performed a two-step classification approach of the newly built

EVI and SIWSI datasets. During remote-sensing processing,

even when composite images are used to reduce atmospheric

and angular artefacts, pixels contaminated by clouds can persist

and lead to strong misinterpretations [22]. To eliminate remnant

clouds in the 10 year EVI dataset, we computed for each 16 day

period the average value of the 10 satellite images available for

each 16 day period (figure S2 in the electronic supplementary

material). We thus obtained a mean EVI seasonal profile across

a synthetic year. This process was not sufficient for the SIWSI

dataset. We replaced the algorithm dedicated to EVI dataset by

another one dedicated to SIWSI dataset. For each 8 day period

and spectral band among the 10 year dataset, we retained the

minimum pixel value that was the least likely to be affected by

atmospheric artefacts. Temporal smoothing was then performed

based on a simple linear interpolation designed to remove and

replace contaminated pixels. We thus obtained a minimum

SIWSI seasonal profile across a synthetic year.

To identify vegetation types with contrasted structure and

greenness, we used a two-step classification approach of the EVI

and SIWSI datasets both combining (i) an unsupervised ISODATA

(iterative self-organizing data analysis technique) classification and

(ii) visual interpretation of the results. The ISODATA classification

is a K-mean algorithm which allows selecting clusters by splitting

and merging the initial pixels datasets. The main advantage of

this technique is the stabilization of the number of classes when

the gravitational centre of the classes could not be split any more.

We used an unsupervised classification because of the lack of train-

ing data for the whole area. This algorithm has already been

successfully used for similar purpose in Madagascar [31]. Itera-

tive work on two parameters (maximum number of iteration and

maximum range of resulting classes) was done by empirically

modifying their values to optimize the results of the classification,

until it fully visually matched with Mayaux’s [11] forested and

non-forested patches delineation. This classification of the area of

interest was performed by using ENVI v. 4.3 software ([32]; ENVI

v. 4.3 software, Research Systems Inc.). The EVI dataset was used

to identify forest classes, whereas the combined EVI–SIWSI datasets
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Figure 1. Vegetation map in the study area. The mean EVI profile is given for each class in the legend (solid line) as well as the mean profile over the study area
(dashed line). Bars represent monthly rainfall.
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were used to improve the distinction among non-forested classes

(including savannas, open forests and swamp forests).

The two initial parameters selected after our iterative work,

were 20 iterations and 150–160 classes to free the positioning of

the gravitational centre of classes. The classification on EVI data

which best visually matches with Mayaux’s map [11] identified

56 final classes corresponding to the stabilization of spectral and

temporal variability of the data during the classification process.

From this classification, we kept 11 forested classes (from numbers

38 to 49; figure 1) out of 56 classes in total, by comparing with

Mayaux’s map [11]. The 45 other classes were merged and used

as a non-forest mask to extract the EVI–SIWSI dataset. The

second classification, which was run on this non-forest mask,

using EVI–SIWSI dataset stabilized at 14 final non-forested classes

with initial parameters of 10 iterations and 25–30 classes. From this
classification, we merged three of them in a water class (from class

1 to class 3) due to high spectral variability of this feature. To make

a comparison with other spatial information (vegetation map,

inventory plots), we projected the classification into a Universal

Transverse Mercator projection (zone 31, ellipsoid WGS84).

(c) Forest inventories and vegetation map
To validate the remote-sensing analyses, we used two sources of

information: commercial forest inventories and the vegetation

map of Cameroon [4].

Commercial forest inventories were conducted over the 2000–

2007 period within 19 logging concessions located in Cameroon,

CAR and Congo (see the electronic supplementary material,

figure S3). All companies used a similar systematic sampling

http://rstb.royalsocietypublishing.org/
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design, where all trees with a diameter of 30 cm or more at breast

height (dbh) were recorded in parallel transects 2–3 km apart and

divided into 0.5 ha consecutive plots [7–9]. A total of 38 020 plots

(6 million hectares) individually geo-positioned were available for

this study. In each 0.5 ha plot, trees with diameters up to 140 cm

were assigned to 10 cm dbh classes and larger trees were grouped

in the more than or equal to 150 cm dbh class. We first computed

the total plot basal area, using the mean diameter for each diam-

eter class. Vernacular names used in field inventories were

converted to genus level scientific names. A total of 339 genera

were identified in the 38 020 plots. In this study, we restricted

the analysis to the 197 genera that were observed with a frequency

of over 1%. Information on leaf phenology deciduous versus ever-

green) was collected for from floras for 402 African tree species.

We assigned a leaf phenology at the genus level (dominant leaf

phenology across congener species) for 171 genera among which

116 were considered evergreen and 55 deciduous. Deciduousness

was calculated at the plot level as the proportion of stems with a

deciduous phenology. When there was no clear evidence at the

genus level, the genus was ignored in the trait calculation. In

this study, we only consider the 37 898 plots for which leaf phenol-

ogy was available for more than 70% of the stems and 90% of plot

basal area.

Because we had access to limited inventory data in the

Cameroonian area, we used the detailed vegetation map of

Letouzey as a field validation dataset.
(d) Climatic data
We used the products derived from the FEWSNET rainfall esti-

mation (RFE) decadal imagery (http://earlywarning.usgs.gov/

fews/africa/index.php [33]) at 8 km spatial resolution. Monthly

rainfall estimation was computed and then a monthly average

from 2000 to 2008 was calculated. A comparison with lower-

resolution rainfall datasets based on rain gauge data revealed

that the RFE averages were satisfactorily reproducing the local

rainfall regimes (not shown).

We obtained ground measurements of light intensity from

three meteorological stations (figure 1): Eala in northwest

Congo (08030 N and 188170 E; 320 (m).a.s.l., from January 1957

to December 1959); Makokou in northeast Gabon (08330 N and
128510 E; 500 (m).a.s.l., from January 1951 to December 1975)

and Batouri in southeast Cameroon (48260 N and 148220 E;

630 (m).a.s.l., from January 1983 to June 1985). Monthly averages

were then computed. These data are not synchronous with the

MODIS dataset.
(e) Data analysis and validation
To validate the map, we examined whether the classes evi-

denced by the classification procedure differed in terms of

structure and greenness. For this, we assigned the remotely

sensed vegetation classes to each available inventory plot. We

then tested for differences in plot basal area and degree of decid-

uousness among classes with pairwise Wilcoxon tests and

Bonferroni’s adjustment for multiple comparisons. We restricted

this analysis to the classes characterizing forests, represented

by more than 100 0.5 ha plots (figure 2). In Cameroon, where

we did not have access to enough inventory data, we examined

the consistency of the classes with the vegetation types

evidenced by Letouzey [4].

To obtain EVI and rainfall seasonal profiles, we first averaged

EVI values and rainfall for all pixels per vegetation class. Indeed,

rather than monitoring EVI dynamics of each pixel we extracted

this information from groups of related pixels. The process is

based on a spatial average. All statistical analyses were conducted

within the R environment [34].
3. Results
With the two-step classification of EVI and SIWSI datasets, we

identified and mapped 22 vegetation types (we took out the

three water classes merged into one). Within these 22 veg-

etation types, six savannas, three open forests, 11 dense

forests and two swamp forests were delineated and labelled

thanks to the interpretation of the EVI signal shape (figure 1,

table 1) and visual interpretation [11]. We identified strong

variations in stand structure and deciduousness across these

types (figure 2). Among them, we recognized (i) six classes

of savanna (MODIS classes 4–9). We distinguished the
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http://earlywarning.usgs.gov/fews/africa/index.php
http://earlywarning.usgs.gov/fews/africa/index.php
http://rstb.royalsocietypublishing.org/


Table 1. Description of MODIS classes. Mean and s.d. of EVI, percentage of good quality observation ( pixel reliability obtained from NASA documentation) and
sum and s.d. of rainfall are given for each class, so as the R2 indicated the fraction of variation in EVI explained by rainfall.

MODIS classes: number and description

EVI rainfall (mm)

R2mean s.d. obs. % sum s.d.

3 open water: rivers, lakes 0.25 0.032 0.95 1454 25 0.34

7 savanna of the Sudano-Guineanian domain (north) 0.38 0.123 0.91 1384 55 0.83

8 savanna of the Sudano-Guineanian domain (south) 0.42 0.120 0.91 1368 55 0.80

9 savanna of the Sudano-Guinean domain between Berberati and

Mbaiki

0.40 0.109 0.94 1376 57 0.80

4 savanna included in dense forests 0.31 0.058 0.86 1439 44 0.83

5 savanna included in dense forests, along main rivers and

Marantaceae forests (south Ouesso)

0.34 0.042 0.88 1469 29 0.26

6 savanna included in dense forests, along main rivers and

Marantaceae forests (north Congo)

0.39 0.038 0.87 1443 33 0.43

10 savanna-forest edge mixed with agriculture 0.45 0.089 0.90 1383 55 0.82

13 very open forests mixed with agriculture 0.48 0.066 0.92 1388 52 0.85

14 very open forests located along roads and Maranthaceae forests

(south Ouesso, north Congo)

0.51 0.048 0.93 1418 34 0.71

48 open forests closed to main roads and cities 0.48 0.050 0.91 1430 49 0.69

44 dense semi-deciduous forests mostly located in CAR 0.46 0.054 0.92 1410 50 0.72

43 dense semi-deciduous forests in the Sangha River Interval 0.46 0.047 0.88 1447 47 0.63

45 dense semi-deciduous forests mostly located in the Oubangui Basin 0.47 0.051 0.92 1399 38 0.84

38 dense evergreen forests in Gabon 0.41 0.054 0.59 1531 59 0.59

39 dense evergreen forests in Cameroon 0.43 0.043 0.71 1506 53 0.72

41 dense evergreen forests with a disjunctive spatial distribution: 0.44 0.045 0.89 1444 48 0.70

— south CAR and north Congo

— western limit of class 40 in Cameroon

40 dense evergreen forests located at the western limit of 38 and 39 0.44 0.046 0.73 1536 47 0.57

42 dense evergreen forests at the edge of swamp forest in north Congo 0.45 0.044 0.91 1449 31 0.71

46 open evergreen forests mixed with swamp forest in north Congo 0.47 0.045 0.88 1475 35 0.49

49 open evergreen forests located in north Congo closed to rivers and

Marantaceae forests

0.49 0.046 0.92 1435 31 0.58

12 swamp forests located in the Congo Basin 0.43 0.040 0.92 1445 28 0.73

11 swamp located at the valley bottom in the Congo Basin and along

rivers in Cameroon and Gabon

0.41 0.039 0.84 1477 34 0.68
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savannas of the Sudano-Guinean domain from included savan-

nas that sparsely occurred in the forest matrix; (ii) one class of

savanna—forest edge (MODIS class 10), which exhibited the

lowest value of basal area (7.5 m2 ha21) and one of the two

highest values of deciduousness; (iii) two classes of very

open forests (classes 13 and 14), which exhibited the second

lowest values of basal area (13.5 m2 ha21) and were both

semi-deciduous with 57% and 41% of deciduous stems,

respectively. These types corresponded to degraded forests

along roads and close to main cities and to Marantaceae forests

that cover a huge area in the north of the Republic of Congo,

south of Ouesso; (iv) eleven classes of forests, comprising

open and dense forests: one open (16.5 m2 ha21) semi-decid-

uous (48%) forest class (MODIS class 48); a group of dense
semi-deciduous forests (approx. 40% deciduousness, MODIS

classes 43, 44 and 45) and a group of dense evergreen forests

(less than 30% deciduousness, MODIS classes 39, 40, 41, 42);

two classes of open evergreen forests (MODIS classes 46 and

49), exhibiting low deciduousness similar to that of a dense ever-

green forest but with lower basal area (17.1 and 15.7 m2 ha21,

respectively). Finally, one dense evergreen forest (MODIS class

38) was not documented by field inventories; (v) two classes of

swamp forests (MODIS classes 11 and 12), which had both

low deciduousness but differed in basal area. They are mainly

located in the Congo Basin and along main rivers elsewhere.

Validation of the forest types was performed using field inven-

tories (figure 2) and Letouzey’s map in Cameroon (see the

electronic supplementary material, table S1).

http://rstb.royalsocietypublishing.org/
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For all vegetation classes, mean EVI profiles were highly sea-

sonal and correlated to rainfall seasonality (figure 1, table 1).

Savannas of the Sudano-Guinean domain showed the greatest

seasonal variations with the highest standard deviation of

EVI values. Savannas included in dense forest showed the

lowest mean EVI values, whereas the open degraded forests

(class 14) had the highest mean EVI values. The EVI profiles

of all forest classes showed two peaks corresponding to the

two rainy seasons of March–May (short rainy season) and

September–November (long rainy season), alternating with

two periods of lower EVI values, in December–February

(long dry season) and in June–August (short dry season).

The three stations showed similar temporal profiles

between EVI and light intensity with little time lag between

respective maximum and minimum values (see the electronic

supplementary material, figure S4).
 B
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4. Discussion

In this study, we aimed to identify spatial patterns of vegetation

structure and greenness in Central Africa. Specifically, we ident-

ified a wide spectrum of tropical vegetation types (savannas,

forest and swamps) and strong spatial variations in stand struc-

ture and deciduousness across forest types. All vegetation types

were described with more than 90% of good quality acquisition,

except for the westernmost classes that were affected by clouds

during calculation (table 1). Future studies focusing on the wes-

tern part of Central Africa should thus pay attention to this

effect and take into account the quality assessment of the

MODIS data during similar processing.

Two main blocks of dense evergreen forests, exhibiting a

low level of photosynthetic activity, were detected in the area.

In southern CAR and in the north of the Republic of Congo,

forest growing on a sandstone plateau showed much lower

deciduousness than climatically expected. These results are

in strong agreement with the results of Bohlman [35], who

reported that deciduousness decreases with increasing

annual rainfall, but also that geology can alter this relation-

ship [8]. In the western and wettest part of the study area,

the dominance of evergreen forests is probably driven by

climate rather than particular geological substrate.

Semi-deciduous forests associated with a high level of

photosynthetic activity dominated large parts of the study

area. The location of these semi-deciduous forests matches

with the Sangha River Interval, a 400 km wide area (14–188 E)

characterized by a low endemism, which has experienced

major vegetation changes in the past [36]. Forest fragmentation

has occurred as recently as during the Holocene (approx.

2500 BP) followed by the expansion of pioneer and secondary

species [37,38]. Furthermore, the opening of such a ‘corridor’

emerged from recent vegetation modelling of different scenarios

of climate changes [2], and corresponds to the very open forests

where human activities are important along roads [7].

Our findings fit well with national vegetation maps in the

study area. In CAR, the location of evergreen forests typical of

the sandstone plateau is correctly mapped [5,7,9]. The open

Marantaceae forest identified by Bégué in northern Congo

[6] is also well located. The spatial arrangement of forest

types is in accordance with Letouzey [4] in Cameroon. Our

results helped translate previous heterogeneous information

into a homogeneous map evidencing forest types based on
their structure and greenness, i.e. suitable for studying their

link with environmental drivers.

Moreover, we showed that, in the studied area, forest

greenness was highly seasonal and strongly correlated with

rainfall and to a lesser extent to light seasonality. The EVI

seasonal profiles of all vegetation types identified (including

swamp forests) were nearly the mirror image of the seasonal

patterns of rainfall and light availability. These findings of

strong rainfall and light control on EVI profiles in Central

Africa contrast with that of Myneni [15], who showed a sea-

sonal increase in the leaf area of the Amazon forest during

the dry season when irradiance is maximal and rainfall is

minimal. In Central Africa, the movement of the ITCZ gen-

erates two rainy and sunny seasons and two contrasting

dry seasons. The unexpected light intensity during the

rainy seasons, results from the fact that the sky is clear in

the morning. The induced surface warming later in the day

promotes atmospheric instability and convection. Convective

clouds develop during the afternoon, leading to thunder-

storms that do not occur until late afternoon or at night.

The association between high rainfall, high light intensity

and high EVI level suggested that these periods were opti-

mal for photosynthetic activity. Seasonal changes in light

intensity have also been shown to strongly drive tree phenol-

ogy in Central and Southern America [39,40]. However, the

role of light availability on tree phenology and forest func-

tioning in Africa remains to be examined, since light intensity

data were only available for three sites and the date ranges

tend to be much earlier than for the MODIS data. Moreover,

swamp forests that are not limited by water availability react

such as terra-firme forest, suggesting their dependence to

light intensity.

In Central Africa, where climatic variability is low

[23,41,42] and annual rainfall is spatially homogeneous, any

modification in dry season length and intensity could have

dramatic consequences on vegetation structure and greenness

[43]. Some slight climatic differences might be more important

than previously thought. In the study area, differences in veg-

etation phenology and traits have been evidenced and these

can be linked not only to differences in soil properties, but

also to slight differences in climate variables which may

have been overlooked. The distribution of semi-deciduous

and disturbed vegetation is in line with the Sangha River Inter-

val, a region that has probably experienced more impact of

past climate changes than elsewhere in the study area. In

fact, the Sangha sub-river basin of the Congo River has regu-

larly received less precipitation between 1950 and 1980 than

the Oubangui and Central Congo sub-basin bordering it

[24]. Although new and more detailed data are necessary to

confirm this, we can tentatively conclude the relative fragility

of this area in the face of climate changes, notably precipitation

decrease and/or dry season increase.

Tropical forests do not necessarily function similarly across

the globe, and it is crucial to identify the differences in the

effects of the current climate on the functioning of located and

characterized tropical forests in order to forecast responses to

climatic changes. We showed that the same drivers (water

and light) determine forest greenness in Africa and Amazonia

but the relative importance of water may be greater in Africa

[15]. Central Africa, on a seasonal basis, combines high EVI

with high rainfall, and high light intensity, whereas Amazonia

combines high EVI with low rainfall and high light intensity

[16,17]. Central Africa has lower annual rainfall than Amazonia,

http://rstb.royalsocietypublishing.org/
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and this may influence the specificity of its forests [44]. Dense

evergreen and semi-deciduous forests are driven by rainfall

and light regimes, making them vulnerable to changes in rain-

fall and light amounts and dry season length. In the context of

climate change and increasing anthropogenic pressure [45],

these specificities have to be borne in mind with regard to

future management and conservation policies.
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