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EXECUTIVE SUMMARY 

There is a need to integrate existing dose-response data in a coherent framework for extending their 

domain of applicability as well as their extrapolation potential. This integration would also reduce time 

and cost-consuming aspects of these tests and reduce animal usage. In this work, based on data 

extracted from literature, we have assessed the advantages that a dynamic biology-toxicant fate 

coupled model for Daphnia magna could provide when assessing toxicity data, in particular, the 

possibility to obtain from short-term (acute) toxicity test to long-term (chronic) toxicity values and vice 

versa; and the possibility of toxicity data reconciliation from several sources taking into account the 

inherent variability of Daphnia magna populations. Implicitly in this approach is the assumption that 

the mode of action of the toxicant does not change after prolonged exposure. The results show that the 

prediction errors are considerably reduced when compared with the factor from 2 to 5 obtained using 

acute-to-chronic ratios (ACR). However, due to the scarcity of complete sets of experimental data a 

more general validation has not been possible. 
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1. INTRODUCTION 

Risk assessment is based on hazard and exposure assessment. If the exposure levels do not exceed the 

predicted no-effect concentrations for a selected group of species, it is assumed that the risks posed by 

a chemical are acceptable. The approach developed for hazard assessment uses normally dose-

response analysis of standardized toxicity test to extract relevant values, such as NOEC (Not Observed 

Effect Concentration) and EC50, and relies on the use of assessment factors (AF) to derive a predicted 

no-effect concentration value (PNEC). This approach is largely descriptive and a lot of process 

information from the toxicity tests is lost. In addition, the standard values derived from these tests 

(NOEC, ECx, LC50) change with exposure time as a function of the tested species and the toxicant 

(Roex et al., 2000). Nevertheless, toxicity tests performed according to the standard test protocols 

contain valuable process information that could be used in a more appropriate way (Jager e al. 2004).  

There is the need to integrate these dose-response data in a coherent framework for extending the 

domain of applicability as well as their extrapolation potential. This integration should also reduce the 

time and cost-consuming aspects of these tests and reduce animal usage.  

Several approaches have been developed to predict acute-to-chronic ratio (ACR). McKim (1995) 

analyzed early life stage (ELS) toxicity tests to estimate the maximum acceptable toxicant 

concentration (MATC) in fish and concluded that this was possible within a factor of two. Analysis of 

the ECETOC aquatic toxicity (EAT) database by Länge et al. (1998) showed that ACRs of around 15 

to 25 may be appropriate for use in risk assessment in contrast with the value of 100 proposed by 

Heger et al. (1995) and the AF of 1000 used in European legislation when deriving a PNEC from acute 

toxicity data (EC, 2003). Roex et al. (2000), using population growth parameter as a standardized 

chronic end-point and chemicals classified as nonpolar narcotics, polar narcotics, specially acting 

compounds and heavy metals, concluded that nonpolar narcotic chemicals demonstrated the smallest 

variation in ACRs and acute test could be used to derive chronic endpoints, whereas for the other 

classes species sensitivity was more important than mode of action to determine the ACRs.  

A complementary approach to data analysis and integration of acute and chronic toxicity datasets, 

independently of the mode of action and organism, consists on the coupling with biology-based 

models (BBMs) that include toxic effect models. These models could explain the differences of 

sensitivity found for different organisms when calculating ACRs (Heger et al., 1995) and provide an 

efficient means of using the available data in an integrated manner from routine toxicity tests, by 

including in the model explicit assumptions regarding the processes underlying the toxic effect. In 

addition these models, once calibrated with a data set could provide toxicity measures independent of 

exposure time and could extrapolate toxicity values and therefore being able to predict long term 

exposure from acute toxicity test or vice versa, thus reducing animal testing and the time and costs of 
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chronic toxicity tests. Furthermore, by coupling the biology with a toxicity model, insights into the 

mechanisms underlying the toxic response are gained. Finally, these models could, in principle, be 

calibrated with toxicity data at lower concentrations and therefore reducing the number of high dose 

experiments. 

Biology-based models have become effective tools in estimating and managing ecological risks (Suter, 

1993; Bartell, 1996; Pastorok et al., 2003), but the application to assess toxicological tests was started 

by Kooijman and co-workers (Kooijman and Bedaux, 1996abc; Jager et al., 2004, Jager et al. 2006) 

with the development of DEBtox (Kooijman and Bedaux, 1996a) that was included into a OECD 

document (OECD, 2006) for the statistical analysis of ecotoxicity data. 

In addition to include biology-based models, it is also important to add the dynamics of the toxicant or 

at least an estimation of the rate at which the compound changes during the test. For this reason a fate 

model should be coupled with the biology-model. 

In this work, based on data extracted from literature, we have assessed the advantages that a dynamic 

biology-fate coupled model - in this case a DEB model of Daphnia magna combined with a simple 

uptake-depuration plus degradation kinetics- could provide when assessing toxicity data, in particular, 

the possibility to obtain from short-term (acute) toxicity test (24 and 48 h) long-term (chronic, 21 days) 

toxicity values and vice versa; and the possibility of toxicity data reconciliation from several sources. 

Implicitly in this approach is the assumption that the mode of action of the toxicant does not change 

after prolonged exposure. As a first approach, we have studied mortality as end point, but we describe 

also how other end points as reproduction could be studied as already proposed by Kooijman and 

Bedaux (1996c). The results show that the prediction errors are considerably reduced, when compared 

with the factor from 2 to 5 obtained using acute-to-chronic ratios (ACR). However, due to the scarcity 

of complete sets of experimental data a more general validation has not been possible. This lack of 

experimental data is not due to a scarce number of experiments, but at how experiments are reported 

since to validate this approach complete dose-response curves are needed and not few points like 

NOEC and EC50, which are the most frequent values reported.  

This work could contribute to the development of an integrated testing approach for risk assessment 

and to the three Rs principle (Replacement, Reduction and Refinement) when extended to vertebrate 

species by replacing the biology-based model of the corresponding species. 

 

2. METHODS AND APPROACH 

2.1. DATA SETS 

Acute and chronic toxicity data on Daphnia magna from several organic chemicals of different use 

groups including some nanoparticles were examined, between them plant protection products 
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(pyridine, chlordecone), veterinary antibiotics (oxolinic acid, streptomycin, tiamulin and tylosin) and 

industrial chemicals in the New Chemicals Database (NCD). The approach was always the same; one 

set of data –acute or chronic- was selected to fit the model’s parameters, whereas the second set was 

used to compare with the predictions using the parameters obtained from the former data set. In the 

case of predicting chronic from toxic, the approach may be considered as an extrapolation, whereas 

when moving from chronic to acute it should be an interpolation. 

Data on chronic toxicity for pyridine were obtained from Santojanni et al. (1995), whereas acute 

toxicity data were extracted from the USA Environmental Protection Agency ECETOX database 

(http://cfpub.epa.gov/ecotox). Data concerning chronic and acute toxicity for T-Lite
TM

 SF-S – a 

nanoparticle ~50 nm length and ~100 nm width titanium dioxide, aluminium hydroxide and 

simethicone/methicone polymer- were obtained from a recent publication from Wiench et al. (2009).  

 

Table 1. Ecotoxicity studies on Chlordecone (Kepone®). All values in mg L
-1

; plus-minus the standard 

deviation and the number of reported data points (in parenthesis). 
Time (h) NOEC MATC LOEC EC50 LC50 NR-LETH 

24    0.6   

48 0.05   0.30±0.20 (9) 0.31±0.26 (4)  

120 (5 d)      0.15 

168 (7 d) 0.05 0.07 0.1 0.1   

336 (14 d) 0.025 0.035 0.05 0.06   

504 (21 d) 0.0112 0.020 0.026±0.0023 (2) 0.03   

 

Data for chlordecone (Kepone®, CAS 143-50-0), which is a banned plant protection product used 

originally as an insecticide for leaf-eating insects, ants and cockroaches, and as a larvicide for flies, 

were obtained using the OECD QSAR Application Toolbox ( 

http://www.oecd.org/env/existingchemicals/qsar ) and references therein. The data are summarized in 

Table 1. The data set for acute and long-term toxicity of veterinary antibiotics to Daphnia magna was 

obtained from Wollenberger et al. (2000) and are summarized in Table 2.  The data set for acute and 

long-term toxicity to Daphnia magna, Table 3, were extracted from the New Chemicals Data base 

(NCD) which was formerly maintained by the European Chemicals Bureau within the European 

Commission’s Joint Research Centre (http://ecb.jrc.ec.europa.eu/new-chemicals/). The data were 

submitted by industry in a harmonized format as a part of the notification process for each new 

chemical substance that was manufactured or imported into the European Union (EC, 1979). Amongst 

others, the data provided information on physical and chemical properties, toxicological and 

ecotoxicological effects. The data is confidential, for this reason the name of the substance is not 

disclosed in the report. On 1st of June 2008 this notification scheme has been revoked and replaced by 

a new regulation (REACH, EC 2006). According with the notification scheme, acute toxicity test were 

carried out following OECD (1981) Guideline 202 (Daphnia sp. Acute immobilisation test), whereas 

long term toxicity were carried out following the OECD guideline 2002 Part B, updated now as OECD 
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(1996) guideline 211 (Daphnia magna reproduction test). In this study, data for acute and long term 

toxicity for Daphnia magna were extracted from the NCD. Initially data that contained acute and long 

term toxicity for Daphnia magna for 152 substances were found. After a preliminary quality control 

check on acute toxicity data, i.e. NOEC, EC50 and EC100 should be different, NOEC<EC50<EC100, only 

28 substances were found for which 48 h acute toxicity NOEC, EC50 and EC100 were available. 

 

Table 2. Ecotoxicity studies on oxolinic acid, streptomycin, tiamulin and tylosin. All values in mg L
-1

; 

with 95% confidence limits (in parenthesis).NR-LETH stands for time interval between initial 

exposure to the dose and death. 
Compound Oxolinic acid 

Time (h) NOEC EC10 EC50 LOEC
a

 LC40
b
 NR-LETH

c
 

24  3.0 (1.9-3.9) 5.9 (4.8-7.3)    

48  2.5 (1.7-3.2) 4.6 (3.8-5.7)    

240 (10 d)      3.0 

336 (14 d)     0.75  

504 (21 d) 0.38      

Compound Streptomycin 

Time (h) NOEC EC10 EC50 LOEC LC50 NR-LETH 

24  408 (192-574) 947 (778-1181)    

48  120 (59-185) 487 (346-721)    

456 (19 d)      64 

504(21 d) 32      

Compound Tiamulin 

Time (h) NOEC EC10 EC50 LOEC LC50 NR-LETH 

24  53 (37-61) 81 (70-115)    

48  32 (25-35) 40 (36-43)    

120 ( 5 d)      32.4 

168 (7 d)      16.2 

Compound Tylosin 

Time (h) NOEC EC10 EC50 LOEC LC50 LC90 

24    700   

48  483 (308-576) 680 (568-759)    

120 ( 5 d)      180 

288 (12 d)     90  

504(21 d) 45      
a
LOEC is the Lowest Observed Effect Concentration: the concentration that has a statistically significant adverse effect 

b
LCx concentration in water that is estimated to be lethal to x% of the test organisms 
cNR-LETH stands for time interval between initial exposure to the dose and death. 

 

Table 3. Dataset extracted from NCD (all concentrations in mg L
-1

). Due to the confidentiality of the 

dataset, the identity of the compounds is not disclosed. 
Compound 24 h 48 h  21 days Compound 24 h 48 h  21 days 

 EC50 EC50 EC100 NOEC EC50 NOEC  EC50 EC50 EC100 NOEC EC50 NOEC 

1 >2.2 0.58 2.2 0.4 0.8 0.44 15 - 67.6 105 >26 32.2 12 

2 - 8.2 43.1 4.2 >0.79 >0.79 16 80 60 100 32 19 1.9 

3 0.018 0.008 0.016 0.002 >0.016 0.0043 17 74 29 56 18 6.9 1.9 

4 0.33 0.13 0.56 0.056 0.074 0.042 18 >0.28 0.19 >0.28 0.052 >0.02 >=0.0098 

5 - 1.6 3.1 1.1 0.434 0.131 19 21 19 46 4.6 >16 1.6 

6 13 1.8 4.3 <1.2 >0.03 0.03 20 3.5 2.3 >3 1.4 0.4 - 

7 - 16 44.2 4.9 6.2 1.9 21 40.8 25.8 60 11.8 34.9 - 

8 - 1.5 >5 0.36 <0.02 0.02 22 76 66 >100 10 16.9 4.6 

9 0.49 0.006 0.1 0.003 0.171 0.0056 23 7 6.3 16 1.9 2.94 0.625 

10 222 190 340 100 46 22.5 24 198 115 220 50 >0.0017 >=0.0017 

11 - 25 50 12.5 15.1 6.63 25 >16.3 8.62 16.3 0.594 >4.5 - 

12 0.0175 0.0175 >0.052 0.0008 >0.00128 >0.00128 26 24 22 32 10 0.71 0.32 

13 3.7 0.58 3.2 <3 >0.16 0.0256 27 >101.5 70.5 >=100 54.4 >9.02 1.82 

14 7.8 4.2 14.5 <3 2 0.97 28 9.9 1.8 17 0.18 0.6 0.147 
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2.2. DEB MODEL OF DAPHNIA MAGNA 

The DEB theory (Kooijman, 2000) provides the basis for the description of the relations between 

feeding, maintenance, growth, development and reproduction in organisms. In DEB this description is 

carried out using mass and energy budgets normally expressed as ordinary differential equations. 

Following Kooijman (2000) the basic allocation pathways are shown in Figure 1. As it can be 

observed, structural body mass, reserves and maturity are the state variables. Food is assimilated as 

energy reserves or excreted as faeces. Once assimilated one fraction κ (κ -rule, Kooijman 2000) of 

these reserves is used for growth and somatic maintenance and the rest for maturation or reproduction, 

with somatic maintenance having the precedence over other energetic needs. This theory has been 

extensively tested for different kind of organisms, e.g. mollusks, fish, birds, etc. (Kooijman, 2000). 

During this report the notation and symbols follow those in Kooijman (2000), therefore: 

- Lower and upper case symbols are related via scaling; 

- Quantities that refer to unit of volume are expressed within brackets []; those that refer to unit of 

biosurface area within braces {}; 

- Rates have dots. 

 

Figure 1. Representation of the energy fluxes following the DEB approach (Kooijman, 2000). 

 

The state variables of the DEB model are: Structural Volume, V (cm
3
), Energy reserves, E (J), and 

Energy allocated to development and reproduction, R (J).  

The Energy reserves can be expressed as the difference between the assimilation energy rate ( Ap& ,J d
-1

) 

and the energy utilization rate (
Cp& , J d

-1
): 

CA pp
dt

dE
&& −=  (1) 

where the assimilation energy rate may be expressed as: 

{ } 3/2)( VTkfpp AmA ⋅⋅= &&  (2) 

where { }Amp&  is the maximum surface area-specific assimilation rate (J cm
-2 

d
-1

) –see Table 2- and f is 

the functional response of assimilation to food concentration: 

 

Reserves 
 

Structure 

Gametes 

Maturity 

growth Somatic 
maintenance 

Maturity 
maintenance 

Maturation/ 
reproduction 

κ 

1−κ 
Food 

Faeces 

Assimilation 
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KChlaChla

Chla
f

][][

][

+
=  (3) 

where [Chla]K is the half saturation coefficient in µg l
-1

 (see Table 3) and k(T) is a temperature 

dependence defined as (Kooijman, 2000): 
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The energy utilization rate,
Cp&  (J d

-1
), may be expressed as (Kooijman, 2000): 









⋅+

⋅

+
= Vp

E

VpE

EE

E
p M

m

AmG

G

C ][
][

}]{[

][][

][
3/2

&
&

&
κ

 (5) 

where [E] is the energy density, [E]=E/V, [EG] is the volume-specific cost for structure (J cm
-3

), [Em] is 

the maximum energy density in the reserve compartment (J cm
-3

), κ is the fraction of energy utilization 

rate spent on maintenance plus growth, and ][ Mp& is the maintenance costs (J cm
-3

 d
-1

) which is also 

function of the temperature, i.e. mMM pTkp ][)(][ && ⋅= . 

According to Kooijman (2000) a fixed fraction of energy is allocated to somatic maintenance and 

growth while the rest is used for maturation reproduction (see Fig. 1). However, maintenance has 

priority over growth and when there is not enough food growth stops. Therefore, the change in 

structural volume, V, is given by: 

[ ]
][ G

MC

E

Vpp

dt

dV ⋅−⋅
=

&&κ
 (6) 

Concerning the energy allocated to development and reproduction, Kooijman (2000) showed that it 

can be expressed as: 

])[,min(
1

)1( MPC pVVp
dt

dR
&& 







 −
−−=

κ

κ
κ  (7) 

where VP, is a threshold value of the structural volume for the transition juvenile/adult (the subscript P 

refers to puberty). 

However under a controlled situation with constant or high food density the equation expressing 

reproduction rate as a function of body length may be expressed as (Kooijman and Bedaux, 1996c): 









−

+

−
= 32

3 2

1

1
p

p

m ll
l

l

R
R  (8) 

where Rm is the maximum reproduction rate, l is the normalized body length (l=l/Lm), lp is the 

normalized length at puberty (lp=Lp/Lm) and Lm is the maximum length. Since food density is constant, 

it is possible to write the expression of the body length as a function of time as (Kooijman, 2000): 
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t

bmm eLLLtL
⋅−−−= γ)()(  (9) 

where Lb is the body length at birth and γ is the von Bertalanffy growth rate. 

 

2.3. TOXICITY AND EFFECTS MODELS 

2.4.1. Effects of chemicals on survival 

The direct effects of a chemical concentration, c, on survival may be expressed as (Billoir et al., 2007): 






−= ∫

t

dchctq
0

),(exp),( ττ  (10) 

where q is the probability of surviving until time t and h is the hazard rate at time τ which can be 

written as: 



 >>+−

=
m

NECcmNECck
ch

qt 0   and   if     )(
),(

ττ
τ  (11) 

where cq is the internal concentration of the toxicant in the organisms and NEC is the no effect 

concentration. 

2.4.2. Effects of chemicals on reproduction 

Even though in this work we have not considered effects on reproduction, this could also be included 

in a similar way. Following Kooijman and Bedaux (1996c), it is possible to distinguish between two 

types of effects: direct and indirect. In direct effects (Hazard and Costs models), only reproduction is 

affected, i.e. the R function (Eq. 8) changes, whereas indirect effects maintenance, growth or 

assimilation are affected which in turn decrease reproduction, i.e. Eqs.8-9 are modified.  

- The Hazard and costs models 

The effects on reproduction occur during an increase in mortality during oogenesis or an increase in 

the energy costs per egg, then following Kooijman and Bedaux (1996c) it is possible to write for these 

two cases the following equations: 



















 −
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H

rq

H
c

NECc
RR exp  (12) 








 −
−

⋅=

C

rq

C

c

NECc
RR

1

1
 (13) 

where R is the reproduction rate without the toxicant, Eq. (8), NECr is the no observed effect of 

reproduction and cH and cC are tolerance concentrations for the hazard and the costs models, 

respectively.  

- The Maintenance, Growth and Assimilation models 

In this case it is possible to write a stress function as (Kooijman and Bedaux, 1996c): 
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rq

X
q

NECc

c
cs

−
=)(  (14) 

where cX is a tolerance concentration.  

Deriving Eq. (9) as a function of time and rearranging terms, it is possible to obtain the variation of the 

normalized body length as: 

)1( l
dt

dl
−= γ  (15) 

The introduction of the different indirect effects on the variation of the body length and reproduction, 

Eq. (8) gives for the maintenance, growth and assimilation models the following equations: 

2)1(

)]1(1[

s

R
R

sl
dt

dl

M
+

=

+−= γ

 (16) 
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 (17) 

3)1(

)1(

sRR

sl
dt

dl

A +=

−−= γ
 (18) 

These models have been implemented in the DEBtox software (Kooijman and Bedaux, 1996c) 

(http://www.bio.vu.nl/thb/deb/deblab/debtox) as well as an estimation of the parameters using the 

maximum likelihood method to assess which is the most probable effect. 

2.4. FATE MODEL 

To apply the DEB model for toxicity assessment, the tissue-concentration, cq, is necessary. This value 

may be obtained solving the following ode at abundant food (Kooijman, 2000), which is typical in 

long-term toxicological tests: 









+−

⋅
=

dt

dl

ll

k
c

l

kc

dt

dc
a

q

aq 3
 (19) 

where c is the dose concentration and ka is the scaled elimination rate. It is implicitly assumed that 

uptake and elimination follow one compartment kinetics rate and that contaminant from food intake 

can be also included in this general equation. 

In addition, we also consider an exponential decrease in the concentration of the contaminant during 

the experiment: 

tkdecc
⋅−

⋅= 0  (20) 
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2.5. MATRIX POPULATION MODELS 

The use of continuous ordinary differential equations ignores population structure by treating all 

individuals as identical. The existence of demographically important differences among individuals is 

obvious. Matrix population models (Caswell, 1989) integrate population dynamics and population 

structure and they are very useful when the life cycle is described in terms of size classes or age 

classes. There are fundamentally two types of approaches, the age classified model and the stage 

classified model. The first one assumes age-specific survival and fertility are sufficient to determine 

population dynamics. On the other hand, if the vital rates depend on body size, and growth is 

sufficiently plastic that individuals of the same age may differ appreciably in size, then age will 

provide little information about the fate of an individual (e.g. fish models, see Zaldívar and 

Campolongo, 2000). In the age-based type of modelling the matrix A, called Leslie matrix, which 

describes the transformation of a population from time t to time t+1, 

nt+1= A nt (21) 

has the following structure: 























=

− qq

q

GP

P

P

FF

1

2

1

2

...000

...............

0...000

0...00

......0

A  (22) 

where nt is a vector describing the population at each stage at time t, Pi is the probability of surviving 

from the i-th age class to the next i, Gi is the probability of surviving and growing in the same age 

class, and Fi is the fecundity rate per unit time (d), i = 1,2,...,q. For the case of the Dapnia magna 

model, we have considered 20 age classes (one day duration, except the last one) with different 

mortalities for each class (see next Section). In this case it is possible to write: 

i

i

i
q

q
P 1+=  (23) 

where qi , Eq. (10), is the probability of surviving for day i to day i+1 and 

2020 PG =  (24) 

In a similar way, the fecundity of each class, using the reproduction rate Eq. (8), may be written as: 

∫
+

=
1

)(
i

i
i dttRF  (25) 

Incorporation of interaction between species at different stages can be easily done (Cushing, 1998; 

Zaldívar and Campolongo, 2000). With this approach toxic effects introduced at population level can 

be extended to ecosystem level. The introduction of DEB models into matrix population models has 

been developed recently (Lopes et al., 2005; Klanjscek et al., 2006; Billoir et al., 2007). 
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2.6. OPTIMIZATION PROCEDURE  

There are three to four parameters that have to be calculated from toxicity data sets and then used to 

perform predictions. These are: ka, the exchange rate constant between the environment and the 

internal concentrations in Daphnia magna which controls the dynamics of the toxicant internal 

concentrations; kd, the constant for the exponential decrease of the contaminant during the experiment 

(sometimes reported in the data sets); NEC, No-effect concentration for survival, and the kt, the killing 

rate of the toxicant. To obtain these parameters the integrated model, i.e. contaminant fate, biology and 

contaminant effects (survival), was run and the results compared with toxicity data (dose-response 

curves). Constrained optimization using the Optimization Toolbox
TM

 from MATLAB
®

 was performed 

to minimize the error between modelled and fitted dose-response curves. 

As explained before, one data set (chronic or acute) was used to fit these parameters, whereas the other 

data set was used to test the validity of the approach. 

 

3. RESULTS  

3.1. AGE-CLASSIFIED DAPHNIA MODEL 

Since we are interested in using acute(24 and 48 h) and chronic toxicity data sets (21 days), we have 

divided the age-based model in a Leslie matrix of 20 age classes and a time step of one day in a similar 

way as in Billoir et al. (2007). The parameters of the age-classified model for Daphnia magna were 

compared with experimental data on growth, reproduction and mortality. Figure 2 shows the 

comparison between experimental data and model results. The growth parameters were taken from 

Kooijman and Bedaux (1996) and Kooijman (2009), whereas reproduction was modified to optimize 

the fit, but the value is quite close to that of Koijman and Bedaux (1996): 28.9 d
-1

. Natural mortality 

was calculated for each class to fit the curve obtained by Santojanni et al. (1995). This also allowed 

calculating the decrease rate in the last age, G20, since Daphnia magna can live more than 21 days. 

Since we are interested in analyzing ecotoxicological experiments, we have assumed that the 

experiment was carried out under a controlled situation with constant temperature and high food 

density. For these reasons, the model does not consider the effects of both parameters of the dynamics 

of the population.  

As it can be observed, there is a good agreement between simulated and experimental results and 

therefore, the age-classified model seems to capture the dynamics of Daphnia magna concerning 

growth, reproduction and mortality. These parameters were kept during all the subsequent simulations. 

Once we have a model of the species of interest, in this case Daphnia magna, we can now try to 

simulate the experimental conditions in the toxicological experiments, trying to reproduce them “in 

silico”. 
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Figure 2. a/ Simulated (continuous line) and experimental (dots) data (Kooijman, 2009) on Daphnia 

magna length; b/ Simulated and experimental data (Kooijman and Bedaux, 1996) from cumulative 

number of young per female for Daphnia magna; c/ Simulated and experimental data (Santojanni et 

al., 1995) on survival as a function of time. Parameters: Lm=4.50 mm; Lb=0.18 mm; Lp=0.4 mm; 

Rm=24.9 d
-1

; γ=0.1; mi = (0.0019, 0.0038, 0.0052, 0.0063, 0.0073, 0.0082, 0.0091, 0.0099, 0.0106, 

0.0114, 0.0120, 0.0127, 0.0133, 0.0140, 0.0146, 0.0151, 0.0158, 0.0163, 0.0128, 0.0197);G20 = P20. 

 

3.2. CASE STUDIES 

Even though the main interest of this approach would consists on infer chronic data from acute toxicity 

test, we have also performed the opposite calculation. This was due to the quality and the number of 

data in each set. Since we need to fit 3-4 model parameters we need a minimum amount of data to 

perform the optimization of these parameters. 

 

3.2.1. From chronic to acute toxicity: Pyridine and nanomaterial case studies 

To assess the validity of this integrated modelling approach, we have used the survival data provided 

by Santojanni et al. (1995) when Daphnia magna was exposed to several concentrations of pyridine: 

25, 50 and 100 mg L
-1

. The objective was to evaluate if a single set of parameters was able to model all 

survival experiments. In this case we used nonlinear optimization with constraints (parameters should 

not have negative values) to obtain a set of parameters that was able to fit all experimental results, see 

fig. 3. There are two parameters related to the toxic effects: the no effect concentration (NEC) and the 
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killing rate of the compound (kt) and two others related with the kinetics of the contaminant: the 

exchange rate of the chemical between the water and the organism (ka) and the degradation rate (kd), 

which was assumed to follow a decreasing exponential function with time and which was initialized 3 

times a week according with the experimental procedure to renew the test solutions. 

 
Figure 3. Percentage of individuals surviving in different pyridine concentrations as a function of time. 

Fitted data by the combined age-based and fate and effects models (continuous line). Results from 

fitting several Weibull equations (see Santojanni et al., 1995 –Table 1) to experimental data (dots). 

Parameters: NEC = 1.2604 mg L
-1

, kt = 0.021 L mg
-1

 d
-1

; ka = 0.0111 d
-1

; kd = 2.63 d
-1

. 

 

Acute toxicity data from ECOTOX (http://cfpub.epa.gov/ecotox) on LC50 for 24 and 48 h experiments 

on Daphnia magna were obtained. The following values are reported for pyridine: LC50 
24h

=2114 mg 

L
-1

 (Dowden and Bennet 1965); LC50 
48h

= 944 (Dowden and Bennet 1965), 1120 1140, 1210, 1570 and 

1940 mg L
-1

 (Canton and Adema, 1978). The model then was run for one and two days at different 

concentrations of pyridine. Figure 4 show the results. As it can be seen the predicted values for LC50 at 

24 and 48 h (1833 and 859 mg L
-1

, respectively) are slightly lower than the experimental values, but 

still acceptable with 13.3% and 35% error, respectively. 
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Figure 4. Simulated survival for 24 (blue line) and 48 (green line) h test with pyridine, and 

experimental values for 24 h (circles) and 48 h (triangles) from Dowden and Bennet (1965) and 

Canton and Adema (1978). 

 

A similar situation as with pyridine was also found for the nanomaterial data set. Data concerning 

toxicity, mortality endpoint, after exposure to T-Lite
TM

 SF-S – a nanoparticle ~50 nm length and ~100 

nm width titanium dioxide, aluminium hydroxide and simethicone/methicone polymer- have been 

recently presented by Wiench et al. (2009). The following values were reported: Acute toxicity (OECD 

guideline 202): EC10>100 mg L
-1

, EC50> 100 mg L
-1

; Chronic toxicity (OECD guideline 211): NOEC= 

30 ; EC10 =31.5 (18.8-52.9, 95% confidence interval); EC50=66.1 (42.3-103.3) mg L
-1

. 

 
 a/ b/ 

Figure 5. a/ Experimental(circles and 95% confidence interval) and fitted EC values (mortality end 

point) for chronic (21 days) toxicity test. b/ Predicted EC values for 48 h acute toxicity test (horizontal 

line 100 mg L
-1

). Parameters: NEC = 27.78 mg L
-1

, kt = 8.78
.
10

-4 
L mg

-1
 d

-1
; ka = 41.12 d

-1
; kd = 0.0 d

-1
.  



 14 

In this case, we were interested in assessing the results of the model with a scarce number of data 

points as well as to test if nanomaterials behave in some way different from organics for this type of 

test. We assumed that the degradation rate was zero and we fitted the other three parameters of the 

model with the chronic toxicity data set, then we used these parameters to develop a dose-response 

curve for the acute toxicicty test. Fitted results are shown in Fig. 5a, whereas the predicted values are 

shown in fig 5b. As the value reported were EC10 and EC50> 100 mg L
-1

,
 
we can only confirm that the 

approach gives a valuable result within the range of experimental results even for this case where few 

experimental data are available. We predicted an EC10= 92.4 mg L
-1

 and an EC50= 450 mg L
-1

. 

 

3.2.2. Data Reconciliation: Chlordecone and case study 

Before moving for acute to chronic toxicity prediction we were also interested in using the fate-

biology based modelling approach for analyzing existing data sets and to investigate if this approach 

provided coherent results over all published data. Data reported for chlordecone in the OECD QSAR 

tool come from six different sources and span over a period of 20 years. The acute and chronic data 

sets described in Table 1, with the exception of the lethal tests, were used to fit the toxicity and fate 

parameters. Figure 6 shows the results, whereas Figure 7 shows the reproduced lethal tests. Even 

though chlordecone is one of the banned plant protection products for which more data are available, 

experimental values are still scarce and show a great variability. However, the simulated results are in 

general agreement, considering the reported variability and the, sometimes, contradictory values. 

 
Figure 6. a/ Experimental(circles and standard deviation) and fitted EC values (mortality end point) for 

acute and chronic toxicity tests. Parameters: NEC = 0.028 mg L
-1

, kt = 3.267
 
L mg

-1
 d

-1
; ka = 3.58 d

-1
; kd 

= 4.05 d
-1

. 
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Figure 7. Simulated survival under 0.15 and 0.31 mg L

-1
. Experimental values LC50 48 h (asterisk) 

with 0.31 mg L
-1

 and LC100 5 days (circle) with 0.15 mg L
-1

 using the parameters from fig. 6. 

 

3.2.3. From acute 24h and 48 h to chronic toxicity: veterinary antibiotics case study 

Data concerning acute toxicity of oxolinic acid, streptomycin, tiamulin and tylosin, Table 3, were used 

to fit the coupled biology-fate model and then to predict chronic toxicity data. Figures 8-11 show the 

fitted values whereas figs. 12-15 the predicted chronic values and dynamics. Despite the scarce 

number of data points from acute toxicity test used to fit the model parameters, the prediction of the 

chronic toxicity tests are generally in reasonable agreement. For Oxolinic acid, Fig. 12,  the severity is 

slightly over estimated; for Streptomycin, Fig.13, the predictions and experimental values are in good 

agreement, whereas for Tiamulin and Tylosin (Figs. 14 and 15) the severity of the effect is 

underestimated. 
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Figure 8. Acute toxicity data for oxolinic acid (experimental value and 95% confidence intervals) and 

simulated optimized values. Parameters: NEC = 0.36 mg L
-1

, kt = 1.458
 
L mg

-1
 d

-1
; ka = 0.094 d

-1
; kd = 

1.22 d
-1

. 

 

 
Figure 9. Acute toxicity data for Streptomycin (experimental value and 95% confidence intervals) and 

simulated optimized values. Parameters: NEC = 1.90 mg L
-1

, kt = 0.05 
 
L mg

-1
 d

-1
; ka = 0.009 d

-1
; kd = 

0.96 d
-1

. 
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Figure 10. Acute toxicity data for Tiamulin (experimental data and 95% confidence intervals) and 

simulated optimized values. Parameters: NEC = 11.14 mg L
-1

, kt = 0.18
 
L mg

-1
 d

-1
; ka = 0.13 d

-1
; kd = 

0.0 d
-1

. 

 

 
Figure 11. Acute toxicity data (experimental data and 95% confidence intervals) and simulated 

optimized values. Parameters: NEC = 12.24 mg L
-1

, kt = 0.04 
 
L mg

-1
 d

-1
; ka = 0.015 d

-1
; kd = 1.24 d

-1
. 
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Figure 12. Experimental values (points) and simulated survival for several concentrations. Parameters 

from fig. 8. 

 
Figure 13. Experimental values (points) and simulated survival for several concentrations. Parameters 

from fig. 9. 
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Figure 14. Experimental values (points) and simulated survival for several concentrations. Parameters 

from fig. 10. 

 
Figure 15. Experimental values (points) and simulated survival for several concentrations. Parameters 

from fig. 11. 
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4. DISCUSSION 

Despite the scarce number of data points to fit model parameters, we have showed that this integrated 

approach is able to produce useful results and to provide good estimations when predicting chronic 

from acute toxicity experiments or vice versa. In addition, the dynamics of the different experiments 

can be studied in detail using the fitted data and then the model can be used to guide the design of the 

experimental conditions. Furthermore, the model can be used to identify experimental outliers that are 

not easily observed when comparing different test performed by different laboratories and/or to 

distinguish between typical biological variability.  

Better results could possibly be obtained with more experimental data points. In this case, we could be 

able to improve the estimation of the model parameters and provide as assessment of the uncertainties 

in their determination. This is important because of the strong non-linear coupling between the 

estimated model parameters, e.g. a higher mortality rate with a lower exchange rate could, in principle, 

provide similar results. 

An effect that we have not considered in the model, but that could be easily implemented is the 

difference in the fate model between acute and chronic experiments. Whereas 24 and 48 h experiments 

are normally carried out without food supply, this is not the case for long-term experiments. In this 

case, the contaminant will also enter into the organisms by feeding. This type of effects have been 

reported by Klüttgen et al. (1996) and by Herbrandson et al. (2003a,b). Under these conditions, the 

contaminant will distribute between dissolved and particulate phase and it will enter into the organism 

by predation (Dueri et al., 2009; Marinov et al., 2009). However, this could be easily incorporated in 

the fate model adding a supplementary term that consider feeding, the drawback being that the fate 

equation should have more parameters to fit and then due to the scarcity of data points, the fitting 

would be more problematic. 

 

4.1. THE PROBLEMS OF FITTING TOXICITY DATA SETS WITH FEW DATA 

POINTS: THE NCD DATA SET 

Even though in principle, our idea was to use the New Chemical Data (NCD) base to statistically test 

the approach, we have had several problems due to the amount of data points and the existence of 

multiple minima during the optimization, when using such a reduced number of points. To illustrate 

the problems with the toxicity data sets, we have fitted the data using traditional dose-response curves.  

Examples of these are (Backhaus et al., 2004): 

- Weibull: 

)]logexp(exp[1)( 1021 xxf θθ +−−=  (26) 

- Box-Cox transformed Weibull: 
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- Morgan-Mercier Flodin: 

2
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1
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θθ x
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⋅+
−=  (28) 

- Logit 

)]logexp(1[

1
)(

1021 x
xf

θθ −−+
=  (29) 

- Generalized Logit: 

3)]logexp(1[

1
)(

1021

θθθ x
xf

−−+
=  (30) 

where θ1,θ2,and θ3 are parameters of the dose-response curves. These curves have a sigmoidal shape 

and a lower (L) and upper (U) asymptotes with values of 0 and 1 (0-100%), respectively. For example 

Table 4 summarizes the fitted parameters for the Weibull function, Eq. (26), whereas fig. 16 show 

experimental versus fitted results for the 28 NCD retained compounds. 

 

Table 4. Fitted Weibull parameters, Eq. (26). 

Compound θ1 θ2 Compound θ1 θ2 
1 2.395 11.67 15 -14.9 7.97 

2 -6.291 6.483 16 -13.98 7.667 

3 10.17 4.998 17 -13.67 9.095 

4 4.197 5.151 18 7.817 11.34 

5 -2.73 11.58 19 -5.454 4.017 

6 -3.097 10.7 20 -5.025 13.03 

7 -5.127 3.969 21 -8.258 5.592 

8 -0.9306 3.318 22 -23.2 12.55 

9 2.999 1.51 23 -3.632 4.122 

10 -16.63 7.141 24 -12.55 5.924 

11 -9.13 6.404 25 -7.709 7.849 

12 6.077 3.658 26 -12.8 9.305 

13 1.19 6.58 27 -31.29 16.73 

14 -8.401 12.89 28 -0.855 1.941 

 

The main problem is that with three data points it is difficult to assess the goodness of the fit since 

there are multiple values that will give the same error. To illustrate this problem, Fig. 17 show the 

results provided by Eqs. (26)-(30) to Compound n° 1 of the NCD. All the curves provide a fit with 

r
2
=1 and sum of squares due to errors (or residuals) quite similar, with values of 9.38

.
10

-7
, 1.824

.
10

-8
, 

2.695
.
10

-6
, 7.235

.
10

-7
 and 1.141

.
10

-8
, respectively. Other goodness of fit statistics, e.g. adjusted r-

square, root mean squared error, produce also similar results. However, the shape and form of the 

curves may be quite different and results will differ when used to estimate chronic toxicity. 
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Figure 16. Individual concentration response curves and data from NCD for the Daphnia magna 

toxicity of the 28 compounds. Fitting functions from Table 4. 

 

 
Figure 17. Fitted – Eqs. (26)-(30)- and experimental values (triangles) dose-response curves for 

compound n° 1 of the NCD. 

 

The reduced number of data points is also the same problem we have observed using the Daphnia 

magna model instead of the mathematical correlations provided by Eqs. (26)-(30). In this case, since 

the data provided an estimation of kd as the reported % loss in concentration during the test period, we 
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have used the chronic data to estimate only NEC, kt and ka parameters. With three data points we are 

not in the position to assess the validity of the optimum parameters. For example in Fig. 18 it is 

possible to observe a nearly perfect fit –evaluated as the square difference between observed and 

calculated EC-values – between model and experimental values. These parameters will predict a 

EC50
24h

 of 5.6 and NOEC
21d

 of 0.95 mg L
-1

 whereas the experimental values reported are 9.9 and 0.15 

mg L
-1

, respectively. However, a number of combinations of these parameters (NEC, kt and ka) that 

will produce a similar fit are possibler, as it was observed during the optimization procedure, and 

therefore different predictions will be obtained. This problem is not due to the approach, but to the way 

data are reported in these experiments. 

 
Figure 18. Reported and calculated EC for the compound n° 28 of the NCD. Parameters: NEC = 0.37 

mg L
-1

, kt = 4.54 
 
L mg

-1
 d

-1
; ka = 0.06 d

-1
; kd = 0.26 d

-1
. 

 

4.2. RATE LIMITING PROCESSES 

One fundamental aspect that is often neglected in toxicological test is the dynamics of the different 

process occurring, i.e. decomposition, uptake, depuration, degradation, feeding, growth, reproduction, 

etc. The rate at which these processes occur depends on the physico-chemical properties of the toxicant 

as well as on the species characteristics and these rates will have an effect on the internal concentration 

of toxicant in the organisms and therefore on the results of the test. In the limiting cases of the 

parameters, the whole process will be controlled by the slower process. For example, if uptake is the 

slower process, whereas product decomposition is faster we can conclude that the product is not toxic 
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whereas the only conclusion would that the product is unstable. To illustrate some of these effects, we 

have carried out several simulations changing the different parameters of the model.  

Figure 19 shows the effects on the internal concentration, cq, when changing ka for a 48h acute toxicity 

test with Daphnia magna assuming no growth (red lines) and growth (blue lines), and no change in the 

water concentration, c=100 mg L
-1

. As it can be seen ka has a strong influence on the toxicant 

concentration values reached internally. Also the dilution effects due to growth (blue versus red lines) 

can be observed. For higher ka values these aspects become irrelevant since the transfer of contaminant 

into the organism is no longer the rate limiting process and internal and external concentrations are 

equivalent. 

 
Figure 19. Internal concentration, cc (mg L

-1
), in Daphnia magna as a function of exchange rate 

constant ka (d
-1

) assuming no-growth (red lines) and growth (blue lines) and a constant external 

concentration of 100 mg L
-1

. 

 

Another important process is the rate of decomposition/disappearance of the chemical during the acute 

or chronic tests and how to correct the results if the decomposition is higher than 80% are provided in 

the OECD Guidance. 

In our model, we have considered that the decomposition follows an exponential decreasing function, 

Eq. (20). Furthermore for the chronic test we have considered the renewal of the medium three times 

per week. Figure 20 shows the importance of this effect for the internal concentrations experienced by 

Daphnia magna. As it can be observed, when there is no decomposition, kd = 0, with an exchange rate 

constant of 10 d
-1

, the internal and external concentrations are practically the same after a short period 
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of time. However, already with kd=1 d
-1

, 63.2 % decrease after one day, the internal concentration in 

Daphnia magna never reaches the external value and decreases exponentially during all the 

experiment; with kd =3 d
-1

, 95% decrease after one day, the toxicant concentration in Daphnia magna 

is practically zero at the end of the two days experiment. This effect can be observed in the shape of 

the simulated survival curve in fig. 7 during a chronic test, where the mortality occurs only when there 

is a medium replacement since according with our optimization parameters, it disappears quite rapidly, 

kd = 4.05 d
-1

. 

 
Figure 20. Internal concentration, cc (mg L

-1
), in Daphnia magna as a function of the decomposition 

rate constant kd (d
-1

) (0-10) assuming an exchange rate constant ka=10 (d
-1

) and an initial external 

concentration of 100 mg L
-1

. 

 

The interplay of these effects make the optimization process problematic since the model is quite 

sensitive to the values of these parameter and may jump from a 100% survival to 0% survival when 

there is a change in the rate limiting process. For example, Figure 21 shows the internal concentration 

of Daphnia magna when changing the initial concentration between 10 and 100 mg L
-1

 for a NEC of 

50 mg L
-1

. As it can be observed, only for initial concentrations higher than 60 mg L
-1

an effect will 

occur and, due to the product degradation, this effect will only occur for a limited amount of time 

during the two days experiment, for example ~5.5 hours with c0 =100 mg L
-1

. 
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Figure 21. Variation in the internal concentration, cc (mg L

-1
), in Daphnia magna as a function of the 

initial concentration in water for  a decomposition rate constant kd (d
-1

) of 3, an exchange rate constant 

ka=10 (d
-1

) and a NEC of 50 mg L
-1

. 

 

5. CONCLUSIONS 

The introduction of biology and fate dynamics in the analysis of acute and chronic toxicity provides a 

wide amount of information and new data that, in principle, could help in reducing the number of 

experiments with animals as well as the required dose levels.  

With data rich results, e.g. Santojanni et al. (1995), we have shown that the same parameters were able 

to fit all their experiments. In addition, the errors for predicting the acute data reported by other 

authors were 13.3% and 35% for 24 and 48h, respectively. It should be pointed out that for the case of 

48 h, the maximum error between the mean value and the reported values is already 32%. Similar 

results were obtained for the nanomaterial case study. However, in this case, the information provided 

by the experiment was lower. Then the same approach was used to perform data reconciliation from 

several authors and experimental procedures, and finally to predict chronic data from acute values. As 

it can be observed from the simulated results relatively good agreement is obtained. The values 

predicted by the model are an improvement when compared with the factor of 5 obtained using acute 

to chronic ratios (Länge et al., 1998). 

An important remark is the necessity to produce and report more information from each experiment or 

set of experiments performed. This would improve considerably the fitting to the model’s parameters. 
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Though, even with few data points, the model can be useful already in predicting starting conditions 

for the chronic toxicity testing and vice versa, therefore reducing the number of test as it has been 

shown with the example of the nanomaterial.  

In addition and to complement and allow the interpretation of experimental data, this approach 

provides also the internal toxicant concentration in the organisms and therefore could help in the 

interpretation of critical body residues experiments. Furthermore, the introduction of a process based 

modelling approach is able to show the interplay between the different effects and how the dynamics 

will affect the outcome of the toxicological test. 

Finally, this approach could easily be extended to other standardized test by replacing the Daphnia 

magna DEB model with the corresponding species model (fish, birds, etc.). The parameters for a 

considerable number of species are already available in literature (Kooijman, 2000). 
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