
Languages of Games and Play: A Systematic Mapping Study

RIEMER VAN ROZEN
∗

, Centrum Wiskunde & Informatica, The Netherlands and Amsterdam University
of Applied Sciences, The Netherlands

Digital games are a powerful means for creating enticing, beautiful, educational, and often highly addictive
interactive experiences that impact the lives of billions of players worldwide. We explore what informs the
design and construction of good games in order to learn how to speed-up game development. In particular,
we study to what extent languages, notations, patterns and tools, can offer experts theoretical foundations,
systematic techniques and practical solutions they need to raise their productivity and improve the quality
of games and play. Despite the growing number of publications on this topic there is currently no overview
describing the state-of-the-art that relates research areas, goals and applications. As a result, efforts and
successes are often one-off, lessons learned go overlooked, language reuse remains minimal, and opportunities
for collaboration and synergy are lost. We present a systematic map that identifies relevant publications and
gives an overview of research areas and publication venues. In addition, we categorize research perspectives
along common objectives, techniques and approaches, illustrated by summaries of selected languages. Finally,
we distill challenges and opportunities for future research and development.

CCS Concepts: • General and reference → Surveys and overviews; • Applied computing → Com-

puter games; • Software and its engineering → Domain specific languages; Visual languages; Design
languages.

Additional Key Words and Phrases: game development, game design, languages, notations, patterns, tools,
systematic map

ACM Reference Format:

Riemer van Rozen. 2020. Languages of Games and Play: A Systematic Mapping Study. ACM Comput. Surv. 0, 0,
Article 0 (December 2020), 102 pages. https://doi.org/10.1145/3412843

1 INTRODUCTION
In the past decades, digital games have become a main podium for creative expression enabling
new forms of play and interactive experiences that captivate and enchant like the works of great
historical writers, painters, artists and composers. The game development industry is a vast and
lucrative branch of business that eclipses traditional arts and entertainment sectors, outgrowing
even the movie industry [53]. Games reach audiences around the world, unite players in common
activities and give rise to subcultures and trends that impact pass-time, awareness and policies of
modern societies.

However, for every outstanding success exist many games with unrealized potential and failures
that preceded bankruptcy. Developing high quality games is dreadfully complicated because game
design is intrinsically complex. We wish to learn what informs the design of good games in order to
help speed-up the game development process for creating better games more quickly. In particular,
∗nwo/sia grants: Early Quality Assurance in Software Production, Automated Game Design and Live Game Design

Author’s address: Riemer van Rozen, rozen@cwi.nl, CentrumWiskunde & Informatica, P.O. Box 94079, 1090 GB, Amsterdam,
The Netherlands, Amsterdam University of Applied Sciences, Rhijnspoorplein 1, 1091 GC, Amsterdam, The Netherlands.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
0360-0300/2020/12-ART0
https://doi.org/10.1145/3412843

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://doi.org/10.1145/3412843
https://doi.org/10.1145/3412843

0:2 Riemer van Rozen

we study to what extent languages, structured notations, patterns and tools, can offer designers and
developers theoretical foundations, systematic techniques and practical solutions they need to raise
their productivity and improve the quality of games and play.

We propose the term ’languages of games and play’ for language-centric approaches for tackling
challenges and solving problems related to game design and development. Despite the growing
number of researchers and practitioners that propose and apply these languages, there is currently
no overview of publications that relates languages, goals and applications. As a result, publications
on the topic lack citations of relevant related work. In addition, lessons learned are overlooked and
available methods and techniques for language development often remain unused. As a consequence,
it remains difficult to compare and study games, designs and research contributions in order to
build bodies of knowledge that describe best practices and industry standards.
We aim to map the state-of-the-art of languages of games and play in an understandable way,

such that it is accessible to a wide audience. Our goal is to provide a means for 1) informing
practitioners and researchers about the breadth of related work; 2) sharing knowledge between
research areas and industry for improved results and collaboration; 3) enabling the application of
available techniques; and 4) identifying opportunities for future research and development.

Our research questions are summarized as follows:
• Which publication venues include papers on languages of games and play?
• How do the various approaches compare?
• What are open research challenges and opportunities for future work?

For answering these questions we conduct a survey of languages of games and play called a
systematic mapping study. Mapping studies provide awide overview of a research area by identifying,
categorizing and summarizing all existing research evidence that supports broad hypotheses and
research questions [26]. In contrast, systematic literature reviews usually have a more narrow focus,
and instead perform in-depth analyses to answer particular research questions. Both enjoy the
benefits of a well-defined methodology for (re)producing high quality results and reducing bias.

We identify and analyze relevant publications on languages of games and play. First, we motivate
the need for this study by describing its scope in Section 2. Next, we describe the methodology
with research questions, sources, queries and inclusion criteria, and a review protocol in Sections 3
and 4. We contribute the following:
(1) A systematic map on languages of games and play that provides an overview of research

areas and publication venues, presented in Section 5.
(2) A set of fourteen complementary research perspectives on languages of games and play syn-

thesized from summaries of over 100 distinct languages we identified in over 1400 publications,
presented in Section 6.

(3) An analysis of general trends and success factors of the identified research, and one unifying
specific perspective on ‘automated game design’, which discusses challenges and opportunities
for choosing directions in future research and development, presented in Section 7.

We describe related work in Section 8, discuss threats to validity in Section 9, and conclude in
Section 10. Our map provides a good starting point for anyone who wishes to learn more about the
topic. We maintain an accompanying website here: https://vrozen.github.io/LoGaP/.

2 RESEARCH VISION
A mapping study on games and play can be approached from different research perspectives, each
with different goals and needs. We introduce fundamental concepts and illustrative challenges of
digital game design in Section 2.1, and formulate two general hypotheses that drive this study in
Section 2.2. Our specific motivation is to automate game design and investigate how domain-specific

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://vrozen.github.io/LoGaP/

Languages of Games and Play 0:3

Designer

Gameplay

Objectives

?
=

Game

Design
Game

Player

Gameplay

Experiences

emerge

interact

hypothesize

create

(a) Game designers form hypotheses about how a

game’s parts realize gameplay goals, but usually re-

peatedly find intended and actual experiences differ

Aesthetics

Feedback

Gameplay

Design

Play

Testing

Game

Design

Game

Prototype

Production

Coding

(1)⧖1

⧖2
(2)

(b) Developing a high quality game entails iter-

atively designing, playtesting and improving its

design as a paper- (1) or a software- prototype (2)

Fig. 1. Game development aims for games with high quality player experiences

language technology, introduced in Section 2.3, can offer solutions. We clarify our position and
motivate this study in Section 2.4.

2.1 Games and Play
Games and play are inextricably intertwined concepts. Games bring about experiences such as
enjoyment, persuasion and learning. Developing digital games such as puzzles, adventures, lessons
or treatments requires combining diverse technical and non-technical expertise. Game development
teams typically consist of game designers, artists and software engineers. However, the collaborative
process may also include educators, level designers, AI programmers, narrators or healthcare
professionals. Perhaps the most crucial for a successful outcome is the role of the game designer,
who is primarily responsible for the quality of player experiences.

Game design [17, 40], the discipline and process of iteratively designing and improving games,
is an instance of a so-called wicked problem, a problem that is “difficult to solve in general due to
incomplete, contradicting and evolving requirements” [11, 13, 31]. We highlight several challenges as
examples that illustrate its inherent complexity.

Improving a game’s qualities depends on gradually improving insight, as illustrated by Figure 1a.
Game designers use paper prototyping to explore and understand the problem at hand, abstracting
away a game’s details until what remains is essential. They form hypotheses about play, experiment
with rules and objectives to evolve a game’s design and learn what the solution can become. For
instance, designers create interaction mechanisms (a.k.a. game mechanics, or rules) offering playful
affordances [39].

Players interact with games via these mechanisms during a game’s execution. Playful acts result
in dynamic interaction sequences. Ideally, these also represent aesthetically pleasing experiences
called gameplay, e.g., fellowship, challenge, fantasy, narrative, discovery or self-expression [24].
However, opinions on a game’s quality differ from person to person, e.g., with age, gender and
beliefs.

For game designers playtesting is essential for verifying assumptions and learning if a game meets
its objectives. More often than not, designers discover that the realized and intended gameplay
differ. Unfortunately, even well prototyped games may fail to meet expectations as fully developed

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:4 Riemer van Rozen

software. In general, it is hard to predict the outcome of modifying a game’s parts, e.g., how
changing the rules affects the dynamics and aesthetics of play. As a result, steering towards new
goals is difficult.
Improving a game is never truly done. The maximum number of game design iterations deter-

mines the achievable quality. Efforts on balancing, fine-tuning and polishing are limited only by
time and money. Resource-wise, AAA studios have a competitive advantage over indie game devel-
opers. However, developing novel high quality games in a time-to-market manner is universally
hard because game design iterations take simply too much time. Figure 1b shows an abstract game
development process that illustrates two important root causes of delay (shown as ⧖).

Game designers and software engineers usually live on opposite sides of the fence [27]. Both lose
time when adjustments best understood by designers have to be implemented by software engineers
(⧖1). To evolve a game, designers have to explore alternative gameplay scenarios, constantly
requiring changes.
As time progresses, more and more choices become fixed, and frequent changes to the source

code become more difficult, time-consuming and error-prone (⧖2). The evolution of digital games,
like other software, suffers from a well-known phenomenon called software decay [33]. The software
quality deteriorates with frequent changes to the source code made to accommodate evolving
requirements. As a consequence, game designers have precious few chances to experiment with
design alternatives. This seriously compromises their ability to design, prototype and playtest.
Unfortunately, the complexity of game design all too often prevents development teams from timely
achieving the optimal quality.
These challenges urgently require solutions. Our brief discussion indicates that the designer’s

ability to exert influence on a game’s parts is essential. Rules, objectives and gameplay assumptions
are artifacts that require appropriate notations for constructing high quality digital games. However,
game designers lack a common vocabulary for expressing gameplay. Next, we address this need.

2.2 Languages of Games and Play
Languages of games and play are language-centric approaches for tackling challenges and solving
problems related to game design and development. We propose studying existing languages and
creating new ones. Two central hypotheses drive this study. We formulate a general and a specific
hypothesis:
(1) Languages, structured notations, patterns and tools can offer designers and developers theo-

retical foundations, systematic techniques and practical solutions they need to raise their
productivity and improve the quality of games and play.

(2) “Software” languages (and specifically domain-specific languages) can help automate and
speed-up game design processes.

Languages of games and play exist in many shapes and forms. The next section describes one
specific technical point of view that represents the departure point of this study, which also details
and motivates the second more specific hypothesis.

2.3 Domain-Specific Languages
We aim to deliver solutions that automate game design and speed-up game development with
so-called Domain-Specific Languages (DSLs), an approach originating in the field of Software
Engineering. Van Deursen et al. define the term as follows:

”A Domain-Specific Language is a programming language or executable specification language
that offers, through appropriate abstractions and notations, expressive power focussed on, and
usually restricted to, a particular problem domain.” [52].

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:5

DSLs have several compelling benefits. They have been successfully created and applied to boost
the productivity of domain-experts and raise the quality of software solutions. For instance, in
areas like carving data in digital forensics [49], engineering financial products [51], and controlling
lithography machines [46], to name a few. DSLs divide work and separate concerns by offering
domain-experts ways to independently evolve and maintain a system’s parts. Typically, DSLs raise
the abstraction level and incorporate domain-specific terminology that is more recogizable to its
users. Powerful language work benches enable analyses, optimizations, visualizations [14], and
foreground important trade-offs, e.g., between speed and accuracy in file carving.

Naturally, there are also costs. DSLs are no silver bullet for reducing complexity. Time and effort
go into developing the right language with features that are both necessary and sufficient for its
users. In addition, a DSL may have a steep learning curve and users require training [52]. While
DSLs help users maintain products, DSLs themselves also demand maintenance and must evolve to
accommodate new requirements, usage scenarios, restrictions and laws, such as new legislation on
financial transparency or privacy.

2.4 Need for a Mapping Study
There are many compelling reasons to perform a mapping study on languages of games and play.
This study can be approached from different research perspectives with distinct research needs
and goals. Here we describe our position and motivation.
We aim to empower game designers with DSLs that automate and speed-up the game design

process. We wish to learn how to facilitate the design space exploration and reduce design iteration
times.We envision a set of complementary visual languages, techniques and tools that help designers
boost their productivity and raise the quality of games and play. Challenges include providing
abstractions and affordances for:
(1) expressing a game’s parts as source code artifacts, especially interaction-bound game elements,

and modifying these at any given moment
(2) evolving ‘games and play’ by steering changes in the source code towards new gameplay

goals prototyping, play testing, balancing, fine-tuning or polishing
(3) obtaining immediate and continuous (live) feedback on a game’s quality by continuously

play testing the effect of changes on quantified gameplay hypotheses
(4) obtaining feed forward suggestions that focus creative efforts and assist in exploring alterna-

tive design decisions in a targeted way
(5) forming better mental models for learning to better predict the outcome on play
To know where to start automating game design, we need an extensive analysis on existing

approaches. However, these efforts are currently not mapped, and opportunities and limitations
are not yet well understood. As a result it is unclear which game facets are amenable to DSL
development, which features can express game designs, and what the limits of formalism are. There
is no telling if DSLs can deliver, and how the tradeoff between costs and benefits applies to game
development.
We perform this mapping study on languages of games and play to obtain evidence to support

our hypotheses in general, and suit our own specific research needs by scouting for opportunities
for developing DSLs in particular.

3 METHODOLOGY
A systematic mapping study requires a precise description of its scope, research questions, search
queries and databases for accurate and reproducible information extraction, categorization and
comparison [26]. We apply the following methodology.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:6 Riemer van Rozen

3.1 Scope
Games have been studied from different perspectives. Language-oriented approaches have been
proposed by authors who published in separate fields of research using distinct vocabularies. As a
result, language-centric solutions, intended for diverse domain experts and novices solve differently
scoped problems related to a game’s design, development, and applications. We survey the full
breadth of related work.

3.2 Research questions
The research questions addressed by this study on languages of games and play are:
rq1 What are the research areas and publication venues where authors have published, and what

does a map of the field look like?
rq2 Which languages have been proposed and how can these solutions be characterized in

terms of 1) objectives, scope and problems addressed; 2) language design decisions, structure
and notable features; 3) applications, show cases or case studies; and 4) implementation,
deployment and availability?

rq3 What are the similarities and differences between approaches, and common research per-
spectives sharing similar frames and goals, which languages illustrate them, and what are
the limitations?

rq4 Which developments and trends can be observed in recent work, and what are the challenges
and opportunities for future language research and development?

3.3 Sources
We use the meta-repository Google Scholar (GS) to obtain primary sources because it maps reposito-
ries in which we expect to find relevant publications. GS includes traditional sources of publications
such as the Association of Computing Machinery (ACM), Institute of Electrical and Electronics
Engineers (IEEE), Springer and Elsevier. In addition, GS includes less-traditional sources such as
games conferences that operate independently, influential books, blog posts, and dissertations.
Limiting the search to fewer sources would likely make the study more easily reproducible but also
reduce its relevance. A wide search over many sources is necessary for answering our research
questions, and GS fits this criterion. Note that we exclusively focus on written sources, which
excludes games and commercial development products.

3.4 Queries
Starting with a limited view of the field, we begin with a query to find domain-specific languages
for game design and game development. We call this our narrow query.
"domain␣specific␣language" AND ("game␣development" OR "game␣design")

GS returns approximately 400 results, mainly in the field of software engineering and although
many publications seem relevant, few articles focus on game design. Clearly, the narrow query is
biased towards one specific research area and is too restricted for answering our research questions.

Part of a mapping study is identifying the distinct vocabularies experts in separate research areas
use for describing similar approaches, and a more general term is ‘‘language’’. We widen the
scope accordingly but unfortunately we now find many results on subjects that are off-topic. We
therefore attempt to filter out irrelevant publications by formulating a wide query.
language AND ("game␣development" OR "game␣design")

AND NOT ("sign␣language" OR "second␣language" OR "language␣

acquisition" OR "body␣language" OR "game␣based␣learning" OR "beer

␣game" OR gamification OR gamify)

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:7

Table 1. Categories of research (adapted from Wieringa et al. [55])

Category Description

Evaluation research Investigates a problem or implementation of a technique in practice for gaining empirical knowl-
edge about causal relationships between phenomena or logical relationships among propositions

Proposal of solution Proposes a novel solution technique and argues for its relevance without a thorough validation.
Validation research Investigates properties of a proposed solution that has not yet been used in practice
Philosophical paper Sketches a new way of looking at a problem, a new conceptual framework, etc.
Opinion paper Provides an author’s opinion about what is wrong or good about a topic of interest
Experience report Explains steps taken and lessons learned from experiences gained during a project
Tutorial Explains and demonstrates how something works, usually by means of illustrative examples

GS reports approximately 17.5 thousand results, more than is feasible for us to analyze. We now
realize that given the wicked nature of game design and game development, no single query exists
that captures all relevant works. We therefore propose a compromise that combines the results of
the narrow query with the first 1000 results of the wide query1. We restrict the language to English.
We exclude patents and citations, results for which GS typically has not seen the full source.

3.5 Inclusion and exclusion criteria
We select publications according to the following criteria. The inclusion criterion is: The publication
describes a structured language-oriented approach for solving problems related to the design or
the development of digital games. For instance, we include programming languages, modeling
languages, DSLs, pattern languages, ontologies and structured vocabularies. Digital games (or
digital representations) include computer games, videogames, and applied games (a.k.a. serious
games), etc. The exclusion criterion is: Language features with a fixed structure and notation are not
described, or the language does not relate directly to games, and as such does not inform the game
design process. Therefore, we exclude the mathematics subject of game theory and the general
theme of high performance computing. Networking and audio are not excluded a-priori.

4 REVIEW PROTOCOL
We identify and analyze relevant publications and categorize them according to the review protocol
described in the following section. Each section of the protocol addresses a research question.
Section 4.1 addresses rq1, Section 4.2 addresses rq2. The remaining questions rq3 and rq4 are
outside the scope of this protocol, and are addressed respectively in Section 6 and Section 7.

4.1 Research areas and publication venues
For each included publication we record the available bibliographical information in BibTeX, e.g.,
about its authors, title, editors, year, publication venue, acronym, publisher, journal, volume, number,
isbn, issn and doi. When records are incomplete or missing, as is often the case, we insert the
information by hand.

In addition, we add a mapping study identifier that denotes its rank in the query results, a number
or not found (–), and appears in the narrow (n) or wide (w) query results. For instance, 12n indicates
the publication ranked 12 in the GS results of the narrow query, and –w indicates a publication that
conforms to the wide query, but is not ranked in the top one thousand results. In some cases, we
include publications for clarity that conform to neither query, stating which keyword is missing,
e.g., gd indicates the keywords ‘‘game design’’ and ‘‘game development’’ are both missing.

1GS limits the number of results to one thousand, but one can obtain more when filtering by year.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:8 Riemer van Rozen

Table 2. Languages facets to summarize and analyze

Facet Element Description

Brief description Problem Problem statement, game topic
Objectives Goals the authors formulate, challenges addressed
Solution Solutions proposed, claims on language application and scope, game genre
Category Solution category and application area (Table 3)

Design Pattern Language design pattern (Table 4)
Features Language features (elements shown in Table 5)
Examples Snippets of text, code, diagrams or models

Implementation How is the language implemented, e.g., interpreter, compiler (these details are
usually not described)

Validation Products Games, prototypes and show cases that are constructed using the language

Availability Web site url of a web site providing information on the language, notation or toolset
Distribution url of a binary distribution or source code repository
Source license License under which the source code is available

Each publication is of a certain type: (peer reviewed) paper (or article), thesis, textbook, non-
fiction, technical report, manual, blog post or presentation. In addition, we analyze research
categories shown in Table 1, like Petersen et al. [38]. This table extends categories proposed by
Wieringa et al. for categorizing peer reviewed research in requirements engineering with the last
two [55]. These are general categories that indicate how reliable and mature a source is, without
going into detail.

We construct a visual map of the field by leveraging citation data that relates publications, and
categorize publication venues to research areas. First, we extract citation information from the
GS research results. Next, we generate a citation graph whose nodes are publications and edges
are citations between them. Finally, we visualize this graph using Gephi, an interactive graph
visualization framework2. Gephi’s force map algorithm draws together publications with citations
between them, forming clusters that roughly correspond to research areas.

We count the number of publications in different journals, conferences, workshops and symposia.
We identify research areas by grouping venues according to disciplines and shared topics. We briefly
describe each area, and zoom in on the related section of the map for illustration. We summarize
venues with two or more publications.

4.2 Language analysis and summary
We wish to learn how languages compare, what they have in common, what separates them, and
what makes them unique. For each included publication we extract the name of the language, or
a description in case no name is provided. We summarize each language concisely by analyzing
related publications in a style similar to an annotated bibliography. Table 2 highlight the facets we
analyze.

Claims regarding the scope and applications typically refer to game genres, such as First Person
Shooter (FPS), Role Playing Game (RPG) or 2d Platform Game. Although game genre qualifiers
are course grained, and not suitable for comparing games in detail [2], they do offer authors ways
to indicate the topic of the solution and sketch contours of its scope. In addition, we categorize
languages objectives using the categories shown in Table 3.

2https://gephi.org (visited June 6th 2019)

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://gephi.org

Languages of Games and Play 0:9

Table 3. Language objectives – solution scope, category and application area

Dimension Category Description of intent

Scope Application-specific Solution is specific for a game or application
Genre-specific Solution that is reusable for a specific game genre
Generic Generic solution or separated concern

Solution Framework Analysis or mental framework for studying, understanding, comparing, catego-
rizing games that does not directly support game development, e.g., ontologies,
design patterns, or simulations

Tool Authoring tool that facilitates creating a game’s parts as models or programs
for design or development , e.g., visual environments, programming languages
or DSLs

Engine Game engine, reusable building block or software library that integrates mod-
els fully into game software

Area Research Research vehicle primarily intended for performing research in a specific area
Educative Platform primarily intended for teaching a subject to a group of people or

example meant to illustrate, educate or inform
Practice Solution primarily intended for practitioners, supporting game design or game

development

Table 4. Language design patterns (adapted from Mernik et al. [34])

Dimension Category Description

Reuse Piggyback Partially uses an existing language, a form of exploitation
Specialization Restricts an existing language, a form of exploitation
Extension Extends an existing language, a form of exploitation
Invention Designs a language from scratch without language reuse

Description Formal Formally describes a language using an existing semantics definition method
such as attribute grammars, rewrite rules, or abstract state machines

Informal Informally explains a language without formal methods

Non-exclusive objectives position languages as: communication means for sharing knowledge
between experts; illustration means for explaining or clarifying problems or solution by example;
maintenance tool for maintaining and modifying a game’s parts over time; productivity raiser for
increasing the productivity of its users; quality raiser for improving a game’s quality; and reuse
promotor for making parts of a game’s code or design reusable.
We highlight language design decisions and notable features, including mentions of language

reuse and formal semantics. When possible, we use the language design patterns for DSLs proposed
by Mernik et al. shown in Table 4 in our description [34]. We analyze language features related to
notation, elements and user interface described in Table 5.We record how a language is implemented,
e.g. as an interpreter or a compiler, and what the host language or formalism is.

Furthermore, we assess applications and availability to form an idea about its status, deployment
and maturity. We list notable applications, show cases and case studies that have been used to
validate or evaluate the language in practice. Finally, we report which languages are actually
available, and if applicable, we provide links to manuals, teaching materials, source repositories and
license agreements. This concludes the protocol. We present the results in the following section.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:10 Riemer van Rozen

Table 5. Language features (these features are not mutually exclusive)

Dimension Feature Description

Notation Textual The language has a textual notation
Visual The language has a visual notation

Elements Scopes Scopes and bounds may be used to separate elements and limit their valid context
Conditionality Conditionality features enable or disable other language elements or events
Recurrence Recurrence features are elements that can happen again, e.g., in iterations
Modularity Modularity features enable composition and/or reuse of language elements
Domain-specific Domain-specific language features may be especially created for a purpose that is

specific or unique to the subject matter

User Interface Feedback Provides a feedback feature enabling understanding
Mixed-initiative Provides feedback & feed-forward, alternating between user input and computer

generated alternatives
Live Provides immediate and continuous feedback, e.g., a live programming environment

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

0

5

10

15

20

25

30

35

40

3
6

1
3

5
6

6
4

10

12 8

16
17 11

10

6

6

3

6

5

1 1 3 4

10 6

11 13
16

9 12

13
12

9

6

1

1

11
4 5 5 4

10 8
11 9

20 18

11
16

1 1

Year

In
cl
ud

ed
Pu

bl
ic
at
io
ns

Narrow query
Wide query

Added by hand

Fig. 2. Amount of publications included in the study per year

5 RESEARCH AREAS
Here we present a systematic map of languages of games and play, which is also available in the form
of an accompanying interactive website3. We performed a search on GS with our narrow and wide
queries between the 2nd and 8th of March 2018, and obtained citation data until March 21st. Figure 2
shows a year-by-year count of papers included in this study from both queries and publications we
added by hand. Figure 3 shows the citation graph of publications in the search results. Each dot
with text represents a publication shown with first author name and year. Publications are included
(green nodes) or excluded (red nodes) by applying the criteria from the search protocol. The edges
(read clockwise) represent citations. Publications not connected to the graph are omitted in this
figure. The aforementioned website adds search, filter and inspect functionality, integrating the
citation graph with the language summaries.

3https://vrozen.github.io/LoGaP/

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://vrozen.github.io/LoGaP/

Languages of Games and Play 0:11

Furtado2006

Hernandez2010

Furtado2006

Walter2011

Herzig2013

Sarinho2009

Matallaoui2015

Furtado2011

Guo2014

Marques2012

Moreno-Ger2006

Lewis2011

Tang2011

Thillainathan2014

Broeckhoven2013

Furtado2011

Rozen2014

Dormans2012

Thillainathan2013

Anderson2008

Frapolli2010

Mehm2012

Champandard2003

Guana2014

Furtado2007

Abbadi2015

Herzig2012

Valdez2013

Guana2015

Guo2015

Neto2009

Kesik2014

Russell2008

Ahmadi2012

Troyer2011

Prado2015

Ortega2013

Ahmadi2012

Guo2015

Neto2010

Núñez-Valdez2017

Balderas2015

Santorum2013

Minović2013

Robenalt2012

Pavlova2009

Maggiore2011

Raies2013

Tôn2015

Guo2015

Beyak2011

Calleja2010

Giacomo2016

Klint2012

Yoo2013

Barros2014

Frapolli2010

Solís-Martínez2015

Sánchez2015

Abbadi2015

Ziatdinov2016

Palmer2010

Zhu2016

Valente2015

Mathews2008

Beyak2011

Cheong2005

Tong2015

Zahari2016

Prater2014

Cooper2013

Smith2009

Guo2015

Kauhanen2007

Wells2013

Rozen2015

Stapić2013

Frapolli2010

Radomski2015

Browne2016

Ramachandran2016

Albuquerque2014

Bezgodov2015

Minović2011

Rodríguez-Cerezo2013

Giacomo2017

Furtado2006Mossmann2016

Anastasia2007

Yoo2014

Furtado2012

Walter2014

Huisman2012

Guo2015

Guo2015

Underwood

Ahmad2018

Prasanna2012

Giacomo2017

Abbadi2016

Bartel

Vijayakumar2016

Laforcade2016

Pløhn2015

Web2009

Moreno-Ger2006

SHAFIQ2017

Yoo2018

Woo2008

Mirza-Babaei2015

Kaisanlahti2017

Emms2014
Fisler2008

Holmes2014

Ašeriškis2017

Moreno-Ger2009

Troyer2017

Bernstein2016

Marchiori2012

Ašeriškis2017

Mehm2010

Stiegler2013

Barve2016

Berns2016

André2017

Dea2017

Marchiori2010

Sturtevant2014

ZHANG2017

Hastjarjanto2013

Wells2014

Marchetti2016

Rezin2017

Mennig2014

Ghergulescu2011

Ogata2017

Cutumisu2007

March2008

Garcıa-Penalvo2015

Ludovico2015

Nayar2017

McMullen2013

Grigoriou

Mehm2016

Bhowmik2014

Theodorsen2015

Hastjarjanto2013

Hvannberg2011

Ohashi2014

Ahmadi2012

By

Butler2017

Ahmadi

Kampa2016

Zubek2015

Trindade2015

Zhu2014

Pierce2012

Mehm

Clarisó2017

Kaurel2016

Tscheligi2016

Borgo2009

Heinimaki2015

Summerville2017

Flatholm2000

Nikas2015

Giacomo2014

Suzuki2011

Pieper2012

Palomo-Duarte2018

Flatt2012

Bhowmik2013

Barve2017

Shaker2016

Sousa2011

Aycock2016

Glade2017

Sierra2007

Féher2012

Calderón2017

Minović2011

Patil2017

Graziotin2013

Nusayr2016

Abbadi2017

Bäärnhielm2014

Graziotin2013

Hoey2015

Chaudy2014

Zammetti2013

Abdessettar2016

HASAN2017

Bossomaier2015

Méndez-Acuña2013

Broeckhoven2015

Hernadez2013

KRISHNA2016

GuanaGarces2017

Hosseinpoor2012

Levy2013

Gatti2017

Winstrøm-Møller2010

Borenstein2015

Coatta2014

Sadanand2017

Raghu2007

Ingram-Goble2013

Moreno2007

Soundararajan

Williams2012

Rodrigues2017

Wasilko2012

Zammetti2013

Ferdig2012

Burgos2008

Ekeroth2015

McAfee2015

Wong2011

McDonnel2009

Werdegang

Kauhanen2009

Kadlec2008

Široký2013

Mehm2013

Peppler2016

ROTARU

Ašeriškis2017

Bradburne2007

Vasilev2017

Eile

Fayed2017

Nascimento2008

Anderson2008

Sandkuhl2016

Bellotti2009

Peirce2013

Corne2013

Au-Yong-Oliveira2015

Chadha2016

Carter2016

Aubrecht2012

Rumiantcev2017

Maness2010
Halle2011

Yasuoka2014

Petty2013

Isomöttönen2015

Barenghi2015

Borghini2015

Viruel2011

Kuhrmann2010

Breen2015

Mota2018

Kyriakou2017

Berman2017

Nguyen2016

Aycock2017

Holloway2016

Vansa2009

Gaudl2016

Sinha2015

Lack2015

Crespo

Fischer2014

Kellinger2017

Fine2008

Fernández2016

Valen2014

Silva2017

Jung2011

Mayer2013

Chen2010

McNamara2016

Mahlmann2012

Wheeler2013

Hishiyama2015

Frade2012

Martínez-Ortiz2009

Arch

Khalyeyev2017

Kasting2016

Arch1972

Mailewa2015

Kellinger

Kellinger

Kelly2015

Bartle2016

Zammetti

Gañán2016

Yacoub2017

Lucero2016

Sierra2007

Mueller2006

DiBernardo

Weintrop2013

Schraml

Rozen2017

Polydorou2011

Abbas2012

Yates2013

Stern2008

Wiebusch2016

Rivas2008

Fernandes2011

Fitzpatrick

Ripley2013

Andersen2014

Eid2016

Xu2015

Alcantara2013

Lakhmani2016

Dodero2014

Wargnier2016

Liblit2007

Aubrecht2011

Lux2006

Moses2014

Fernandez2014

Collman2014

Aufreiter2011

Heineck2016

Nelson2016

Thevathasan2014

Frade2008

Kessler2010

Szymczak2014

Abdullah2010

Savidis2007

Metzger2014

Jordan2010

Lúcio2016

Özgür2007

Eleutério2015

LaViers2017

Rahman2012

Faldborg2015

Behrens2008

Fjeldberg2008

Tari2008

Liu2012

Amundsen2011

Raj2015

Arvela2010

Saternos2014

Balk2016

Zapata2016

Falcou2014

Meads2015

Yang2018

Denecke2015

Tarr2017

Copil2015

Miller2004

Terävä2007

Phillips2014

Tomassetti2014

Minder2016

Wheeling

Tan2017

Kozumplík2009

Santamarıa2017

Johansen2009

Spencer

Ciuciu2015

Herd

Mayer2017

Rubira

Jeffery2012

Rozenberg2015

Wong2010

Voelter2015

Parkin2010

Jenkinson2012

Robertson2014

Wirtz

Maruseac2017

Tang2008

Salen2007

Sweeney2006

Maier2008

Ierusalimschy1996

Claypool2005

Campbell2008

Repenning2010

Goude2007

Varanese2002

Coleman2005

Wang2006

Kardan2006

Overmars2004

Zagal2007

Elverdam2007

Bojin2008

Games2010

Koh2010

Zhang2010

Bergeron2006

Furtado2011

Nummenmaa2009

Reyno2009

Kawash2013

Basawapatna2010

Ebner2013

Almeida2013

Ryoo2008

Maggiore2012

Adipranata2010

Xin2009

Almeida2013

Lemay2007

Prax2013

Cheng2015

Mubin2009

Winn2009

Štrekelj2015

Rankin2002

Marne2012

Font2013
Phelps2004

Prax2015

Duke1980

Smith2011

Yun-duo2011

Goulding2010

Chang2012

Anderson2005

Reyno2008

Civera1994

Anderson2005

Suomela2004

Francillette2012

Mateas2005

Ahmad2015

Alves2010

Zerbst2004

Kreimeier2002

Blow2004

Gee2008

Olsson2014

Sarve2014

Reyno2009

Leutenegger2007

Boumaza2012

Ahmadi2011

Nishimori2006

Ambring2010

Dowd2009

Baker2011

Ingles2006

Chang2012

Togelius2008

Cowan2015

Gaudy2006

Meigs2003

Bátfai2010

Yulia

Lee2016

Tan2010

Gurung2016

Yoo2014

Nacke2008

Pirttiaho2014

Maggiore2011

Sundqvist2013

Dormans2012

Li2004

Browne2010

Doss2011

Clark2004

Penton2004

McAnlis2014

Qiu2009

Weintrop2012

Villaverde2009

BU2012

Lim2014

Shirai2003

Fujimori1999

Navarrete2013

Zook2014

Valente2005

Dennett2008

Yi2015

Natkin2004

Cho2014

Giordano2013

Hladká2009

Neil2012

Mladenović2016

Moreno-Ger2007

Ajiro2005

Manker2011

Prax2016

Anderson2008

Barboza2009

Lewis2006

Wetzel2014

Bayliss2006

Nelson2007

Cruz2011

Guimaraes2008

English2018

Hayes2008

Repenning2008

Marner2002

Masuch2005

Canossa2009

Murray2006

Holliday1995

Martens2015

Horswill2014

Holopainen2003

Ioannidou2008

Schaefer2004

Kreimeier2003

Thillainathan2013

Ge

Bennett2011

Zyda2008

Jeon2012

Radtke2010

Alom2015

Zimmerman2007

Gestwicki2008

Mitgutsch2012

Tonon2010

Dowd2013

Goulding2008

Grünvogel2005

Begel2007

Salomão2015

Aleem2016

Hayashi2013

Holbert2010

McGee2007

Sali2012

Ching2013

Kinzie2008

Brusk2007

Kultima2009

Madsen2012

Driessen2014

Estey2009

Smith2000

Paige2006

Carey2005

Wang2009

Voorhees2012

Kolesnikov2013

Soflano2011

Jacobs2010

Segundo2010

Ostrowski2013

Améndola2015

Kutner2016

Choi2009

Belman2010

Letts

Winters2013

Liming2011

Prax2016

Borde1992

Smith2016

Baldwin2017

Araújo2009

Smith2011

Hoganson2010

Li2004

Aldred2007

Rollings1999

Sung2016

Kardamis2014

Salazar2012

Grace2011

McCrea2017

Barnes1997

Taylor2007

Smith2016

Ochsner2014

Morgan2009

Ruggill2011

Evans2005

Nacke2005

Jones2005

McCallum2010

Minnigerode2013

Mastel2009

O'Luanaigh2006

Weng2011

Greenwood2009

Games2011

Alom2016

Schaul2014

Yatim2007

Makar2004

Shumaker2002

POR2017

Hoyles2004

Jackson2014

Nelson2014

Scharl2012

Ahmadi2014

Hoppenbrouwers2008

Mihci2014

Zackariasson2006

Jaśkiewicz2014

Torrente2012

Hoecke2015

Schenke2014

Ryu2014

Maxim2004

Eun2014

Tremblay1990

Sayenko2015

Ahmadi2011

Prax2012

Salvoni2010

Dietz2007

Swacha2010

Fullerton2005

Schetinger2011

Willett2015

Togelius2011

Roden2013

Gold2004

Chandler2005

Jang2014

Lackey2010

Bidarra2009

Byl2012

Baba2007

Nakano2004

McAllister2015

Annetta2010

Koyama2005

Marks2008

Cook2013

Fernandez-Vara2010

Navabi2006

Li2010

Castillo2008

Feronato2011

Sprankle2008

Smith2009

Bosser2004

Barbour2011

Enevold2008

Chae2014

Qureshi2012

Millians1999

Nummenmaa2008

Thol

Vanhatupa2011

MacLaurin2009

Repetto2015

Maggiore2012

Björk2003

Nelson2008

Villaverde2010

Šisler2013

Overmars2004

Bojin2010

Sullivan

Ortega2013

Altunbay2009

Simpkins2010

Flanagan2005

Osborn2013

Habgood2010

Cazzola2009

Ahmadi2012

Guo2015

Cooper2013

Mateas2003

Harteveld2009

Yannakakis2005

White2009

Ahmadi2012

Orkin2004

MacLaurin2011

Mehm2009

Repenning2015

Pareto2007

Ioannidou2011

Repenning2011

Olsson2008

Smith2012

Bakkes2010

Thielscher2011

Klint2013

Zimmerman2007

Bidarra2008

Eladhari2006

Dormann2012

Whitehead2008

Smith2009

Lankoski2008

Zagal2012

White2008

Flanagan2013

Ierusalimschy2005

Robenalt2012

Oliveira2010

Brusk2008

Browne2016

Alves2011

Gestwicki2007

O'Donnell2008

Fernández2013

Browne2014

Zagal2010

Holopainen2007

Zhang2012

Salen2005

Browne2012

Smith2012

Gao2012

Mahlmann2011

Grace2009

Gestwicki2012

Cavazza2000

Nummenmaa2009

Hernandez2010

Zhang2008

Butler2008

Aarseth2009

Broeckhoven2015

Bidarra2008

Repenning2014

Xu2009

Wang2015

Brown2016

Browne

Nummenmaa2011

Koenig2008

Hooper2017

Cooper2014

Treanor2015

Mateas2005

Koenig2008

Smith2010

Demers2009

Sicart2017

Anderson

Browne2011

Browne2010

Elliott2013

Alves2011

Smith2015

Repenning2012

Begel2007

Zagal2013

Ierusalimschy2007

Holopainen2008

Grace2012

Fowler2012

Brusk2005

Sweeney2009

Kriglstein2014

Wetzel2013

Smith2009

Orkin2010

Rankin2009

Valente2018

Mateas2007

Macedonia2000

Björk2006

Hendrix2009

Osborn2015

Eladhari2008

Azadegan2014

El-Nasr2006

Roque2005

Horswill2014

Tolmie2005

Aarseth2015

Abela2015

Almeida2013

Alves2006

Alves2013

Anderson2011

Balas2008

Baldwin2017

Baniassad2004

Brom2007

Browne2008

Calleja2009

Carbonaro2008

Champandard2007

Champanard2012

Church1999

Conway1997

Corstjens2018

Cutumisu2006

Cutumisu2009

Dawson2002 Denault2006

Djaouti2008

Dobbe2007

Dormans2009

Dormans2011

Dormans2011

Dormans2012

Eliëns2009

Elliott1999

Evans2014Fu2003

Fu2007

Funk2012

Henno2009

Hullett2010

Isla2005

Khalifa2017

Kienzle2007

Koster2005
Leijnen2015

Llopis2010

Mahlmann2011

Martens2018

Mateas2002

McNaughton2003

McNaughton2004

McNaughton2004

Natkin2003

Nelson2001

Nelson2008

Nelson2012

Nimwegen2011

Zhu2010

Orwant2000

Orwant2000

Perlin1996

Pickett2005
Pizzi2008

Resnick2009

Romein1997

Rozen2018

Saffidine2014

Salomoni2007

Sarinho2012

Schaul2013

Schmidt2014

Sicart2011

Simpkins2008

Smelik2010

Smelik2011

Smith2009

Smith2010

Smith2010

Smith2010

Smith2011

Smith2011

Smith2011

Spronck2004 Stolee2010

Szilas2007

Tang2013

Tessman2004

Thielscher2011

Treanor2012 Treanor2013

Tutenel2010

Verbrugge2010

Virmani2008

Wages2004

Wasty2010

West2007 White2007

White2008

Wilcox2007

Williams2011

Wright2000

Zagalo2006

Zhang2005

Zook2014

Games

Games

Sicart2009

Mateas2009

Osborn2017

Osborn2018

Modelware

Grammarware

Analysis

Frameworks,

Pattern Lan-

guages and

Ontologies

AI in

Games

Fig. 3. Systematic map shown as a citation graph. On the left: Software Engineering, Modelware (mainly the

top half) and Grammarware (mainly the bottom half). On the right: Analysis frameworks, pattern languages,

ontologies (mainly the top half) and AI in Games (mainly the bottom half).

Languages
of Games
and Play

ArtificialIntelligence

H
um

anities

Social Sciences

Pr
ac
tic
e

So
ft
w
ar
eE

ng
ine

eri
ng

M
D
E

DSL
s

PCG
Authoring

Ludology

Narratology

Education

Too
ls

En
gi
ne

s

Fig. 4. Language-centric approaches crosscut areas, disciplines and topics

The languages of games and play we have identified originate from the fields of software
engineering, artificial intelligence, humanities, social sciences, education, and game studies, with
some cross-disciplinary overlap and diffuse areas. Figure 4 illustrates the diversity of publication
areas and topics we have selected. The reader is invited to spin the outer wheel of research topics
around the publication areas. We describe research areas one by one. We briefly introduce each area,
give an overview of venues and link related research perspectives, which are detailed in Section 6.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:12 Riemer van Rozen

Table 6. Publication venues in the field of Software Engineering and Programming Languages

Venue Acronym Years Ct.

International Conference on Systems, Programming, Languages, and Applications:
Software for Humanity (conference umbrella)

SPLASH 1986–

Conference on Object-Oriented Programming Systems, Languages and Applications OOPSLA 1986– 1
Symposium on New Ideas in Programming and Reflections on Software Onward! 2002– 2
International Conference on Generative Programming and Component Engineering GPCE 2002– 1
International Conference on Software Language Engineering SLE 2008– 3
Workshop on Domain-Specific Modeling DSM 2001– 4

International Conference on Software Engineering ICSE 1975– 2
Workshop on Games and Software Engineering GAS 2011–2016 2

International Conference on Automated Software Engineering ASE 1990– 2

Symposium on Principles of Programming Languages POPL 1973– 2

Science of Computer Programming 2000– 2

ACM Sigplan Notices 1966– 2

Communications of the ACM CACM 1958– 3
ACM Queue Queue 2003– 2

For conciseness, we only describe venues when the number of identified publications is at least
two, as specified by the search protocol.

5.1 Software Engineering and Programming Languages
Software Engineering (SE) researchers study the game domain by developing and applying struc-
tured methods, languages, techniques and tools for engineering better game software. Lämmel
covers several subjects of Software Language Engineering (SLE) in his textbook on Software Lan-
guages: Syntax, Semantics, and Metaprogramming [29]. Compilers: Principles Techniques and
Tools (a.ka. the “dragon book”) by Aho et al., first published in 1986, is still regarded as a classic
foundational textbook [3].
We identify contributions from Programming Language (PL) research in particular, as shown

in Table 6. Figure 3 shows related publications on the left. The ACM Special Interest Group on
Programming Languages (SIGPLAN) “explores programming language concepts and tools, focusing
on design, implementation, practice, and theory”.
The main source of publications is the International Conference on Systems, Programming,

Languages and Applications: Software for Humanity (SPLASH), a large conference ‘umbrella’ of
colocated events whose names and acronyms are listed in the top part of Table 6. SLE research
is traditionally split between modelware and grammarware, which respectively revolve around
meta-models and grammars [37].
In addition, the search revealed two publications at the International Conference on Software

Engineering (ICSE). and two more at the colocated workshop on Games and Software Engineering
(GAS), which was organized five times. We also find two invited talks at the Symposium on
Principles of Programming languages (POPL) intended to inspire PL research.

Several journals stand out. The monthly SIGPLAN Notices includes special issues from associated
conferences, including SPLASH, SLE, Onward!, GPCE and POPL. Communications of the ACM is a
journal that covers a wider computer science space and articles from ACM Queue are included in
its practitioners section. In addition, we find two publications in special issues of Elsevier’s Science
of Computer Programming.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:13

Table 7. Publication venues in the field of Artificial Intelligence and Games

Venue Acronym Years Ct.

AAAI Conference onArtificial Intelligence and Interactive Digital Entertainment AIIDE 2005– 14
Workshop on Experimental AI in Games EXAG 2014– 2

IEEE Conference on Computational Intelligence and Games CIG 2005–2018 8
IEEE Conference on Games CoG 2019– –

International Conference on Computational Creativity ICCC 2010– 2

EvoStar – The Leading European Event on Bio-Inspired Computation (confer-
ence umbrella)

EvoStar 1998–

International Conference on the Applications of Evolutionary Computation –
Games track (EvoGames)

Evo-Applications 2010– 3

IEEE Transactions on Computational Intelligence and AI in Games TCIAIG 2009–2017 12
IEEE Transactions on Games T-G 2017– –

We highlight the following related perspectives: Automated Game design, a multi-disciplinary
area that includes SE, in Section 7.3; Applied (or serious) game design, in particular DSLs for
expressing subject matter, in Section 6.3, Script- and Programming Languages for game development,
in Section 6.12; Modeling Languages and model-driven engineering for game development, in
Section 6.13; andMetaprogramming, primarily illustrative examples explaining the power of generic
language technology, in Section 6.14.

5.2 Artificial Intelligence and Games
The Artificial Intelligence (AI) community has studied how games can benefit from intelligent,
usually algorithmic approaches, yielding efficient algorithms, techniques and tools. In their textbook
on AI and Games, Yannakakis and Togelius describe the theory, use and application of algorithms
and techniques [57].

When languages are created, it is often in the context of intelligent systems (or expert systems),
or content generators. Classical AI favored logic programming in Prolog for knowledge engineering,
the construction of intelligent systems, which explains why some modern solutions are also based
on this paradigm. Notable approaches include logic (Prolog, Answer Set Programming) andMachine
Learning. Figure 3 shows related publications, mainly clustered together in the bottom half of the
graph. Conferences, symposia and workshops, shown in Table 7, include the following.

The Association for the Advancement of Artificial Intelligence (AAAI) “aims to promote research
in, and responsible use of, artificial intelligence”. This includes the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE) and colocated workshops, such as
Experimental AI in Games (EXAG) which are annually organized in North America.
IEEE Conference on Computational Intelligence and Games (CIG) covers “advances in and

applications of machine learning, search, reasoning, optimization and other CI/AI methods related
to various types of games.” We find contributions related to methods for general game playing
such as game description languages and generation of level, strategies and game rules. The IEEE
Conference on Games (CoG), evolved from CIG and widened the scope to cover among other topics,
game technology, game design, and game education.

The prime journal is IEEE Transactions on Computational Intelligence and AI in Games (TCIAIG).
It recently widened its technological scope and was renamed to Transactions on Games (T-G).
We highlight the following related perspectives: Automated Game design, a multi-disciplinary

research topic with many contributions from AI and games, in Section 7.3; Game mechanics,

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:14 Riemer van Rozen

Table 8. Articles and presentations from Game Development Practice

Venue Acronym Years Ct.

Game Developers Conference (UBM Technology Group) GDC 1988– 4
Game Developer Magazine (UBM Technology Group) 1994–2013 3
Gamasutra (UBM Technology Group) 1997– 3

Table 9. Multi-disciplinary publication venues on Game Studies, Education and Storytelling

Venue Acronym Years Ct.

Conference of the International Simulation and Gaming Association ISAGA 1970– 3

Simulation & Gaming S&G 1970– 2

Game Studies 2001– 2

European Conference on Games Based Learning ECGBL 2007– 2

Computers & Education (Elsevier) 2000– 2

International Conference on Interactive Digital Storytelling ICIDS 2008– 2
Conference on Technologies for Interactive Digital Storytelling and Entertainment TIDSE 2003, 4, 6 2
International Conference on Virtual Storytelling ICVS 2001, 3, 5, 7 2

frameworks and systems providing analysis, generation and explanations of a game’s rules, in
Section 6.4; Virtual worlds and game levels, spaces whose structure and composition can be
described by languages, tools and generative techniques, in Section 6.5; Behavior languages, the
design of algorithms, tools and engines for non-player character behavior, in Section 6.6; Narratives
and storytelling, in particular technical language-centric approaches, in Section 6.7; Game analytics
and metrics, in Section 6.8; and General gameplaying and Game Description Languages, formalisms
for a diverse test-bed for AI and general game playing, in Section 6.11.

5.3 Game Development Practice
The Game Developers Conference (GDC) owned by the UBM Technology Group is a large annual
event and not a publishing venue. However, it hosts presentations by practitioners, some of
whom share presentation slides identified by this study. The GDCVault4 contains audio and video
recordings of these presentations and all volumes of Game Developer Magazine5, which ran until
2013. Gamasutra6 is a web site that continues to publish articles, and hosts selected articles from
Game Developer Magazine. In particular, post-mortems in which developers share experiences
about challenges, solutions, decisions (the good and the bad) during a game’s life cycle offer glimpses
of game development practice [19]. Given the enormous size of the game industry, the practical
accounts we identified in Table 8 are few. These languages likely represent the tip of the iceberg.
We reflect on this issue in Section 9.

5.4 Social Sciences and Humanities and Storytelling
Game scholars have extensively studied, analyzed and critiqued games. They provide insight into
how games work, what constitutes play, and how games impact culture and society. In game studies,
4https://gdcvault.com (visited August 20th 2019)
5https://gdcvault.com/gdmag (visited August 20th 2019)
6http://www.gamasutra.com (visited August 20th 2019)

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://gdcvault.com
https://gdcvault.com/gdmag
http://www.gamasutra.com

Languages of Games and Play 0:15

Table 10. Multi-disciplinary publication venues on Games and Entertainment Computing

Venue Acronym Years Ct.

International Conference on the Foundations of Digital Games FDG 2006– 12
Workshop on Procedural Content Generation in Games PCG 2010– 9
Workshop on Design Patterns in Games DPG 2012–2015 5

International Conference on Entertainment Computing ICEC 2002– 5
Workshop on Game Development and Model-Driven Software Development GD & MDSD 2011, 2012 3

Digital Games Research Association International Conference DiGRA 2003– 7

International Conference on Intelligent Games and Simulation GAME-ON 2000– 6

International North American Conference on Intelligent Games and Simulation GAME-ON-NA 2005–2011+ 3

International Conference on Computer Games CGAMES 2004–2015 4

Brazilian Symposium on Computer Games and Digital Entertainment SBGames 2002– 4

International Conference on Computers and Games CG 1998– 2

International Conference on Advances in Computer Entertainment Technology ACE 2004–2018 5

International Academic Conference on the Future of Game Design and Technol-
ogy

Future Play 2002–2010 3

ACM Computers in Entertainment CIE 2003–2018 2

ludologists have proposed vocabularies, ontologies and pattern languages aimed at understanding
and critiquing games and play in a cultural context.
Aside from studies, game education has yielded textbooks on game design and development

practice. Schell introduces the art of game design, offering theory, approaches and conceptual
lenses that help designers think and practice [40]. Fullerton describes a play centric approach to
creating games highlighting the disciplines prototyping and play testing [17]. Salen and Zimmerman
describe game design fundamentals with focus on core concepts, rules, play and culture [39].

Table 9 shows the publication venues we identified. The International Conference on Interactive
Digital Storytelling is the result of merging between its predecessors Technologies for Interactive
Digital Storytelling and Entertainment, and Conference on Virtual Storytelling.

The International Simulation and Gaming Association (ISAGA) has organized an annual confer-
ence since 1970. ISAGA can trace its origins back to the now famous book Homo Ludens [23], and
aside from game studies also has an education focus. Related is the journal Games & Simulation. In
addition, we identify articles in the Journal of Game studies.
We highlight the following related perspectives: Ontological approaches and typologies, in

Section 6.1; Pattern languages and design patterns, in Section 6.2; Narratives and storytelling, in
Section 6.7; Educative languages, in Section 6.9; and Gamification, in Section 6.10.

5.5 Multi-disciplinary Games Research
Researchers and practitioners from different fields meet at multi-disciplinary conferences on games
and entertainment computing. They exchange points of view, and apply and mix diverse expertise
on game design, AI and language technology, which results in synergy and inter-disciplinary
advances. Multi-disciplinary venues are the main source of publications included in this study,
and perhaps the best source of nuanced approaches. Table 10 shows the publications venues we
identified. We briefly describe each one.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:16 Riemer van Rozen

The International Conference on the Foundations of Digital Games (FDG) is a multi-disciplinary
conference that alternates between Europe and the USA. Two colocated workshops are of special
note. The first, Design Patterns in Games (DPG) includes pattern languages and gameplay design
patterns. The second, Procedural Content Generation in Games (PCG) is concerned with generative
methods for games, often using AI techniques.
The International Conference on Entertainment Computing (ICEC) is organized annually. The

continent of the venue varies. The colocated Workshop on Game Development and Model-Driven
Software Development (GD&MDSD) was organized twice. The Digital Games Research Association
(DiGRA) organizes its annual DiGRA International Conference, which is a mix of game studies,
humanities and technology.

The International Conference on Intelligent Games and Simulation (GAMEON-ON) focuses on
structured methods for programming of games that benefit industry and academia. GAME-ON is
organized annually in Europe, but also occurs on different continents, e.g., North America (GAME-
ON-NA). Another conference branched off from GAME-ON in 2004, as explained by Spronck [44].
It was first known as Computer Games: Conference on Artificial Intelligence, Design and Education
(CGAIDE) and later became the International Conference on Computer Games (CGames), which
was last organized in 2015.

The International Conference on Computers and Games (CG) is a venue that is not organized
every year. CG is associated with the International Computer Games Association (ICGA), which
also has its own journal. The Brazilian Symposium on Computer Games and Digital Entertainment
(SBGames) is a national event with international visibility, and also a source of several DSLs.

Some venues we identified are discontinued. For instance, the Conference on Advances in Com-
puter Entertainment Technology (ACE) was a technology oriented multi-disciplinary conference.
In 2018, most members of its steering committee resigned when they could no longer guarantee
an impartial review process, and the conference closed down after a community boycott that
condemned the conduct of the event’s owner. The International Academic Conference on the
Future of Game Design and Technology (Future Play) was organized from 2002 until 2010. The
journal, ACM Computers in Entertainment (CIE) ceased in 2018.

In the next section, we discuss a series of research perspectives. Each of these can be considered
a multi-disciplinary point of view.

6 RESEARCH PERSPECTIVES
We present a series of fourteen complementary research perspectives on languages of games and
play. Each perspective sheds light on what informs the design and construction of good games.
Together they form an overview that provides answers to our research questions rq2 and rq3. We
acknowledge that different decompositions would have been possible, and ours is merely one of
many ways to aggregate the results of this study. Our structure represents a best-effort that adheres
to the phrasings and research frames of the authors whose works we summarize.
We derive the perspectives from the search results as follows. We group summaries of similar

languages. We distill common research frames, highlight challenges and describe theoretical
foundations, systematic techniques and practical solutions. For conciseness, we only illustrate these
views with a selection of representative language summaries.

6.1 Ontologies and Typologies
In search of a common vocabulary for game studies, scholars have defined ontologies that relate
written symbols, abstract concepts and real-world objects. In general, an ontology defines a set
of named concepts, their properties and the relations between them, usually with the goal of
categorizing objects of interest in a specific subject area or problem domain for understanding its

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:17

Table 11. Ontological Languages

Nr. Language Domain Notation

1 Game Typology Game studies tables and visual diagrams
2 Game Ontology Project Game studies tables /pattern-language
4 Pervasive Games Ontology Pervasive games class diagram
3 Ontology of Journalism Journalism Web Ontology Language

Table 12. Pattern-languages for analyzing games and forming gameplay hypotheses

Nr. Language Informs the design of

5 Formal Abstract Design Tools gameplay goals / pattern languages
6 Game Design Patterns gameplay goals / pattern languages
7 Gameplay Design Pattern gameplay goals
8 Mechanics Dynamic Aesthetics digital game systems
11 Collaboration Patterns collaborative gameplay goals
15 Flow Experience Patterns flow experience goals
16 Patterns Language for Serious Games Design applied gameplay goals

Table 13. Pattern-languages offering authorial affordances over designing games and play

Nr. Language Game Artifact Affects

9 Pattern Language for Sound Design sound sound-supported experiences
10 Verbs abstract player actions gameplay affordances
12 Pattern Cards for Mixed Reality Games mixed reality game rules mixed-reality experience
13 Design Patterns for FPS Games structure of FPS levels progression, experiences
14 3d Level Patterns structure of 3d levels progression, experiences
17 Operational Logics depends on concrete

representations
inner game workings, external player
communication

26 Machinations game-economic mechanics,
feed-back loops

gameplay affordances, strategies and
trade-offs

meaning. In game studies in particular, ontologies and typologies are used to describe, categorize,
analyze, understand and critique games and play.
Aarseth explains that ontologies are essential for game studies to reach a consensus on the

meaning of words, concepts and relations between them [1]. He scrutinizes different ontological
models and describes challenges in their construction. For instance, choosing the level of description,
i.e. how fine-grained the ontological elements (or meta-categories) should be, is difficult because
there is no natural halting point in adding nuances, details or patterns for highlighting differences.
In addition, choosing generality or specificity limits applications since general-purpose ontologies
may not be as useful as ontologies constructed for a specific purpose.
There are many languages for constructing ontologies. For instance the W3C Web Ontology

Language (OWL) is an XML based notation with good tool support for describing semantic rela-
tionships7. In some cases languages of games and play use ontologies for describing or guiding
parts of the solution. Table 11 lists ontological languages we describe.

7https://www.w3.org/OWL (Visited June 1st 2019)

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://www.w3.org/OWL

0:18 Riemer van Rozen

Table 14. Languages for domain-experts to help design applied games scenarios

Nr. Language Subject matter expert Objectives

18 StoryTec educator, non-programmer educate through stories that integrate learning goals
19 GameDNA psychologist assess cognitive processes
20 ATTAC-L pedagogical expert educate, prevent cyber bullying
21 EngAGe DSL educator improve feedback to learners
22 VR-MED medical expert teach family medicine

6.2 Pattern Languages and Design Patterns
A pattern language describes best practices with empirically proven good results as a reusable
solution to commonly recurring problems in a particular area of interest. The approach originates
form Alexander et al. who describe a pattern language for towns, buildings and construction [4].
Often presented in table form or a template, sequential sections highlight different facets of the
problem, proposed solution, examples, and related contextual information. In Software Engineering,
Object Oriented (OO) design patterns are a well-known means to create, explain and understand
software designs, design decisions and implementations [18]. In contrast, in game studies and
humanities, game design patterns are a means to analyze and explain player experiences, also
referred to as gameplay design patterns. The key difference between these kinds of patterns is that
the former are prescriptive for structuring software and the latter are analytic regarding gameplay
effects. We categorize pattern languages in two categories. The first, shown in Table 12, lists
languages for analyzing, categorizing, understanding and critiquing gameplay. The second, shown
in Table 13, lists languages for predicting the effect of changes to a game’s design, and making
informed design decisions, e.g., level design patterns and game mechanics patterns. Programming
patterns that directly affect a game’s mechanics, narratives, levels, and behaviors are discussed in
Sections 6.4, 6.5, 6.6 and 6.7.

6.3 Applied Game Design
Applied (or serious) games have a primary purpose other than entertainment and usually require
designs that incorporate subject matter knowledge. Diverse experts from education, psychology
and even medical doctors can help improve game designs, e.g., for learning8, overcoming traumas
and speeding-up recovery. The challenge is integrating domain knowledge in a game’s design to
achieve specific gameplay goals such that players (for instance patients or students) learn, reflect or
modify behaviors. Naturally, there are ethical and privacy implications and restrictions of studying
player choices, especially if the game also serves as a diagnostic tool. Dörner et al. provide an
overview of foundations, concepts and practice of serious games for prospective developers and
users [12]. Applied games may also include physical forms of interaction [35]. Here, we identify
languages, mainly DSLs, intended for helping domain-experts design and vary scenarios of applied
games, e.g., for learning and assessment, as shown in Table 14.

6.4 Game Mechanics
Although most agree that game mechanics are rules that affect gameplay, there are many different
explanations, theories on how this works, e.g., [16, 25, 39, 40, 42]. In the previous sections we have
described frameworks (Section 6.1) and design patterns (Section 6.2) for understanding, analyzing,
and creating game mechanics. This section can be regarded as a proceduralist view that applies
formalizations and generative techniques to program game mechanics, and analyze effects.
8Please note that we excluded the term ’game based learning’ from the wide query due to the large amount of false positives.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:19

Table 15. Game Mechanics Languages

Nr. Language Mechanics Analysis Generation

23 Petri Nets game-economic, story yes ?
24 Game Space Definitions ’stock’ logics yes
25 Biped and Ludocore combinatorial yes yes
26 Machinations game-economic yes no
27 Micro-Machinations game-economic yes yes
28 Game-o-Matic combinatorial yes yes
29 Mechanic Miner avatar-centric yes yes
30 Gamelan and Modular Critics combinatorial yes ?
31 PDDL Mechanics combinatorial, avatar-centric yes yes
32 Sygnus and Gemini combinatorial yes yes

Table 15 shows languages, generators and tools for game mechanics. These works explore the
limits of formalism, and study to what extent models of mechanics (and players) can be leveraged for
predicting and improving a game’s quality. Each language attempts to relate mechanics to aesthetics
in different ways. Combinatorial rule spaces expressed with logical notations use constraints for
exploring the design space and homing in on desired qualities, for instance using Answer Set-
Programming for exploring the design space. Examples include Biped and Ludocore (Language 25)
or Gamelan and Modular Critics (Language 30).

Meaningful relationships between real-world subjects, e.g., derived from WordNet and Concept-
Net, can be used to instantiate the structure of mechanics, e.g. Game Space Defintions (Language 24).
Rhetorical arguments, intended for adding meaning, give structure to the mechanics of news games
or micro-games, e.g., to convince players with political or cultural statements. Examples are Game-o-
Matic (Language 28), and Sygnus and Gemini (Language 32). Sicart critiques procedural rhetorics, and
presents opposing arguments [43]. Nelson clarifies a more general position on proceduralism [36],
and Treanor and Mateas present an account of proceduralist meaning [48].

Avatar-centric mechanics encoded in ASP, rewrite rules or Java describe the physics of characters
in 2D levels, such as moving, jumping and bouncing, e.g., Mechanic Miner (Language 29), Planning
Domain Description Language Mechanics (Language 31) and PuzzleScript (Language 91).

Game-economic mechanics described in graph notations express how in-game resources flow and
which choices players have. They foreground feed-back loops that represent investments and trade-
offs. Examples are the well-known Petri Nets (Language 23), the design framework Machinations
(Language 26) or its cousin the programming language Micro-Machinations (Language 27).

6.5 Virtual Worlds and Levels
Virtual worlds are spaces in games or simulations that through various integrated audiovisual
content and interactive mechanisms support exploration, communication or play. Game worlds
and levels can be populated by and player avatars, virtual characters, stories, missions, quests, etc.
Procedural Level Generation is a form of PCG that focuses on generating game levels, spaces that
integrate missions, quests and (lock and key) puzzles, e.g., for dungeon crawlers and platformers.
Van der Linden et al. survey Procedural Dungeon Generation [50]. We identify relatively few
language-centric approaches using our protocol, since most authors in this perspective call their
solutions ‘tools’.

Table 16 shows tools and languages for designing levels and virtual worlds. Each of these tools
support creating and improving (this is usually called authoring) content a mixed-initiative style.
In mixed-initiative approaches, intelligent services (the tool) and the designer collaborate and take

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:20 Riemer van Rozen

Table 16. Tools and Languages for Mixed-Initiative Design of Levels and Virtual Worlds

Nr. Language or Tool Content

33 Semantic Scene Description Language classes of concepts and relationships
34 SketchaWorld 3d worlds
35 Tanagra platform game levels
36 Ludoscope grammar-based transformation pipelines of 2d levels
37 The Sentient Sketchbook tile map sketches of 2d levels
38 Evolutionary Dungeon Designer 2d level maps and patterns

Table 17. Languages for domain-experts to help design behaviors

Nr. Language Description

39 ABL ABL is a reactive planning language for authoring believable agents with rich personality
40 SEAL Simple Entity Annotation Language (SEAL) is AC-like script language for describing NPC behaviors
41 BEcool BEcool is a visual graph language with sensors and actuators for describing expressive virtual

agents
42 Behavior

Trees
Behavior Trees is a visual language for authoring AI behaviors

43 BTNs Behavior Transition Networks is a visual notation of hierarchical state machines for describing
behaviors

44 POSH# framework for creating behavior-based AI for robust and intuitive agent development
94 Statecharts Modeling formalism for describing behaviors
103 RAIL Reactive AI Language (RAIL) is a metamodel-based DSL for modeling behaviors in adventure

games

turns to achieve the designer’s goals [22]. Typically, designers receive visual computer-generated
suggestions, and based on gradually improving insight, make decisions that refine the content
iteration by iteration, in a conversational style. However, due to a lack of direct manipulation of
generated content, it can be challenging to assure all possible results represent meaningful and
high quality content. In this context, semantic scenes are structures for describing meaningful
and consistent content that can guide generators. As in other perspectives, authors also apply
patterns, constraints and metrics for generating and analyzing level qualities. Metrics are discussed
separately in Section 6.8.

6.6 Behaviors
Defining behaviors of Non Player Characters (NPCs) has been an active topic of technically
oriented research. A Behavior Definition Language (BDL) is a programming language that offers a
notation that controls powerful AI features for describing believable virtual entities that inhabit
game worlds [8]. Many BDLs are implemented as reusable software libraries that complement
game engines. According to Anderson, many BDLs are DSLs that also maintain the flexibility of
programming languages [8]. Challenges include developing appropriate notations and features,
authoring for dramatic realism, improving scalability of parallel behaviors, and raising the fault
tolerance. Table 17 shows a limited selection of formalisms including Reactive Planning Languages,
Behavior Trees, (Hierarchical) Finite State Machines, and Statecharts. Of course, many languages
describe behaviors in one way or another. Our selection represents a wider set of languages.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:21

Table 18. Languages for authoring, analyzing and generating narratives, stories and dramas

Nr. Language Expresses

39 ABL Reactive planning language used for interactive drama
46 <e-Game> Storyboards for educational adventure games, formally analyzed
47 ScriptEase Patterns of behaviors, quests and stories, interactive user interface
18 StoryTec Educational stories and related learning goals, part of a tool set
48 Ceptre Story worlds and experimental game mechanics, offers logical proofs
49 SAGA Stories whose compilers target different platforms
50 (P)NFG Structured computer narratives and IF, playability and correctness
51 Wander Number games, represents an early historical account
52 Storyboards Generating storyboards of game levels, leveraging a planner
53 Versu Interactive text-based drama, including social conventions
54 Tracery Stories and art, example of a ‘casual creator’
107 Ficticious Demonstrates the use of DSLs for Interactive Fiction

6.7 Narratives and Storytelling
Storytelling, a field on its own, is concerned with writing, telling and sharing stories by means of
narratives to convey ideas and experiences to an intended audience. Similar to games, stories in a
cultural context, can be used for entertainment, education, cultural values, etc. The perspective
we describe here is a technical interpretation that envisions programming languages for creating
narratives and programming interactive stories using generative techniques. Here, we refer to the
creation process as authoring, since the users of these languages are first and foremost authors.
Various researchers have focused on Interactive Fiction (IF), interactive drama, and the story

components of games, e.g., quests, missions and stories of adventure games or educational games.
Branching narratives can be expressed as graphs, where choices represent alternative sequences of
events or paths. Moreover, emergent stories with generative and dramatic components requires
integrating social values and knowledge of virtual personas. Challenges include checking the cor-
rectness of the paths by analyzing constraints and providing insight with appropriate visualizations
and debugging facilities, e.g, into the causality of emergent scenarios. Storyboards are a sequences
of images (or illustrations) and text (e.g. dialogues) used for analyzing stories of various kinds of
media, including games. Kybartas and Bidarra survey story generation techniques [28]. We identify
several languages intended for authoring, generating and analyzing narratives, summarized in
Table 18.

6.8 Analytics and Metrics
Data science combines techniques, approaches and tools from statistics, data mining, data analysis
and machine learning. Data scientists leverage the available data to extract knowledge, gain
insights and predict trends. The game industry increasingly relies on game analytics for developing
high quality games. One technique is using metrics, algorithms quantifying system properties,
as measures of quality. Designers can use these metrics to test gameplay hypotheses and assess
the gameplay quality by studying how metrics evolve over time. For instance, by relating player
models or ’personas’ to how game mechanics are used (Language 55). PlaySpecs can be used to
analyze sequences of player actions (Language 57). Launchpad uses metrics to assess platform level
quality (Language 56). In contrast MAD and SAnR work directly on the engine source code of
grammar-based level generators, relating gameplay- and software quality (Language 58). Fenton
and Bieman describe a rigorous approach for software metrics based on measurement theory [15].

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:22 Riemer van Rozen

college students Squeak (Lang. 62)
StarlogoTNG (Lang. 64)

high school

students

middle school

schildren

Scratch (Lang. 63)
Alice (Lang. 59)

AgentSheets and
AgentCubes (Lang. 65)

Gamestar Mechanic (Lang. 60)
young children Kodu (Lang. 61)

computational thinking programming creating & designing games

Fig. 5. Relating languages to education levels and learning goals

Research challenges include evaluating the quality of content generators [41], identifying suitable
metrics for different types of content, and relating metrics to player models and experience.

6.9 Education
Here we describe educative languages that are end-user solutions aimed at improving learning
experiences, e.g., for helping students or children learn programming, computational thinking and
game design in a playful and explorative manner. Figure 5 shows examples, and roughly relates
languages to educational activities, goals and (minimum) education levels. Educational languages
usually come with an ample amount of study material. In addition, these languages may include
learning programmes and web sites that cater for active online communities.
Languages for learning usually pay extra attention to usability. Of special note are the “block-

based languages” that enable users to fit syntactic constructs together like puzzle pieces. These do
not permit syntax mistakes that can be especially frustrating to novices, and instead ensure every
adjustment is meaningful and educational.
In addition, several languages use a Logo-style positional movement where one can imagine

moving around. Logo is an educational programming language that is well-known for its ’turtle’,
which can be steered using commands for drawing vector graphics.

6.10 Gamification
Gamification aims to apply or retrofit standard game designs to a new or existing system to improve
user experiences9. For instance, score, competition and reward systems have been used in areas
like online marketing to stimulate participation with a product or service. We identify languages
intended to gamify information systems in general, e.g., GAML (Lang. 66), GLiSMo (Lang. 67) and
UAREI (Lang. 68). While these languages are technically reusable, they lack subject matter concepts
that help domain experts solve design problems. Recently the term playification has been used to
describe gamification that facilitates play more effectively by means of tailor-made game designs.

6.11 General Game Playing
A key research challenge in AI is developing generally applicable intelligent techniques capable of
solving a wide range of complex problems. General game playing, for instance, refers to algorithms
that can play many games well.

Game Description Languages (GDLs) are notations with expressive power over restricted game
domains intended for evaluating the performance of AI techniques called general game players

9Please note that we excluded the term ’gamification’ from the wide query due to the large amount of false positives.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:23

Table 19. Game Description Languages (GDLs) for General Game Playing

Nr. Language Game domain Examples of represented games

69 Multigame mainly board games Chess, Checkers
70 (Stanford) GDL combinatorial games various combinatorial games
71 ’Rule Sets’ pac-man-like games generated games
72 Ludi GDL combinatorial games e.g. Javalath
73 Strategy GDL strategy games Rock Paper Scissors, Dune II
74 Card GDL card games Texas hold’em, Blackjack, Uno
75 Video GDL video games a variety of classic 2D games
76 Recycle card games Agram, Pairs, War

against a wide variety of manually created or generated games. GDLS are meant to cover a varied
and representative game space.
The systems that execute GDL programs are used for validating if these techniques are indeed

morewidely applicable, e.g., by letting them compete. General game players can be search-based [47],
e.g., Monte-Carlo Tree Search (MCTS) or leverage Machine Learning, e.g., genetic algorithms or
neural networks. In a guest editorial of a special issue on “general games”, Browne et al. summarize
the state-of-the art, challenges and directions for future research [10]. We show representative
GDLs in Table 19 whose domains reflect a shifting research interest of the community over the
years. Notably not identified by this study is Zillions of Games10.
General game playing has the advantage of developing and applying the state-of-the-art AI to

digital games, offering advanced tools, simulations and analyses. GDLs and are not necessarily
suited for fine-tuning rules and improving gameplay as in automated game design Section 7.3.
Therefore, not all GDLs are a-priori well-suited for developing games, especially not those intended
as research platforms. For instance, the language features of VGDL are course grained and the
Stanford GDL is low-level and verbose. GDLs for restricted game domains, such as board- and card
games, represent a concise and expressive middle ground.

6.12 Script and Programming
Here we describe a programming language perspective on game development. For creating a
programming language, one usually constructs a grammar using the Extended Backus-Naur form
(EBNF) or a similar notation, for parsing the textual source code of programs [3]. Here, source code
(or textual model) refers to end-user notations called concrete syntax. The result of parsing is a parse
tree that is often represented using suitable intermediate representations referred to as abstract
syntax, which usually omits white-space and comment. In the resulting tree, references between
definitions and uses must be resolved. This process of reference resolution yields a graph that forms
an input to analyzers, code generators and interpreters that further transform or run programs.
Game programming usually follows a bottom-up approach that composes game systems from

reusable parts. Specialized software libraries called game engines offer developers reusable Appli-
cation Programming Interfaces (APIs) for solving challenge in 3D modeling, physics, directional
audio or networking. Many commercial game engines have been developed as reusable platforms
for game development, e.g., Unity 3D, Unreal, CryoEngine, etc.11.

One approach separates game engines from game-specific source code by using a generic inter-
preters as-is, e.g. Python (Language 77) or Lua (Language 78). Table 20 also shows other examples.

10http://www.zillions-of-games.com (visited April 3rd 2019)
11These are not identified by this study.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://www.zillions-of-games.com

0:24 Riemer van Rozen

Table 20. Generic script and programming languages applied to game development

Nr. Language Application domain

62 Squeak programming system based on Smalltalk applied in teaching game design
77 Python programming language, applied for scripting in games
78 Lua programming language, scripting in games
79 vision on game programming reflections on features of game programming languages and Haskell
80 DisCo language and system for creating, executing and analyzing formal specifications
81 Design by contract generic approach that uses pre- and post-conditions for checking function calls

Table 21. Domain-specific languages for game development

Nr. Language Application domain

82 GameMaker 2D game development with C-like scripting
83 Extensible Graphical Game Generator game programming
84 Mogemoge 2D games
85 Scalable Games Language scripting for games
86 Network Scripting Language scripting and networking
87 4Blocks DSL DSL for Tetris games (Haskell-based)
88 Casanova game programming (integrated game engine)
89 Sound scene DSL sound scene DSL (Haskell-based)
90 MUDDLE (historical account) multi-user dungeon games (MUDs)
91 PuzzleScript puzzle games

Another approach leverages general purpose languages by adding domain-specific language ex-
tensions, e.g., as an internal DSL that reuses the syntax and semantics of the host language. For
instance, Scalable Games Language (Language 85) extends SQL and 4Blocks (Language 87) and
Sound Scene DSLs (Language 89) are Haskell-based.
In contrast, purpose-built languages, also known as external DSLs, have separate parsers, com-

pilers and/or interpreters. PuzzleScript (Language 91) and Micro-Machinations (Language 27) are
examples of external DSLs. Table 21 shows examples of DSLs for game development. For con-
ciseness, we do not list all textual DSLs that we already describe in other sections. Notably not
identified is DarkBasic [20].

6.13 Model-Driven Engineering
Model-driven game development revolves around abstract models that describe game content or
work processes, often using visual diagrammatic representations. Modeling languages are based on
the principles, techniques and tools from an area called Model-Driven Engineering (MDE). These
models are step-by-step translated, transformed and combined into a resulting model or source code
that integrates with the game software. We identify applications of generic modeling languages in
Table 22, and Domain-Specific Modeling Languages in Table 23.

Metamodeling represents the abstract syntax of models as a graph of Unified Modeling Language
(UML) classes and references between them. Because metamodeling is often based on the Eclipse
Modeling Framework (EMF) and Ecore (the EMF model engine), it enjoys the advantage of generic
reusable tools for model transformation, analysis and productivity, e.g., for adding a textual concrete
syntax (Xtext, EMFText), or graphical ones (e.g., using GMF, Graphiti) [37]. In a recent literature
review, Zhu and Wang present a model-driven perspective on game development [58].

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:25

Table 22. Generic modeling languages applied to game design and development

Nr. Language Application domain

92 UML – Metamodeling generic formalism for meta-modeling, e.g., applied to 2D platfrom games
93 UML – Class and State

Diagrams
generic formalism for object-oriented analysis and design applied in model-driven
game development

94 Statecharts variants of a formalism that describe behaviors as state machines, applied to Game AI
and dialogue in games

95 Feature Models visual variability modeling formalism applied to managing game (and game engine)
variability

Table 23. Domain-specific modeling languages for game development

Nr. Language Application domain

96 SharpLudus RPG games, mobile touch-based games, 2d arcade games
97 Eberos gml2d 2D Games
98 FlexibleRules digital board game creation and customization
99 PhyDSL 2D mobile physics-based games
100 Pong Designer Pong-like games
101 Board Game DSL board games
102 RougeGame Language visibility Rogue-like dungeon maps
103 Reactive AI Language behaviors in adventure games

Table 24. Applications of metaprogramming languages and language work benches

Nr. Language Metaprogramming language or work bench url

27 Micro-Machinations Rascal https://www.rascal-mpl.org
66 GAML Xtext https://www.eclipse.org/Xtext
96 SharpLudus Microsoft DSL tools https://visualstudio.microsoft.com
99 PhyDSL Xtext https://www.eclipse.org/Xtext
104 Whimsy C++ (various versions exist)
105 Level editors DiaMeta http://www2.cs.unibw.de/tools/DiaGen
107 Ficticious Ginger (not found)
106 Text aventures Racket https://racket-lang.org
108 Dialog Script Xtext https://www.eclipse.org/Xtext

6.14 Metaprogramming
The metaprogramming perspective considers game development as an application domain for
generic language technology. Metaprogramming refers to techniques, tools and approaches for
creating metaprograms that read and transform the source code of other programs, e.g., compil-
ers, interpreters and integrated development environments. Applying these techniques to game
development promises to raise productivity, improve quality and reduce maintenance costs.
Constructing languages and tools by means of metaprogramming requires appropriate meta-

tooling. Language work benches are tools that provide high-level mechanisms for the implementation
of software languages. Erdweg et al. describe the state of the art in language workbenches [14].
Examples of metaprogramming languages and language work benches include Epsilon, Gemoc
Studio, Meta-Edit+, MPS, Racket, Rascal, Spoofax and Xtext. Several authors illustrate metapro-
gramming techniques and apply approaches to example languages. Table 24 shows examples of
language of games and play created by means of language work benches.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://www.rascal-mpl.org
https://www.eclipse.org/Xtext
https://visualstudio.microsoft.com
https://www.eclipse.org/Xtext
http://www2.cs.unibw.de/tools/DiaGen
https://racket-lang.org
https://www.eclipse.org/Xtext

0:26 Riemer van Rozen

The strength of this perspective is the application of state-of-the-art in language engineering
and its weakness is that, with some exceptions, many illustrations remain toy examples that are
never extensively validated.

7 CHALLENGES AND OPPORTUNITIES
Here we discuss research trends, synthesize insights and describe challenges and opportunities for
future research and development. First, we discuss the results in general in Section 7.1. Next, we
compare and analyze success factors in Section 7.2. Finally, we synthesize one additional perspective
on languages of games and play in Section 7.3. Our Automated Game Design perspectives is a
specific language-centric discussion on challenges and opportunities for research and development.
This section answers research question rq4.

7.1 General Analysis
Our area of interest ‘languages of games and play’ is a well-studied research topic with a growing
number of publications. Figure 2 shows that most papers we included were published after the turn
of the millennium. Around this time, roughly between 1998 and 2006, most of the interdisciplinary
game publishing venues we identified also came into existence. Since 2005, there is a gradual
increase in the term ‘domain-specific language’. Two factors explain the declining number of
publications in this study after 2015. First, the query date limits the search results. Second, GS
orders the results of the wide query to show older results first. Therefore, it is likely we missed
newer results that could have been included.

Our analysis of the citation graph, shown in Figure 3, reveals a low cohesion between publications.
We observe clusters that represent distinct technological spaces, tight-knit communities, fragmented
sub-topics and diffuse areas. Therefore, authors may not find or recognize related work in a wider
research context. As a result, relevant literature has gone uncited, efforts and successes have often
been one-off, lessons learnt have gone overlooked, and several studies and areas have remained
isolated. We view this mapping study as an opportunity to relate relevant primary sources to help
frame research problems, reuse available approaches, and benefit from documented experiences. Our
map serves to navigate between related perspectives and technological spaces. As time progresses,
the map can be extended and reshaped for charting new research trajectories that continue to
explore the limits of formalism.

7.2 Success Factors
Our analysis reveals a “grave yard” of dead language prototypes. Few languages ever grow to
maturity. Many languages remain solution proposals that are now no longer maintained, available
or in use. This lack of reuse is unfortunate, since creating one language often requires years of
research, design and development. Naturally, this leads to the question why so many prototypes
were abandoned. Here we discuss observations and insights about shared success factors. Table 25
shows examples of languages that stand out as multi-faceted research with a relatively high
publication count. We explain succes factors summarized in Table 26.

Languages of games and play represent a considerable effort and a long-term investment. There-
fore, success requires a multi-year research trajectory, perhaps spanning multiple research grants
and PhD projects. Publishing in different research areas helps answer different related questions and
sheds light on challenges and solutions from different perspectives. Involving multiple researchers,
language developers and practitioners creates co-ownership and continuity.
Traditionally, academia and the game industry have not always seen eye to eye. However,

collaborating in applied research projects is essential for validating research in practice. To that
end, some research departments include labs and game studios, and host in-house designers. Of

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:27

Table 25. Examples of multi-year, multi-disciplinary work on Languages of Games and Play

(AI: Artificial Intelligence, SE: Software Engineering, Edu: Education, G: Games)

Nr. Language Ct. Years Areas Perspectives

65 AgentSheets 6 1995–2012 SE+Edu visual DSLs, education
39 ABL 5 2002–2008 AI+G+SE programming, behaviors, interactive drama
7 Gameplay Design Patterns 6 2003–2013 G+Edu pattern language
47 ScriptEase 8 2003–2013 SE+G pattern language, visual DSL
96 SharpLudus 6 2006–2012 SE+G model-driven engineering, visual DSL
46 <e-game> 6 2006–2012 SE+Edu storyboards, education, visual DSL
25 Biped and Ludocore 9 2008–2012 AI+G automated game design, mechanics
26 Machinations 6 2009–2012 G pattern language, automated game design
27 Micro-Machinations 3 2013–2015 SE+G automated game design, mechanics, programming,

visual DSL
88 Casanova 11 2011–2017 SE+G game programming

Table 26. Highlighting the differences between applied and forgotten languages

Alive languages Dead languages

Language experts multiple one
Publication count multiple one or two
Publication areas multiple one
Validation applied and validated in practice not applied, toy examples
Availability sources or wiki pages are released and maintained up to a point, no source code is available
Examples tutorials, workshops and study materials are available not available

course, working with innovative indie game developers or AAA studios on industrial case studies
costs time and effort. The main benefit is that case studies can show case approaches and lead to
better and more applicable solutions. Stakeholders can formulate common goals, agree to make
research results open source, and protect intellectual property of businesses with Non-Disclosure
Agreements (NDAs). As a selling point, students participating in these projects might become
employees who bring expertise and help to create new and innovative game products.

Naturally, making solutions available is necessary in order to apply them. Open source software
might include reusable script engines, content generators, visual tools or programming environ-
ments. In addition, for learning to apply solutions effectively, users may require Wiki pages, blogs,
example materials, tutorials and workshops. We found online supplementary materials for roughly
half the languages we summarized.

Some languages, in particular educational online languages described in Section 6.9 have thriving
user communities that create significant impact. Their users apply solutions in practice, which
increases the research visibility and grows a network. Naturally, these benefits come at great cost,
e.g., time spent on tools, demos, maintenance and legacy support. However, when users become
stakeholders invested in validation, they also assist in building data sets. Of the 108 language
summaries, only 11 are based on at least one publication we categorized as evaluation research.
Ultimately, empirical evidence is necessary for scientific research.

7.3 Automated Game Design
Here, we synthesize a unifying perspective on languages of games and play by relating research
perspectives from the previous section to challenges and opportunities for future research and
development.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:28 Riemer van Rozen

Game

AI Pro-

grammerGame

Designer

EducatorNarrator

Subject Matter Expert

Level

Designer

(a) Examples of experts that might

contribute to a game’s design

GameMechanics

Game-Economies

Physics

Behaviors

Virtual Worlds

Levels

Missions

Trainings

Assessments

Dungeons Storylines

Quests

(b) Examples of interaction-bound content types whose evolution

represents gameplay dimensions that span game design spaces

Fig. 6. Game design experts contribute content to evolve games in different dimensions

Automated Game Design (AGD) aims to speed-up and improve iterative game design processes
by automating design processes. Here we discuss how languages, structured notations, patterns and
tools can help game design experts raise their productivity and improve the quality of games and
play. We distill research challenges and relate this perspective to other perspectives on languages
of games and play.

Various languages, techniques and tools have been proposed for creating, generating, analyzing
and improving a game’s parts. These design tools offer interactive user interfaces that support
prototyping, sketching designs, automating play tests and exploring design spaces, usually in a
mixed-initiative, conversational and collaborative manner. Moreover, these tools are often intended
to support game design as an explorative, playful or enjoyable activity. AGD usually shifts design
and implementation efforts away from manual, repetitive, time consuming and error-prone tasks.
That way, designers can more efficiently create, improve and maintain growing amounts of game
content. We define content as follows:

“Game content refers to every asset of a digital game that can be separately (or together)
viewed, understood, modeled, generated, recombined and improved to affect audio-visual
and interactive player experiences.”

Visual content includes textures, models, sprites, imagery, objects that form composite structures
such as trees, landscapes, cities and nature [41]. Audio content includes music, voices and effects.
Procedural Content Generation (PCG) refers to generative techniques that produce and transform
game content [21, 28, 41, 50]. Game engines and software libraries, reusable components for the
construction of digital games, are not content [41].
The focus of this study is on ‘interaction-bound content’, content that expresses how players

interact and communicate, which especially affects player experiences. Figure 6a illustrates the
diverse experts that might contribute to a game’s design. Figure 6b illustrates types of content (or
facets) a game might have. Modifying these content facets evolves a game along multiple related
axes or dimensions.

The problem is that these dimensions overlap, often in non-trivial ways, which results in a web of
criss-crossing interconnected content dependencies that may differ from game to game. This makes
it exceptionally difficult to align a particular interpretation of a dimension with a reusable form
of content representation that separates a game design concern. As a result, improving a game’s
qualities along one dimension is often difficult without negatively affecting another. Therefore,

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:29

design experts require orchestrated content generators [30] for composing high quality games
from different kinds of inter-connected content, intricately interwoven to support meaningful
experiences, in a reusable manner. Next, we relate key challenges of AGD to perspectives on
languages of games and play.

Frameworks and pattern catalogues for studying games describe what games are. These perspec-
tives inform automating game design by providing context, theory and structured frameworks for
common vocabularies and notations.

• Game designers lack a common vocabulary, which hampers specification, communication
and agreement among developers and designers [27]. However, automating game design
requires formalizing game concepts, e.g., by performing a domain analysis that identifies
concepts, names, meanings and relationships. Useful frameworks and resources are ontologies
and typologies that help to describe, understand and characterize games, and distinguish
what makes games unique. Section 6.1 highlighted this perspective.

• Game designers require design tools, reusable patterns, and techniques that help them analyze
and predict how modifications to a game’s design will affect the gameplay. Section 6.2
highlighted pattern languages and game design patterns that describe best practices, recurring
structures of content and gameplay, and represent steps towards standardization and reuse.

Other perspectives are content-centric. Related publications typically envision design experts who
contribute design artifacts by means of languages and tools. We describe the following perspectives:

• Gamesmay require integrating subject matter knowledge. The challenge is providing languages
and tools that enable domain experts such as as educators and psychologists to describe
scenarios and participate in game design processes. Section 6.3 highlighted a perspective on
applied (or serious) game design.

• Many games integrate game mechanics, rules that offer playful affordances and bring about in-
teresting player experiences. Game designers require formalisms to express game mechanics,
e.g., game economies or avatar physics. Additionally, they require tools for analyzing behav-
iors, generating rules, balancing strategies, introducing trade-offs, managing feedback-loops
and automating play testing. Section 6.4 highlighted a perspective on game mechanics.

• Many games include generated spaces such as virtual worlds and game levels. Designers
require tools to assist in populating these spaces with various kinds of content, e.g., to
create varied and interesting game levels, dungeons, missions and quests. Section 6.5 gave a
perspective on spaces.

• Game designs may integrate behaviors of in-game entities such as non-player characters that
require dramatic realism or challenge. Designers and AI programmers require formalisms for
expressing these behaviors. Section 6.6 illustrated a perspective on behavior languages with
different strengths and applications.

• Games designs may integrate stories that allow players to progress through stages of a plot.
Designers and narrators require languages and tools to expressing these stories. Section 6.7
illustrated a perspective on techniques that express narratives and story plot using textual
notations and graphs.

Technical views on how to automate game design with available techniques and approaches
originate mainly from the fields of AI and games, software engineering, and education. We relate
the following challenges to technical perspectives on languages of games and play:

• Raising the quality of game content requires automated iterative analyses, especially when
dealing with generated content. Section 6.8 highlighted a perspective on metrics, which can
be used to relate content and player actions to gameplay.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:30 Riemer van Rozen

• Usability, understandability and ease of use are essential qualities for game design tools.
Designers require appropriate visual notations and timely feedback to comprehend concepts,
master language features and learn to apply user interfaces effectively. We described a
perspective on educational end-user environments in Section 6.9.

• During a digital game’s life span, designers may need to make significant changes to its design.
Designers require tools that enable modifying a game’s design during its entire evolution.
Section 6.10 gave a perspective on gamification, which studies techniques for redesigning
games and retrofitting game designs.

• Powerful, cutting-edge AI techniques are constantly being researched, developed and im-
proved. The challenge is leveraging these for automated game design, e.g., for analysis,
generation and testing. Section 6.11 described a perspective on a field called general game
playing, which uses games as a test-bed for AI.

• Developing high quality games in a time-to-market manner requires programming and
maintaining growing amounts of source code, and rapidly evolving that code towards new
gameplay goals. Section 6.12 highlighted a perspective on DSLs, script languages and pro-
gramming environments, which have been created to speed up development and improve
the quality and maintainability.

• Developing visual languages for game design from scratch is a difficult and time-consuming
endeavour. Model-driven engineering offers several reusable formalisms, techniques and
approaches. We highlighted a perspective on how design can be automated by means of
visual models and tools in Section 6.13.

• Developing and maintaining DSLs, generators and tools costs a considerable amount of time
and effort. Language developers require appropriate meta-tooling and metaprogramming
techniques to alleviate this effort, that enable rapid prototyping. Several authors advocate
the use of generic language technology by demonstrating its power in illustrative examples.
We highlighted this perspective in Section 6.14.

We describe two additional open research challenges. First, a game’s quality is limited by the
number of game design iterations. Producing high quality games more quickly requires the duration
of game reducing iterations. An open challenge is leveraging live programming techniques for
providing live (immediate and continuous) feedback on changes to a program. This may be the key
to forming more accurate mental models and better predicting behavioral effects and gameplay
outcomes. Second, the composition of content alone does not explain how a game’s simulation
is communicated to its players. To fully understand how a game works, designers might require
content creation strategies that relate content representations to a set of communication strategies
or Operational Logics (Language 17).

8 RELATEDWORK
The research perspectives we have described in Section 6 relate work on languages of games and
play. We have already mentioned several surveys on more specific topics that align with those
perspectives. Here we briefly discuss more general related surveys, literature reviews and mapping
studies that focused on specific themes and topics. This study poses research questions that were
not yet answered, and contributes a multifaceted overview of the entire area of interest.

Ampatzoglou et al. perform a systematic review on software engineering research for computer
games [7]. They identify topics, research approaches and empirical research methods.
In addition, two surveys relate to the model-driven-engineering perspective presented in Sec-

tion 6.13. Tang and Hanneghan examine the state-of-the-art in model-driven game development
from a game-based learning perspective [45]. Their overview describes model transformations

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:31

and several game design languages. Zhu and Wang present a literature review that analyzes 26
model-driven approaches [58]. Their protocol zooms in on target game domains (genres), domain
frameworks, modeling languages, tooling, and evaluation methods.

Beckmann et al. perform an exploratory literature study on ‘live’ tooling in the game industry [9].
They analyze articles on Gamasutra and videos of the Game Developers Conference, and relate
identified tools to degrees of live programming. In contrast, we cover mainly academic sources.
Almeida and da Silva survey game design methods and tools [6], and synthesize requirements

from 32 selected publications [5]. They present a map of design frameworks and visual modeling
formalisms [6], which overlaps with our perspectives on Ontologies (Section 6.1), Pattern Languages
(Section 6.2) and Game Mechanics (Section 6.4).

Several vision papers align with this study. Walter and Masuch discuss how to integrate DSLs
into the game development process [54]. Mehm et al. take an authoring tools perspective when
discussing research trends [32]. We give an overview of related PhD dissertations in Appendix A.

9 THREATS TO VALIDITY
Systematic mapping studies are intended to create an unbiased and complete overview of a subject.
With that in mind, we have applied methodology guidelines [26], and designed a reproducible and
an unambiguous protocol. However, the results of this study are a compromise. By definition the
word ‘game’ is a concept whose ‘essence’ cannot be captured in words [56]. Therefore this study
can never be fully complete, unambiguous, and unbiased. Here we address threats to validity.
Scoping the area of interest.We formulated two queries to obtain evidence for our hypotheses.

Our narrow query, aimed at our second hypothesis, is biased towards software engineering where
the term ‘domain-specific language’ is common. To obtain a more nuanced and complete overview
that also includes other research fields, we formulated a wide query aimed at our first hypothesis,
with focus on languages in general. However, more than 16K GS results was more than is feasible
for us to analyze. We compromised and chose to limit our analysis to its top 1K results. In addition,
we filtered terms that are often, but not always, off-topic. As a result, despite our best efforts, we
may have overlooked relevant publications.
Breaking protocol.We cited publications not conforming to either of our queries to clarify the

origins, descriptions and applications of a language. In addition, we included several papers that
conform to the wide query, but did not appear in the top 1K results. We have clearly marked these
in the language summaries of Appendix B, and added the bibliographical data in a separate library,
as can be seen in Figure 2. While this makes our overview more complete, it also reintroduces the
selection bias we wished to avoid in the first place.

Pilot error.We have summarized and related publications from a wide array research fields, areas
and topics. Unfortunately, despite our best efforts, we have inevitably overlooked or mischaracter-
ized contributions. This study is intended as an inclusive, constructive and ‘living’ document that
we hope to discuss, improve and extend over time.

Synthesizing perspectives.We synthesized fifteen perspectives on languages of games and play
from over one hundred language summaries. Our decomposition of the topic of interest is a best-
effort interpretation that relies on our personal experience. We acknowledge that it is possible
to formulate other research perspectives that extend the collection. Different authors, who have
distinct research needs and goals, might want to shed light on a problem from a different angle.
They could choose finer granularity to zoom in on an area, and reuse different subsets of languages
that cross-cut topics in different ways.

Missing in action: game development practice.We have mapped the state-of-the-art in languages of
games and play for a wide audience, which in our view, should include practitioners. Unfortunately,
because we identified relatively few practical sources, we have not fully delivered on this promise.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:32 Riemer van Rozen

We acknowledge this is a limitation of our research method, which does not include non-written
sources such as games, development kits, engines and tools. Of course, GS primarily contains
academic sources, and the game development industry is not in the business of publishing papers.
In addition, fierce competition and time-to-market pressure have led to a degree of industrial secrecy.
By not sharing information, many businesses are simply protecting their intellectual property and
competitive edge.
Using Google Scholar. Our choice for GS is motivated by its high recall. Using GS we obtained

publications from independent venues we did not know existed. However, Google owns the in-
formation records on GS, maps the interests of its users, and does not provide bulk access12. This
complicates systematic studies in general, which require an off-line analysis in order to ‘stand on
the shoulders of giants’. As a result, it is not straightforward to reproduce this study.
Applying bibliometrics.We obtained citation data from GS and constructed the citation graph

using a combination of Python scripts and Gephi. Given the right tools, we could have extracted
the citation data directly from the PDFs. In addition, we used Gephi’s built-in layout algorithms
to obtain a suitable image. However, the same data can produce different graph layouts as well.
Mapping studies are complicated by a lack of tools for bibliographic analysis and bibliometrics.
Standardizing and automating mapping studies can help save precious time and improve the quality
of literature reviews and surveys in general.

10 CONCLUSION
We have presented an overview of the state-of-the-art in languages of games and play that relates
research areas, goals and applications. We identified and summarized over one hundred languages,
and synthesized fifteen research perspectives (or angles) on the topic, each illustrated by selected
language summaries. The results show that there is evidence to support both of our research
hypotheses. First, languages, structured notations, patterns and tools can offer designers and
developers theoretical foundations that offer experts systematic techniques and practical solutions
they need to raise their productivity and improve the quality of games and play. Second, we obtained
evidence that DSLs can help in automated game design, and described illustrative examples that
suggest how to achieve this. We also mapped related approaches and described perspectives other
than our own departure point with distinct approaches and motivations. Instead of clarifying a
single perspective, our map leads in many related research directions, each representing possible
departure points for related studies. Ultimately, our map provides a good starting point for anyone
who wishes to study and learn more about languages of games and play.

Future Work. We foresee the following future work. First, we plan to maintain and extend the
accompanying website. The interactive version of the map serves as a ‘living document’ that enables
exploring languages, citation data and summaries, and navigating between them.

Second, we see opportunities for additional mapping studies and literature reviews that intersect
with this study and zoom in on specific related areas, such as automated game design, mixed-
initiative approaches, procedural content generation and live programming [9].

ACKNOWLEDGMENTS
We thank the anonymous reviewers, Paul Klint, Tijs van der Storm and Daria Polak for proof
reading and providing valuable feedback that helped improve this paper. In addition, we thank the
many colleagues who over the years have pointed out relevant languages, venues and publications.

12https://scholar.google.com/intl/en/scholar/help.html (visited August 23rd 2019)

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://scholar.google.com/intl/en/scholar/help.html

Languages of Games and Play 0:33

Last but not least, we thank the authors whose contributions we had the privilege to read,
summarize and relate. We would like to apologize to any peer who feels their work is unfairly
treated or incorrectly portrayed.

REFERENCES
[1] E. Aarseth. “Define Real, Moron! Some Remarks on Game Ontologies”. In: DIGAREC Keynote-Lectures 2009/10. Ed. by S. Günzel et al.

DIGAREC 6. Potsdam UP, 2011, pp. 50–69.
[2] E. Aarseth et al. “A Multi-Dimensional Typology of Games”. In: Proceedings of the 2003 DiGRA International Conference: Level Up,

DiGRA 2003, Utrecht, The Netherlands, November 4–6, 2003. Ed. by M. Copier and J. Raessens. Utrecht University, 2003.
[3] A. V. Aho et al. Compilers: Principles, Techniques, and Tools. Addison-Wesley, 1986. isbn: 0-201-10088-6.
[4] C. Alexander et al. A Pattern Language - Towns, Buildings, Construction. Oxford University Press, 1977. isbn: 978-0-19-501919-3.
[5] M. S. Almeida and F. S. da Silva. “Requirements for Game Design Tools: a Systematic Survey”. In: Proceedings of the 12th Brazilian

Symposium on Games and Digital Entertainment, São Paulo, Brazil, October 16–18, 2013, SBGames 2013. 2013.
[6] M. S. O. Almeida and F. S. C. da Silva. “A Systematic Review of Game Design Methods and Tools”. In: Entertainment Computing –

Proceedings of the 12th International Conference, ICEC 2013, São Paulo, Brazil, October 16–18, 2013. Ed. by J. C. Anacleto et al. Vol. 8215.
LNCS. Springer, 2013, pp. 17–29. isbn: 978-3-642-41106-9.

[7] A. Ampatzoglou and I. Stamelos. “Software Engineering Research for Computer Games: A Systematic Review”. In: Information &
Software Technology 52.9 (2010), pp. 888–901.

[8] E. F. Anderson. “On the Definition of Non-Player Character Behaviour for Real-Time Simulated Virtual Environments”. PhD thesis.
Bournemouth University, Apr. 2008.

[9] T. Beckmann et al. “An Exploratory Literature Study on Live-Tooling in the Game Industry”. In: Workshop on Live Programming
(LIVE) 2019, Athens, Greece, October 20, 2019. 2019.

[10] C. Browne et al. “Guest Editorial: General Games”. In: IEEE Transactions on Computational Intelligence and AI in Games 6.4 (Dec.
2014), pp. 317–319. issn: 1943-068X.

[11] R. Coyne. “Wicked problems revisited”. In: Design studies 26.1 (2005), pp. 5–17.
[12] R. Dörner et al. Serious Games. Springer, 2016. isbn: 978-3-319-40611-4.
[13] M. P. Eladhari and E.M. I. Ollila. “Design for Research Results: Experimental Prototyping and Play Testing”. In: Simulation &Gaming

43.3 (2012), pp. 391–412.
[14] S. Erdweg et al. “The State of the Art in Language Workbenches – Conclusions from the Language Workbench Challenge”. In:

Software Language Engineering – Proceedings of the 6th International Conference, SLE 2013, Indianapolis, IN, USA, October 26–28, 2013.
Ed. by M. Erwig et al. Vol. 8225. LNCS. Springer, 2013, pp. 197–217. isbn: 978-3-319-02653-4.

[15] N. Fenton and J. Bieman. Software Metrics: A Rigorous and Practical Approach. 3rd ed. CRC press, 2014. isbn: 9780429106224.
[16] T. Fullerton et al. Game Design Workshop: Designing, Prototyping, and Playtesting Games. CMP Books, 2004. isbn: 1578202221.
[17] T. Fullerton et al. Game Design Workshop: A Playcentric Approach to Creating Innovative Games. 2nd ed. Morgan Kaufmann, 2008.

isbn: 1578202221.
[18] E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994. isbn: 9780201633610.
[19] A. Grossman, ed. Postmortems from GameDeveloper. CMP Books, 2003. isbn: 1-57820-214-0.
[20] J. S. Harbour and J. R. Smith. DarkBASIC Pro Game Programming. 2nd ed. Thomson Course Technology, 2007. isbn: 1-59863-287-6.
[21] M. Hendrikx et al. “Procedural Content Generation for Games: A Survey”. In: ACM Transactions on Multimedia Computing, Com-

munications and Applications 9.1 (Feb. 2013), pp. 1–22. issn: 1551-6857.
[22] E. Horvitz. “Principles of Mixed-Initiative User Interfaces”. In: Proceeding of the CHI ’99 Conference on Human Factors in Computing

Systems: The CHI is the Limit, Pittsburgh, PA, USA, May 15–20, 1999. Ed. by M.G. Williams and M.W. Altom. ACM, 1999, pp. 159–166.
[23] J. Huizinga. Homo Ludens: Proeve Ener Bepaling van het Spelelement der Cultuur. Wolters-Noordhoff, 1938.
[24] R. Hunicke et al. “MDA: A Formal Approach to Game Design and Game Research”. In: Proceedings of the AAAI workshop on Chal-

lenges in Game Artificial Intelligence. AAAI, 2004, pp. 1–5.
[25] J. Juul. Half-real: Video Games between Real Rules and Fictional Worlds. MIT press, 2011.
[26] B. Kitchenham and S. Charters. Guidelines for performing Systematic Literature Reviews in Software Engineering. Tech. rep. EBSE-

2007-01. Keele University and Durham University Joint Report, 2007.
[27] P. Klint and R. van Rozen. “Micro-Machinations: a DSL for Game Economies”. In: Software Language Engineering – Proceedings of

the 6th International Conference on Software Language engineering, SLE 2013, Indianapolis, IN, USA, October 26–28, 2013. Ed. by M.
Erwig et al. Vol. 8225. LNCS. Springer, 2013, pp. 36–55. isbn: 978-3-319-02654-1.

[28] B. Kybartas and R. Bidarra. “A Survey on Story Generation Techniques for Authoring Computational Narratives”. In: IEEE Transac-
tions on Computational Intelligence and AI in Games 9.3 (Sept. 2017), pp. 239–253. issn: 1943-068X.

[29] R. Lämmel. Software Languages: Syntax, Semantics, and Metaprogramming. Springer, 2018. isbn: 978-3-319-90798-7.
[30] A. Liapis et al. “Orchestrating Game Generation”. In: IEEE Transactions on Games 11.1 (2019), pp. 48–68.
[31] M. Mateas and A. Stern. “Build It to Understand It: Ludology Meets Narratology in Game Design Space”. In: Proceedings of the 2005

DiGRA International Conference: Changing Views: Worlds in Play, DiGRA 2005, Vancouver, Canada, June 16–20, 2005. Digital Games
Research Association, 2005.

[32] F. Mehm et al. “Future Trends in Game Authoring Tools”. In: Entertainment Computing – Proceedings of the 11th International
Conference on Entertainment Computing, ICEC 2012, as part of the 2nd Workshop on Game Development and Model-Driven Software
Development, GD&MDSD 2012, Bremen, Germany, September 26–29, 2012. Ed. by M. Herrlich et al. Springer, 2012, pp. 536–541. isbn:
978-3-642-33542-6.

[33] T. Mens. “Introduction and Roadmap: History and Challenges of Software Evolution”. In: Software Evolution. Springer, 2008, pp. 1–
11. isbn: 978-3-540-76440-3.

[34] M. Mernik et al. “When and How to Develop Domain-Specific Languages”. In:ACMComputing Surveys 37.4 (Dec. 2005), pp. 316–344.
issn: 0360-0300.

[35] F. Müller et al. “Exertion Games”. In: Found. Trends Hum. Comput. Interact. 10.1 (2016), pp. 1–86.
[36] M. J. Nelson. Sicart’s ’Against Procedurality’ – A reply. Kmjn.org. May 2012.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:34 Riemer van Rozen

[37] R. F. Paige et al. “Metamodelling for Grammarware Researchers”. In: Software Language Engineering, 5th International Conference,
SLE 2012, Dresden, Germany, September 26–28, 2012, Revised Selected Papers. Ed. by K. Czarnecki and G. Hedin. Vol. 7745. LNCS.
Springer, 2013, pp. 64–82. isbn: 978-3-642-36089-3.

[38] K. Petersen et al. “Systematic Mapping Studies in Software Engineering”. In: 12th International Conference on Evaluation and Assess-
ment in Software Engineering, EASE 2008, University of Bari, Italy, June 26–27, 2008. Ed. by G. Visaggio et al. Workshops in Computing.
BCS, 2008.

[39] K. Salen and E. Zimmerman. Rules of Play - Game Design Fundamentals. The MIT Press, 2003. isbn: 9780262240451.
[40] J. Schell. The Art of Game Design: A Book of Lenses. AK Peters/CRC Press, 2014.
[41] N. Shaker et al. Procedural Content Generation in Games: A Textbook and an Overview of Current Research. Computational Synthesis

and Creative Systems. Springer, 2016. isbn: 978-3-319-42714-0.
[42] M. Sicart. “Defining Game Mechanics”. In: Game Studies 8.2 (Dec. 2008). issn: 1604-7982.
[43] M. Sicart. “Against Procedurality”. In: Game Studies 11.3 (Dec. 2011). issn: 1604-7982.
[44] P. Spronck. “CGAIDE AND GAME-ON 2004”. In: ICGA Journal 27.4 (Dec. 2004), pp. 241–241. issn: 2468-2438.
[45] S. Tang and M. Hanneghan. “State-of-the-Art Model Driven Game Development: A Survey of Technological Solutions for Game-

Based Learning”. In: Journal of Interactive Learning Research 22.4 (Dec. 2011), pp. 551–605. issn: 1093-023X.
[46] U. Tikhonova et al. “Applying Model Transformation and Event-B for Specifying an Industrial DSL”. In: Proceedings of the 10th

International Workshop on Model Driven Engineering, Verification and Validation MoDeVVa 2013, co-located with 16th International
Conference on Model Driven Engineering Languages and Systems (MoDELS 2013), Miami, Florida, USA, October 1st, 2013. Ed. by F.
Boulanger et al. Vol. 1069. CEUR Workshop Proceedings. CEUR-WS.org, 2013, pp. 41–50.

[47] J. Togelius et al. “Search-Based Procedural Content Generation: A Taxonomy and Survey”. In: IEEE Transactions on Computational
Intelligence and AI in Games 3.3 (2011), pp. 172–186.

[48] M. Treanor and M. Mateas. “An Account of Proceduralist Meaning”. In: Proceedings of the 2013 DiGRA International Conference: De-
Fragging Game Studies, DiGRA 2013, Atlanta, GA, USA, August 26–29, 2013. Ed. by C. Pearce et al. Digital Games Research Association,
2013.

[49] J. van den Bos and T. van der Storm. “Bringing Domain-Specific Languages to Digital Forensics”. In: Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. Ed. by R. N. Taylor et al. ACM,
2011, pp. 671–680.

[50] R. van der Linden et al. “Procedural Generation of Dungeons”. In: IEEE Transactions on Computational Intelligence and AI in Games
6.1 (Mar. 2014), pp. 78–89. issn: 1943-068X.

[51] A. van Deursen. “Domain-Specific Languages versus Object-Oriented Frameworks: A Financial Engineering Case Study”. In: Pro-
ceedings Smalltalk and Java in Industry and Academia, STJA’97, Erfurt, September 1997. Ilmenau Technical University, 1997, pp. 35–
39.

[52] A. van Deursen et al. “Domain-Specific Languages: An Annotated Bibliography”. In: ACM SIGPLAN NOTICES 35 (2000), pp. 26–36.
[53] C. van Grinsven et al. Games Monitor The Netherlands 2018 – Full Report. Tech. rep. Dutch Game Garden, 2019.
[54] R. Walter and M. Masuch. “How to Integrate Domain-Specific Languages into the Game Development Process”. In: Proceedings of

the 8th International Conference on Advances in Computer Entertainment Technology, ACE 2011, Lisbon, Portugal, November 8–11, 2011.
ACM, 2011, pp. 1–8. isbn: 978-1-4503-0827-4.

[55] R. Wieringa et al. “Requirements Engineering Paper Classification and Evaluation Criteria: A Proposal and a Discussion”. In: Re-
quirements Engineering 11.1 (Mar. 2006), pp. 102–107. issn: 1432-010X.

[56] L. Wittgenstein. Philosophical Investigations. Translated by G.E.M. Anscombe. Blackwell, 1953.
[57] G. N. Yannakakis and J. Togelius. Artificial Intelligence and Games. Springer, 2018. isbn: 978-3-319-63518-7.
[58] M. Zhu and A. I. Wang. “Model-driven Game Development: A Literature Review”. In: ACM Computing Surveys 52.6 (Nov. 2019),

pp. 1–32. issn: 0360-0300.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:35

A RELATED DISSERTATIONS
Several dissertations also describe one or more languages of games and play, usually as part of
a literature study chapter. These chapters have a more narrow focus than this study, and few
are systematic studies. Table 27 shows a selection of PhD dissertations. Authors of dissertations
approach the topic from various angles. For instance, Maggiore includes libraries and systems when
discussing languages [150]. Neil discusses several existing game design tools, mainly academic
prototypes, and evaluates their application in supporting practical game design activities [187].
We refer to the accompanying website for citation data on additional PhD, Master and Bachelor
dissertations13.

Table 27. Several PhD Dissertations related to Languages of Games and Play

author thesis query research angle language

Abbadi [2] 195n DSL for general game development 88: Casanova
Ahmadi [7] 158n Game based learning 65: AgentSheets
Anderson [14] 247n Behaviors and Game AI 40: SEAL
Ašeriškis [17] 241n Gamification 68: UAREI
Borghini [36] 263n Assessment systems in game based learning 21: EngAGe DSL
Browne [40] – 72: Ludi
Dormans [76] 97w Game mechanics and level generation 26: Machinations

36: Ludoscope
Furtado [100] 93n Domain-Specific Modeling Languages 96: SharpLudus
Guo [109] 97n Modeling Pervasive Games 4: PerGO
Gaudl [103] 274n Real-Time Game AI 44: Posh #
Guana [106] 209n Modeling Games 99: PhyDSL
Holloway [117] 272n Modeling storylines
Mahlmann [151] 289n 73: SGDL
Mayer [166] 390n
Martens [157] – Programming narratives in Linear Logic 48: Ceptre
Neil [187] – Evaluates game design tools
Mehm [171] 238n authoring tools for the educational domain 18: StoryTec
Osborn [200] – Operationalizing Operational Logics 17: Operational

Logics
57: Playspecs
30: Gamelan

Smith [237] 494w Mechanizing exploratory game design 25: Biped and
Ludocore

Zhu [291] 165n 103: RAIL
Zook [292] –w Automated iterative game design 31: PDDL

13https://vrozen.github.io/LoGaP/

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://vrozen.github.io/LoGaP/

0:36 Riemer van Rozen

B LANGUAGE SUMMARIES
Here we give summaries of languages of games and play. In addition, we give a complete bibliogra-
phy of all publications we included in this mapping study.

B.1 Ontologies and Typologies

Fig. 7. Game Typology – The Metacategory Space Containing the Dimensions Perspective, Positioning, and

Environment Dynamics (appears in Elverdam and Aarseth [82])

Language 1 LGame Typology generic / framework / research

Elverdam and Aarseth discuss a multi-dimensional typology of games [82], an extension of prior
work [1]. Instead of using game genres for classifying games, which may be arbitrary, contra-
dictory, or overlapping, they propose using an open-ended ontological model. It has a meta-
categories Player Composition, Player Relation, Struggle, Game State, and Time (Internal and
External) and Space (Virtual and Physical). Virtual Space has the dimensions Perspective, Po-
sitioning, and Environment Dynamics. Figure 7 depicts its Perspective dimension in a visual
notation. Read from left to right (and from abstract to concrete), dimensions (shown as rounded
rectangles) have alternatives (marked by arrows) and sub-dimensions (horizontal dashed lines),
which are also categories. On the far right are game instances, distinguished by the typology.

publication query publication type research category note

[1] language conference paper proposal of solution
[82] 16w journal article proposal of solution

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:37

Language 2 LGame Ontology Project generic / framework / practice

Zagal et al. present the Game Ontology Project (GOP), a framework offering a unified game
design vocabulary to describe, analyse and study existing games and facilitate the design of
new ones [288]. The ontology abstracts away representational details of games such as setting,
genre and player knowledge, and its aim is to characterize the game design space. The top-level
elements are Interface, Rules, Entity Manipulation and Goals. GOP is available online in Wiki
form1.

1https://www.gameontology.com/ (last visited November 17th 2018)

publication query publication type research category note

[288] 15w conference paper proposal of solution
[289] 15w book chapter proposal of solution reprint
[287] 601w book validation research Ludoliteracy

Language 3 LOntology of Journalism genre-specific / tool / practice

Dowd explores how the design of persuasive learning systems for journalists can be guided
by an ontology for journalism [80]. The ontology describes vocabulary, concepts and emo-
tions in the journalism domain, including social media and crowdsourcing. Robojourno is a
synthetic player that helps journalists reflect on their core values by responding to emotional
inputs. Defined as a Finite State Machine, it leverages links between roles, actions, before-
and after-intentions and Hoare logic, e.g., “{Curiosity} publish story {satisfied}” and
“{Competitive} scoop please {smug}”.

publication query publication type research category note

[80] 166w conference paper proposal of solution

Language 4 LPervasive Games Ontology genre-specific / tool / practice

Guo and Trætteberg propose a Pervasive Games Ontology (PerGO) for structuring and accelerat-
ing the process of analyzing the game domain, specifically aimed at pervasive games, i.e. games
extending into the real world [110]. Guo et al. evaluate a model-driven development methodol-
ogy for a location-based game called RealCoins [112], and propose a domain-specific modeling
workflow [111]. Pløhn et al. extend PerGO and perform a case study on a game called Nuclear
Mayhem [213].

publication query publication type research category note

[110] 9n workshop paper proposal of solution
[112] 30n journal paper validation research
[111] 50n conference paper validation research
[109] 97n PhD Thesis evaluation research
[213] 107n journal paper validation research

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://www.gameontology.com/

0:38 Riemer van Rozen

B.2 Pattern Languages and Design Patterns

Language 5 LFormal Abstract Design Tools generic / framework / practice

Church proposes Formal Abstract Design Tools (FADT), a kind of pattern language for game
design, with broad categories intention, perceivable consequence and story. This influential
publication has influenced later works, because it offered a new frame for research and practice
for building on past discoveries, sharing concepts behind successes, and applying lessons learnt
from one domain (or genre) to another.

publication query publication type research category note

[54] –w magazine article proposal of solution
[55] –w magazine article proposal of solution reprint

Language 6 LGame Design Patterns generic / framework / practice

Kreimeier proposes a pattern language for game design aimed at promoting reuse that describes
problem, solution, consequence, examples and references. Example patterns include Privileged
Move, for restricting actions and Weenie, for reorienting players. This work inspired later ap-
proaches.

publication query publication type research category note

[137] 67w article proposal for solution

Language 7 LGameplay Design Patterns generic / framework / practice

Björk et al. propose a framework for game design patterns, which was later renamed gameplay
design patterns, to support the design, analysis, and comparison of games. The pattern language
describes components of games and interaction patterns that express how players or a computer
use these components to affect aspects of gameplay. Language elements include name, descrip-
tion, usage, consequences, relations, relations and history. Holopainen et al. describe teaching
gameplay design patterns using a tool called CAGE, which visualizes design goals as a graph
of related design facets [120]. Holopainen and Björk further expand the gameplay design pat-
terns collection through exploring how games support motivation [119]. Zagal et al. discuss dark
design patterns that cause negative player experiences and whose intent is questionable and per-
haps even unethical, and how to identify them [290]. A pattern catalogue is available online in
Wiki form, along with a list of related publications1.

1http://www.gameplaydesignpatterns.org (visited November 19th 2018)

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://www.gameplaydesignpatterns.org

Languages of Games and Play 0:39

Mechanics Dynamics Aesthetics

(a) Emergent gameplay

Designer

M D A

Player

(b) Interaction through game design and play

Fig. 8. MDA perspectives (adapted from Hunicke et al. [122])

publication query publication type research category note

[118] 150w lecture notes lecture
[33] 313w conference paper proposal of solution
[32] 927w book chapter proposal of solution reprint
[120] 605w conference paper proposal of solution
[119] 839w conference paper validation research
[290] 830w conference paper proposal of solution

Language 8 LMechanics Dynamics Aesthetics generic / framework / research

Hunicke et al. present the Mechanics Dynamics and Aesthetic (MDA) framework for understand-
ing games, bridging the gap between design, development, game criticism, and technical game
research [122]. The framework is schematically shown in Figure 8. Players interact with games
via mechanisms (a.k.a. mechanics, or rules) created by game designers. During a game’s execu-
tion, playful acts result in dynamic interaction sequences. Ideally, these are also aesthetically
pleasing experiences called gameplay, e.g., fellowship, challenge, fantasy, narrative, discovery or
self-expression.

publication query publication type research category note

[122] language workshop paper philosophical paper

Language 9 LPattern Language for Sound Design generic / tool / practice

Alves and Roque propose a sound pattern language for empowering game developers in sound
design. They present a collection of illustrative patterns in an accessible format based on best
practices [10]. In addition, they propose and evaluate a deck of cards for sound design [11, 12]
and report experiences [13]. Examples of sound patterns include Achievement, Failure, Anticipa-
tion, Directionality and Hurry Up! The patterns are available in Wiki form1.

1http://www.soundingames.com (Last visited March 21st 2019)

publication query publication type research category note

[10] 65w conference paper proposal of solution
[11] 575w conference paper evaluation research
[12] 820w conference paper evaluation research
[13] –w workshop paper experience report

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://www.soundingames.com

0:40 Riemer van Rozen

Capture
Abilities = var a

Throw ball

Score

Ball caught
Ac = Ac + 1

Ac = Ac − 1

(a) Dodgeball feedback loops

(b) An attempt by Koster to model Checkers

Fig. 9. A Grammar of Gameplay (diagrams appear in Koster [134])

Statistical
Resource

Verb

In-World
Object

Friend
Verb

action as a friend helping me

friends’

actions

helping

me

(a) Language elements

Gift Share Invite

In-World
Object

Statistical
Resource

(b) Common constructs

Place Decor

Plots

XP/Level Coins

Space

Crops

HarvestFertilize

Delete

(c) Verbs description of Farmville

Fig. 10. The Verbs language fits on a napkin (diagrams adapted from Koster [136])

Language 10 LVerbs generic / framework / practice

Koster proposes “A Grammar of Gameplay” [134], an informal notation for gameplay design that
describes atomic player activities and affordances by using verbs (or ludemes). The notation is
inspired by “A Theory of Fun” [135]. It consist of atoms shown as rectangles enclosing a verb,
which can be labeled with additional information, e.g., board game size (e.g., 8x8), conditions
(e.g., var < 256) and time passing (vertical bar on the right). The arrows denote a sub-relation
between general and specific atoms, and also express success and failure outcomes (marked in

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:41

blue and red respectively) that help in analyzing feedback loops, e.g., in Dodgeball as shown in
Figure 9.
Bojin studies game design epistemologies from a language philosophy perspective that applies
Wittgenstein’s language games [34]. The author examines ludemes with respect to limits of
formal language for expressing experiences [35]. Koster challenges academics to explore these
limits, and shows several excerpts from an updated and simplified Verbs language depicted in
Figure 10 [136]. The language consists of verbs (enclosed by a green circle), friend verbs (dashed
line) statistical resources (light blue rectangle) and in-world objects (red rounded rectangle).

publication query publication type research category note

[134] –w presentation slides proposal of solution Grammar of G.
[34] 17w journal article philosophical paper language games
[35] 377w conference paper philosophical paper Grammar of G.
[136] –w presentation slides discussion piece Verbs

Language 11 LCollaboration Patterns genre-specific / tool / practice

Azadegan and Harteveld examine how Collaboration Engineering (CE) can help study the de-
sign of collaborative games, and how such games support collaboration through their game
mechanics [21]. They analyse two games using facilitation techniques from CE called Thinklets.
Thinklets are modular sets of rules intended for creating predictable patterns of collaboration
that desribe how people interact and work together towards a common goal. Thinklets specify
preferred actions that, given constraints and capabilities, are appropriate for specific roles.

publication query publication type research category note

[21] 944w workshop paper proposal of solution

Language 12 LMixed Reality Pattern Cards genre-specific / tool / practice

Wetzel introduces a set of playing cards as a pattern language for designing Mixed Reality
games, and presents initial findings on their application [280]. These cards are available for
purchase1.

1https://www.pervasiveplayground.com/mixed-reality-game-cards/ (visited May 10th 2019)

publication query publication type research category note

[279] 871w workshop paper proposal of solution
[280] 133w workshop paper proposal of solution

Language 13 LDesign Patterns in FPS Games genre-specific / tool / practice

Hullett and Whitehead present level design patterns for creating varied and interesting First
Person Shooter (FPS) games [121]. The pattern language associates building blocks of level de-
sign to resulting gameplay, and consists of the sections description, affordances, consequences
and examples. Categories and patterns include Positional Advantage (Sniper location, Gallery

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://www.pervasiveplayground.com/mixed-reality-game-cards/

0:42 Riemer van Rozen

and Choke Point), Large-scale Combat (Arena and Stronghold), Alternate Gameplay (Turret and
Vehicle Selection) and Alternate Routes (Split Level, Hidden Area and Flanking Route).

publication query publication type research category note

[121] –w conference paper proposal of solution

Language 14 LStructural Composition Patterns genre-specific / tool / practice

Winters and Zhu propose guiding the spacial navigation of players in 3d adventure games with
structural composition patterns [286]. They analyze the games Uncharted 3, Dear Esther, and
Journey, and derive five patterns that direct a player’s attention: Contrasting Shape, Framed
Structure, Directional Line, Shifting Elevation and Structural Exaggeration. They perform user
tests on simulated 3d environments that encode the patterns, interview the players, and show
that especially Shifting Elevation and Directional Line patterns influence player movement.

publication query publication type research category note

[285] 201w poster abstract proposal of solution
[286] –w conference paper validation research

Language 15 LFlow Experience Patterns generic / framework / practice

Lemay proposes a pattern language for analyzing and understanding how a video game’s el-
ements can help trigger and maintain the most positive and intense player experiences [138].
Flow patterns describe a name, problem statement, context, solution, forces affecting the prob-
lem, and examples. They relate to the facets sensation, emotion, cognition, behavior and social
interaction.

publication query publication type research category note

[138] 39w conference paper proposal of solution

Language 16 LSerious Games Design Patterns generic / framework / practice

Marne proposes a pattern library for serious games design aimed at improved understanding and
cooperation between project team members, organizations and stakeholders1. Reified Knowledge
is an example pattern described in detail.

1http://seriousgames.lip6.fr/site/spip.php?page=design_patterns&lang=en (visited April 26th 2019)

publication query publication type research category note

[156] 46w conference paper proposal of solution

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://seriousgames.lip6.fr/site/spip.php?page=design_patterns&lang=en

Languages of Games and Play 0:43

Language 17 LOperational Logics generic / framework / practice

Mateas and Wardrip-Fruin propose a framework for game analysis called Operational Logics
(OLs). They define the term as follows: “An operational logic defines an authoring (representa-
tional) strategy, supported by abstract processes or lower-level logics, for specifying the behaviors a
system must exhibit in order to be understood as representing a specified domain to a specified au-
dience.” [163]. Thus, OLs describe both how a game functions internally and how its simulation
is communicated to players. Osborn et al. expand on this work by refining and operationalizing
several OLs [200, 203]. Example logics are: Collision-, Resource-, Persistence- and Character-State
Logics. Logics are shown as a pattern language with the fields: Communicative role, Abstract
process, Abstract operations, Presentation, Required concepts and Provided concepts. Osborn
et al. propose a new field of research called Automated Game Design Learning (AGDL) for learn-
ing game designs expressed as OLs through simulating play [202].

publication query publication type research category note

[163] –w conference paper philosophical paper
[203] –w conference paper proposal of solution pattern language
[202] –w conference paper philosophical paper AGDL
[200] –w PhD thesis validation research

B.3 Applied Game Design

Language 18 LStoryTec generic / tool / educative

Mehm et al. present the StoryTec system, an authoring tool for non-programmers for creating
Digital Education Games (DEGs) [172]. Story descriptions consist of scenes. These are visually
modeled using story units that have dramatic functions, e.g., derived from the Heroes Journey
template. The arrows between the units define possible paths a story can take. Step-by-step
authors add details to units, such as selecting virtual characters, props that participate, and
actions that modify the story state. In later work, Mehm et al. present Bat Cave, a prototyping
tool for evaluation and testing DEGs [173]. Here, authors can define so-called Narrative Game-
Based Learning Objects (NGBLOBs) that express a scene’s learning context, gaming context and
storytelling function. The narrative engine executes story descriptions in an XML format. This
engine is extended to handle NGBLOBs and adapt DEGs to a model of learner knowledge. In
a book chapter on serious games, Mehm gives an overview of authoring processes and tools,
which includes StoryTec [174].

publication query publication type research category note

[172] 471w workshop paper proposal of solution StoryTec
[173] 128n conference paper validation research Bat Cave
[171] 238n PhD thesis evaluation research both
[174] 152n textbook chapter introduction and overview overview

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:44 Riemer van Rozen

Controlled Natural Language for Specifying Game Narratives 9

(a) Screen-shot of the modeling tool (b) Simulating the player sending a text
message to Carl

Fig. 7: Modeling and simulating scenario’s

A regular brick containing a verb is called a verb-brick and connects to noun
phrases and/or adjective phrases to form a game move. In the case of a ditran-
sitive verb, the associated preposition serves as an extra connecting point for
the indirect passive object (see figures 4a, 4b, 4c, 4d and 4e for illustrations of
the most common cases). As explained, game moves containing a transitive or
ditransitive can also be expressed in a passive form (Fig. 4f represents the pas-
sive equivalent of Fig. 4e). In passive sentences, the placements of the indirect
passive object and the direct passive object (i.e., the original subject) can be
interchanged (Fig. 4f and 4g can be used interchangeably to represent the same
game move). In some cases, the ‘by’-part of the sentence can be omitted (see
Fig. 4h). The subject of the game move is then assumed to be any NPC.

6 Tool Support

We developed a (web-based) toolset for ATTAC-L that consists of a graphical ed-
itor including an export module, and a simulator. The editor (see Fig. 7a) allows
users to specify a story model by means of drag-and-drop. Extra assistance is
provided by means of automatic layout management and an auto-complete sug-
gestion mechanism for entering names. The export module generates a machine
interpretable data structure (JSON) for the modeled story. This structure can be
used by existing game engines as input for generating code or by an interpreter
to execute the story. A code generator is currently under development.

The simulator is a separate module. The simulator is a kind of interpreter that
executes the story directly. The execution is performed, however, in a simple and
predefined 3D environment with predefined NPCs and behaviors. As such, the
simulator provides a fast way to verify and test the modeled stories (Fig. 7b shows
a screenshot from the simulation of the example from Fig. 7a) and therefore
serves as a fast prototyping tool. The current simulator mainly targets scenarios
for cyber-bulling, which was the focus of the project for which ATTAC-L was
originally developed [4]. By providing other predefined NPCs and behaviors, the
simulator can of course easily be adapted for use in other domains.

Fig. 11. Example game narrative in ATTAC-L (appears in van Broeckhoven et al. [263])

Language 19 LGameDNA generic / tool / practice

Van Nimwegen et al. describe Game Discourse Notation and Analysis (GameDNA), a graphical
modeling language intended to develop serious games for assessment more effectively [266].
GameDNA is designed to improve visualization methods for the assessment of a player’s cogni-
tive processes and metal states during gameplay. Its notation is composed of two levels. The first
describes narrative story elements that form the story plot. The second describes the discourse
between the player and the system, and a players’ corresponding mental actions. Modeling ele-
ments include player perceptual actions (see), mental actions (decide), physical actions (perform)
and system actions (react/feedback) that are connected via triggers and loops.

publication query publication type research category note

[266] –w conference paper proposal of solution

Language 20 LATTAC-L genre-specific / tool / educative

Van Broeckhoven and de Troyer propose ATTAC-L: a visual modeling language for describing
educational virtual scenarios that help prevent cyber bullying [262]. In addition, they apply
controlled natural language to improve collaboration [263]. ATTAC-L helps pedagogical experts
compose scenarios from story bricks, nouns and verbs that can be combined in sequence, as
choices or as concurrent events. Figure 11 shows a screen shot of its web-based editor. Friendly
Attac is a related resarch project1.

1http://www.friendlyattac.be – does not share software (visited April 10th 2019)

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://www.friendlyattac.be

Languages of Games and Play 0:45

publication query publication type research category note

[262] 15n conference paper proposal of solution
[263] 206n conference paper proposal of solution
[264] 693w conference paper validation research
[265] 253w conference paper proposal of solution
[66] 123n book chapter validation research

Language 21 LEngAGe DSL generic / engine / educative

Chaudy et al. aim to improve the effectiveness of game-based learning,. They propose an En-
gine for Assessment in Games (EngAGe) and a DSL that helps teachers take ownership of the
feedback provided in serious games [53]. They describe the DSL as a Feature Model (see Lan-
guage 95) and implement a prototype in Xtext. Features include serious game kind, player data,
learning goals, feedback messages, a feedback model, and actions related to evidence and reac-
tions. Chaudy’s website gives an overview of related research1

1http://www.yaellechaudy.com (visited July 15th 2019).

publication query publication type research category note

[53] 199n conference paper proposal of solution
[36] 163n PhD thesis evaluation research

Language 22 LVR-MED genre-specific / tool / educative

Mossmann et al. present a prototype of VR-MED, a visual DSL that expresses game scenarios for
teaching family medicine. Developers and health-care professionals can use VR-MED for creating
simple games based on textual medical cases.

publication query publication type research category note

[182] 88n conference paper validation research

B.4 Game Mechanics

Language 23 LPetri Nets generic / engine / practice

Petri Nets are a visual notation for describing the behavior of parallel and distributed systems,
which has been extensibly studied and applied to numerous other fields, including game de-
sign. Petri Nets are directed graphs with two node types: transitions (shown as bars) and places
(shown as circles) that respectively model events and variable amounts of resources. The arrows
between the nodes describe pre- and post-conditions of events. The operational semantics and
mathematical properties of different classes of Petri Nets are well known, and there is ample tool
support. Murata provides a historical introduction, comprehensive overview, and tutorial [183].
Verbrugge proposes representing Narrative Flow Graphs (NFGs) (Language 50) as Petri
Nets [271]. Natkin and Vega propose describing and analyzing the non-deterministic structure of

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://www.yaellechaudy.com

0:46 Riemer van Rozen

noun Avoider

noun Attacker

verb Attack_verb: shoot , attack , damage ,

chase , injure , hit

constraint:
(ConceptNet CapableOfReceivingAction ?

Avoider ?Attack_verb)

constraint:
(WordNet hyponym ?Avoider "animate␣thing")

constraint:
(or

(and (WordNet hyponym ?Attacker "

projectile")

(ConceptNet

CapableOfReceivingAction ?

Attacker ?Attack_verb))

(ConceptNet CapableOf ?Attacker ?

Attack_verb))

(a) Definition of an attacker-avoidance game space

Avoider Attacker

WordNet:

hyponym

"animate thing"

ConceptNet:

CapableOfRe-

ceivingAction

Attack_verb

ConceptNet:

CapableOf

WordNet:

hyponym

"projectile"

ConceptNet:

CapableOfRe-

ceivingAction

OR

AND

(b) Graphical view

Fig. 12. Example of a game space (adapted from Nelson and Mateas [189])

the game narration with Petri Nets [185]. Natkin et al. propose a methodology for spatiotempo-
ral game design with directed hypergraphs that relate missions modeled as Petri Nets to spaces
for validating mission properties such as reachability [186].
Brom and Abonyi propose authoring non-linear story plots featuring intelligent virtual humans
with Petri Nets [37]. Brom et al. describe a Petri Nets dialect that supports token ageing and
its application in the design of Europe 2045, an on-line multiplayer strategy game for teaching
high-school in economics, politics, and media studies [38]. Balas et al. extend the approach by
combining timed colored Petri Nets and non-deterministic FSMs for developing Karo, a social
simulation intended for teaching. Araújo and Roque describe an approach for modeling game
systems and flow with Petri Nets for analyzing and simulating behaviors [16]. Ortega et al. pro-
pose Petri Nets for modeling multi-touch games systems [197].

publication query publication type research category note

[271] –w conference paper proposal of solution story plot
[185] language conference paper proposal of solution game design
[186] 118w conference paper proposal of solution game design
[37] language workshop paper proposal of solution story plot
[38] language conference paper validation research story plot
[23] gd conference paper validation research story plot
[16] 207w conference paper proposal of solution game design
[197] 382w conference paper proposal of solution multi-touch

Language 24 LGame Space Definitions genre-specific / tool / practice

Nelson and Mateas describe an approach for automated game design that describes game me-
chanics of micro-games such as news games. They use WordNet and ConceptNet for relating

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:47

design goals to nouns and verbs that instantiate predefined (or stock) mechanics. They demon-
strate the approach by generating WarioWare-style games [188]. Extending the approach, they
propose an interactive game design assistant that helps novice designers create games. Authoring
and understanding happens in a mixed-initiative fashion, by alternating user-directed decisions
and computer-generated suggestions [189]. Figure 12 shows an example definition of an attacked-
avoider game space.

publication query publication type research category note

[188] 135w conference paper position paper
[189] 328w conference paper proposal of solution

Language 25 LBiped and Ludocore generic / engine / practice

Smith et al. propose a light-weight game sketching approach with computational support
for a class of physical prototypes that use board-game-like elements to represent complex
videogames [239]. The Biped system supports manual and automated play testing of prototypes
that are formalized using the game sketching language, a subset of Prolog for describing the
game state, player actions and state update rules. A sketch can be played as an interactive visual
representation that maps specifications to board game primitives. Connected spaces and tokens
permit user actions such as clicking and dragging. Designers can also analyze its properties by
specifying scenarios and conditions, obtaining feedback as logical game traces from an analysis
engine that leverages Answer Set Programming (ASP). The running example is DrillBot 6000. In
later work, they present Ludocore, a logical game engine that formalizes the event calculus and
drives Biped [235]. Smith and Mateas add a notation for pattern-based gameplay analysis [238].
They describe a design space approach that leverages ASP for PCG [234].

publication query publication type research category note

[190] –w conference paper proposal of solution event calculus
[239] 537w conference paper proposal of solution Biped
[240] 880w ext. abstract (demo) proposal of solution Biped
[236] 72n PhD thesis proposal proposal of solution Biped
[235] –w conference paper validation research Ludocore
[233] –w conference paper proposal of solution ASP for PCG
[238] 52w conference paper proposal of solution Ludocore
[234] –w journal article validation research ASP for PCG
[237] 494w PhD thesis validation research all of the above

Language 26 LMachinations generic / framework / practice

Dormans proposes the Machinations framework as a common game design vocabulary for visual-
izing elemental feedback loops associated to emergent gameplay [72]. Models (or diagrams) are
directed graphs resembling Petri Nets (Language 23). When set in motion through play, activated
nodes act by pushing or pulling economic resources along its edges. Figure 13a demonstrates a
feedback loop in Monopoly, where buying property raises a player’s income, which can again
be invested. Figure 13b shows an example pattern from the pattern catalogue, described as a
pattern language. Designers can use models for simulating and balancing games before they are

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:48 Riemer van Rozen

(a) A Machinations diagram of Monopoly that

demonstrates a feedback loop in its economy

(b) The Dynamic Engine pattern expresses a trade-

off between spending energy on long-term invest-

ment and short-term gain (action nodes)

Fig. 13. Machinations diagram and pattern (adapted from Dormans [76])

built [75], and for describing emergent physics [77]. The original Machinations tool was Flash-
based and now discontinued, but still available for download together with a set of examples1. A
commercial web-based tool that uses JavaScript is under development2.

1https://machinations.io/FAQ.html – Technical ’old version’ (visited April 23rd 2019)
2https://machinations.io (visited April 23rd 2019)

publication query publication type research category note

[72] –w conference paper proposal of solution
[74] –w workshop paper proposal of solution
[75] –w workshop paper validation research
[76] 97w PhD thesis validation research
[77] –w workshop paper proposal of solution
[5] –w textbook validation research

Language 27 LMicro-Machinations generic / engine / practice

Micro-Machinations (MM) is a textual and visual programming language, a continuation of
Machinations (Language 26) that addresses several technical shortcomings of its evolutionary
predecessor. Klint and van Rozen present MM, a DSL for game-economies (or game-economic
mechanics) that speeds up the game development process by improving game designer produc-
tivity and design quality. MM formalizes an extended subset of Machinations features, notably
adding modularity and a textual storage format. For accurately predicting a game’s behavior,
they provide MM Analysis in Rascal (MM AiR), a visual framework for analyzing the reachabil-
ity and invariant properties1. In addition, van Rozen and Dormans propose a live programming
approach for rapidly prototyping, adapting and fine-tuning game mechanics, which includes an
embeddable MM library written in C++2. Finally, van Rozen presents a pattern-based Mechanics

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://machinations.io/FAQ.html
https://machinations.io

Languages of Games and Play 0:49

(a) AdapTower is a tower defense game

whose embedded mechanics can be mod-

ified at run time. Towers prevent creeps

from passing and bases catch essence for

buying more. (adapted from [268])

Tower

=
buyTower

creeps

120

gold

essencecreeps

= = =

essence

buyBase

5020

essence

=

towers bases

spawn missed
gold

1

Base

1

creeps

(b) AdapTower’s visual Micro-Machinations definition contains

Tower and Base sub-modules (adapted from [268])

(c) A Mechanics Design Assistant for pattern-based analysis and generation (adapted from [267])

Fig. 14. Micro-Machinations is an embeddable and modular script language for live programming of game

mechanics whose qualities can be predicted using design patterns

Design Assistant (MeDeA) featuring pattern-based editing using an extensible and programmable
pattern palette. MeDeA can recognize and explain patterns, and generate model extensions3. Fig-
ure 14 depicts an example of a game’s mechanics and shows a screenshot of MeDeA. MM AiR
uses the Spin model checker4. MM AiR and MeDeA leverage meta-programming features of Ras-
cal5 e.g., pattern matching and visualization. A new version of MM for live programming that is
based on C#, edit scripts and novel model migration techniques is ongoing work6.

1https://github.com/vrozen/MM-AiR (visited May 14th 2019)
2https://github.com/vrozen/MM-Lib (visited May 14th 2019)
3https://github.com/vrozen/MeDeA (visited May 14th 2019)

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://github.com/vrozen/MM-AiR
https://github.com/vrozen/MM-Lib
https://github.com/vrozen/MeDeA

0:50 Riemer van Rozen

Fig. 15. Mechanic Miner: Levels for ’gravity inversion’ (appears in Cook et al. [59])

4http://spinroot.com (visited May 14th 2019)
5https://www.rascal-mpl.org (visited May 14th 2019)

6http://livegamedesign.github.io (visited May 14th 2019)

publication query publication type research category note

[132] 508w conference paper validation research MM AiR
[268] 17n conference paper validation research MM Lib
[267] 76n conference paper validation research MeDeA

Language 28 LGame-o-Matic generic / tool / practice

Treanor et al. propose generating arcade-style videogames that represent ideas with so-called
micro-rhetorics. Micro-rhetorics are parameterized structures with a unique id, a verb and en-
tity roles (parameters). For instance, “A avoids B” consists of a subject A, a predicate B and a
verb avoids. For each verb, Game-o-Matic randomly selects a representative micro-rhetoric from
its library that form partial game descriptions. These are completed with recipes that modify
the rules and completes the game’s mechanics, adding win and lose conditions and concrete
structures for player interaction. Proceduralist Readings [258] is a related framework (see Lan-
guage 32).

publication query publication type research category note

[260] language conference paper proposal of solution
[259] language workshop paper proposal of solution

Language 29 LMechanic Miner generic / tool / practice

Cook et al. introduce Mechanic Miner, “an evolutionary system for discovering simple game me-
chanics for puzzle platform games” [59]. Mechanic Miner inspects and modifies the mechanics
using Java reflection. Levels are generated as tile maps with accessible (white), solid (black)
and deadly (red) cells. The objective is to use the mechanics and toggle effect on and off to
navigate the player (s) to the destination (x). The playability of the resulting game is evalu-
ated using a solver that attempts sequences of button presses until it finds a combination that

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://spinroot.com
https://www.rascal-mpl.org
http://livegamedesign.github.io

Languages of Games and Play 0:51

<Jump ,

{<Relative , 1, Equal(Ypos(e), Ypos(Block)

+1) >,

<Relative , 1, Equal(Xpos(e), Xpos(Block))

>},

{<Relative , 1, Update(Xpos(e), 1)>,

<Relative , 1, Update(Ypos(e), 1) >}>

(a) ’Jump’ mechanic where e is an entity that has x

and y coordinates Xpos(e) and Ypos(e)

<DoubleJump ,

{<Relative , 1, Equal(Ypos(e),Ypos(Block)+1)

>,

<Relative , 1, Equal(Xpos(e),Xpos(Block))>,

<Absolute ,-1, Equal(Performed(Jump),e)>},

{<Relative , 1, Update(Xpos(e) ,1)>,

<Relative , 1, Update(Ypos(e) ,2) >}>

(b) ’Double Jump’ requires first performing ’Jump’

(c) Platformer level with a superimposed playtrace

that uses a generated mechanics (shown as arrows)

and gravity (shown as dotted arrows)

Fig. 16. Generated PDDL Mechanics of a Platformer (adapted from Zook and Riedl [293])

completes a level, which must include the mechanic. Figure 15 shows an example level gen-
erated for mechanic named ‘gravity inversion’, which modifies how the game engine handles
gravity: INVERTSIGN player.acceleration.y;. Other examples include , ‘teleportation’: HALVE
player.y; and ‘bouncing’: ADD 1 player.elasticity; In a large user study on a selection of
generated puzzle mechanics called A Puzzling Present1, they evaluate enjoyability and difficulty,
which entailed play testing followed by questionnaires [60].

1http://www.gamesbyangelina.org/downloads/app.html (visited August 7th 2019)

publication query publication type research category note

[59] –w conference paper proposal of solution
[60] 284w conference paper evaluation research

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://www.gamesbyangelina.org/downloads/app.html

0:52 Riemer van Rozen

Language 30 LGamelan and Modular Critics generic / tool / practice

Osborn et al. propose a framework for automated game design with computational support for
play testing. The game definition language (Gamelan) models turn-taking games, such as board-
and card games, and game design critics quantify gameplay qualities for automated analysis.
Gamelan games consist of rules and procedures. Rules are side-effect-free relations that can only
succeed or fail. In contrast, logical functions are expressions defined over a game’s current state
and can succeed with different parameter bindings. Examples of critics are: no rules should go
unused, players get equal turns (unfair play), repeating similar actions should be a losing strat-
egy (dull), and rankings of players should shift frequently over the course of the game (unsus-
penseful). Core Gamelan is implemented in XSB Prolog. As a demonstration they detect known
design problems in a card game called Dominion.

publication query publication type research category note

[201] 400w conference paper proposal of solution

Language 31 LPlanning Domain Definition Language generic / tool / practice

Zook and Riedl present an approach for generating game mechanics, with special focus on turn-
based domains with deterministic actions and avatar-centric mechanics. Game mechanics are
expressed in a subset of the Planning Domain Definition Language (PDDL) with game-specific
extensions. The first, time-indexing enables preconditions to refer to earlier times for expressing
delayed effects. The second, coordinate frames of reference distinguishes global world-state from
avatar-relative terms for expressing avatar perception. Figure 16 shows an example of jumping
mechanics for a platform game level. They leverage ASP to generate mechanics that conform
to a set of design constraints. A planner, also implemented in ASP, analyzes the playability of
those mechanics. Instead of generating mechanics from scratch, they iteratively adapt and refine
mechanics, favoring fewer mechanics. The approach is demonstrated by generating combat
mechanics of a role-playing game, and avatar-mechanics of a platform game, and a hybrid of the
two.

publication query publication type research category note

[294] –w workshop paper proposal of solution
[293] 114w conference paper proposal of solution

Language 32 LSygnus and Gemini generic / tool / practice

Summerville et al. propose Gemini, a system for analysis and generation of a game’s mechan-
ics [247]. They formalize Proceduralist Readings [258], a framework for interpreting and under-
standing the meaning of games by providing rhetorical affordances. Sygnus is a language based
on ASP predicates that not only describes mechanics, processes and interactions, but also aes-
thetic and cultural expressions. As a result,‘meaning’ can be directly derived from the source
code. The Gemini system statically analyzes Sygnus programs, producing readings as reasoning
chains.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:53

publication query publication type research category note

[258] –w conference paper proposal of solution
[247] 173n journal article proposal of solution Gemini

B.5 Virtual Worlds and Levels

Language 33 LSemantic Scene Description Language generic / engine / practice

Tutenel et al. propose a Semantic Scene Description Language for guiding how generators pro-
duce consistent and meaningful content [261]. Using its visual notation, designers can express
abstract scene classes, descriptions of scenes consisting of objects (or components), the relation-
ship between them, and time- and context-specific variations, e.g., dining area, office, street,
dungeon, forest, etc. Concrete scenes are situated instances whose constraints are solved and
generated as an integral part of a larger whole. Kessing et al. propose Entika, a framework for
designers that offers an editor for authoring semantic game worlds and an engine for semantic
layout solving [130].

publication query publication type research category note

[261] gd conference paper proposal of solution
[130] –w workshop paper validation research Entika

Language 34 LSketchaWorld generic / tool / practice

Smelik et al. aim to simplify modeling virtual worlds by combining semantics-based model-
ing and PCG techniques in a declarative modeling approach [231]. SketchaWorld is a tool for
designers for rapidly sketching 3d worlds, which integrates two novel techniques: interactive
procedural sketching and virtual world consistency maintenance.

publication query publication type research category note

[232] language workshop paper proposal of solution
[231] –w journal article validation research

Language 35 LTanagra genre-specific / engine / practice

Smith et al. describe Tanagra, a mixed-initiative level design tool for 2d platformers. In response
to changes to the pacing of the level Tanagra generates levels with corresponding “beat patterns”
(sequences of obstacles) and verified playability, using constraint programming and reactive plan-
ning. Tanagra integrates reactive planning language ABL (Language 39) and numerical constraint
solving.

publication query publication type research category note

[243] –w conference paper proposal of solution
[244] 783w extended abstract tool demonstration
[241] –w journal article proposal of solution

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:54 Riemer van Rozen

Language 36 LLudoscope generic / engine / practice

Lindenmayer systems (or L-systems) are generative grammars that were originally intended for
describing plant growth patterns [142] and are now also used for PCG. Dormans investigates
strategies for generating levels for action adventure games, and proposes mission and spaces as
two separate structures. He analyzes a Zelda game level, and generates its missions and spaces
using transformative grammars [73]. Ludoscope is a tool for designing procedurally generated
game levels based on these principles. In Ludoscope, level transformation pipelines step-by-step
transform level content, gradually adding detail, dungeons, enemies, encounters, missions, etc.
These pipelines consist of grammar rules that work on content represented as tile maps, graphs,
Voronoi Diagrams and Strings. Karavolos et al. explore applying Ludoscope in the design of
two distinct pipelines that generate dungeons and platform levels [129]. Van Rozen and Heijn
propose two techniques for analyzing the quality of level generation grammars called MAD and
SAnR (see Language 58).

publication query publication type research category note

[73] –w workshop paper proposal of solution grammars
[78] –w journal article proposal of solution grammars
[74] –w workshop paper proposal of solution grammars
[79] language workshop paper validation research Ludoscope
[129] language conference paper validation research Ludoscope
[269] –n workshop paper proposal of solution Ludoscope Lite

Language 37 LThe Sentient Sketchbook genre-specific / tool / practice

Liapis et al. introduce The Sentient Sketchbook, a tool intended to support level designers in
rapidly creating abstract game levels, which represents levels as low-resolution tile map sketches.
The tool supports a mixed-initiative design and refinement process, allowing designers to choose
level suggestions generated using genetic algorithms. The running example discusses a strategy
game where players control a base and require resources to build units. Its tile maps consist of
tiles that are passable, impassable, player bases or resources. Designers can analyze the maps
for playability and visualize gameplay properties using built-in metrics that calculate properties
such as navigable space, resource safety, safe areas and unused space. The tool is available on its
website as a Java application or an online version, along with a list of related publications1.

1http://www.sentientsketchbook.com (visited August 12th 2019)

publication query publication type research category note

[139] language conference paper evaluation research

Language 38 LEvolutionary Dungeon Designer genre-specific / tool / practice

Baldwin et al. present the latest iteration of the Evolutionary Dungeon Designer (EDD), a
mixed-initiative level design tool that assists level designers in collaboratively creating game
content [25]. EDD uses evolutionary search algorithms and patterns for generating dungeon

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://www.sentientsketchbook.com

Languages of Games and Play 0:55

Fig. 17. Room editing view with pattern overlay (appears in Baldwin et al. [24])

levels with desirable properties. EDD detects patterns in levels and displays on instances su-
perimposed on the tile map, as shown in Figure 17. Spacial micro-patterns consist of paths and
multiple tiles: corridor (red tiles), connector (yellow tile) and chamber (blue tiles). Inventorial
micro-patterns placed on one tile are door, treasure and enemy. Meso-patterns are composed
from spacial combinations of micro-patterns. Examples, each shown using descriptive icons, are:
treasure chamber, guard chamber, ambush, dead end, and guarded treasure. Meso-patterns are
detected using breadth first search of a pattern graph, starting at a room’s entrance. The level
quality is estimated with several fitness functions that guide the search.

publication query publication type research category note

[24] –w workshop paper validation research
[25] 206w conference paper validation research

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:56 Riemer van Rozen

joint sequential behavior OfferDrink(){

team Trip, Grace;

// individual behavior for initial

offer subgoal

with (post-to OfferDrinkMemory)

iInitialDrinkOffer();

subgoal
iLookAtPlayerAndWait(0.5);

with (synchronize) subgoal
jSuggestMartini();

// react to Grace's line about fancy

shakers

with (synchronize) subgoal
jFancyCocktailShakers();

}

(a) Trip’s ‘offer drink’ behavior

joint sequential behavior OfferDrink(){

team Trip, Grace;

// wait for Trip's first line

with (success_test

{ OfferDrinkMemory

(CompletedGoalWME

name == iInitialDrinkOffer

status == SUCCEEDED

)}) wait;
subgoal
iLookAtPlayerAndWait(0.5);

// react to Martini suggestion

with (synchronize) subgoal
jSuggestMartini();

with (synchronize) subgoal
jFancyCocktailShakers();

}

(b) Grace’s ‘offer drink’ behavior (c) Trip and Grace in Façade

Fig. 18. ABL scripts adapted from Mateas and Stern [162] (a, b) and [165] (c)

B.6 Behaviors

Language 39 LABL generic / engine / practice

Mateas and Stern describe A Behavior Language (ABL), pronounced “able”, a reactive planning
language for authoring believable agents expressing rich personality built on Hap [162]. ABL
extends Hap with atomic behaviors, reflection, private memories and goal spawning. ABL was
notably used in the interactive drama Façade1 [164, 165] and Tanagra, which is described as Lan-
guage 35. Figure 18 shows example scripts that demonstrate synchronization with individual ‘i’
and joint ‘j’ subgoals. Simpkins et al. extend ABL (as A2BL) with reinforcement learning [229].
Its Java sources are released under the GNU GPL2.

1https://www.playablstudios.com/facade/ (visited May 9th 2019)
2https://www.cc.gatech.edu/~simpkins/research/afabl/abl.html (visited May 9th 2019)

publication query publication type research category note

[162] gd journal article proposal of solution ABL
[164] 63w conference paper philosophical paper ABL
[165] 773w conference paper proposal of solution ABL
[229] –w conference paper proposal of solution A2BL
[230] –w journal article proposal of solution A2BL, reprint

Language 40 LSimple Entity Annotation Language generic / engine / practice

Anderson proposes a Simple Entity Annotation Language (SEAL), a behavior language that
resembles C for scripting believable NPC behaviors with domain-specific features and datatypes,
e.g., state machines. Figure 19 shows an example script with two entities, states, events, and
associated behavior functions.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://www.playablstudios.com/facade/
https://www.cc.gatech.edu/~simpkins/research/afabl/abl.html

Languages of Games and Play 0:57

entity defender {

scalar manGun;

scalar turret;

scalar gunAvailable = 0;

event unused {

manGun = getGlobal("use");

if(manGun!=NULL) {

turret=getEntity(manGun);

gunAvailable = 1;

trigger lock @ turret;

}

};

state fsm {

patrolling(), NULL;

defending(), patrolling();

fsm(), NULL;

};

event enemy_detected {

setstate fsm::defending;

};

fsm::patrolling() {

while(1) {

/* execute 'patrolling'

behaviour */

...

}

}

fsm::defending {

/* if gun-turret available */

if(gunAvailable){
/* man gun turret */

manGun();

trigger unlock @ turret;

gunAvailable = 0;

...

} else {

/* execute default defence

behaviour */

...

}

}

fsm::fsm() {

setstate patrolling;

}

defender() {

setstate fsm;

}

};

(a) Defender entity

entity turret {

event lock {

/* stop advertising */

setSilent();

};

event unlock {

/* advertise */

setBroadcast();

};

...

global void use() {

/* action to fire the gun */

action fire();

...

fire();

...

}

...

turret(){}

};

(b) Turret entity

Fig. 19. SEAL script of a defender manning a turret (adapted from Anderson [14]

publication query publication type research category note

[15] 20n conference paper proposal of solution
[14] 247n PhD thesis proposal of solution

Language 41 LBEcool generic / engine / practice

Szilas presents BEcool, a behavior engine for authoring high performance expressive virtual
agents. Behaviors are directed graphs with nodes for animations and arrows for transitions,
arrows’ labels for environment’s sensing (events) and dashed arrows for event-based anima-
tion triggering. BEcool supports sequencing, branching, parallelism and inter-characters behav-
iors [249].

publication query publication type research category note

[249] gd conference paper proposal of solution

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:58 Riemer van Rozen

c1 c2 a

A sequence is a node, shown as a rectangle,
whose success depends on each of its child
nodes succeeding in sequence, where any
failure ends its execution in failure. Here,
conditions c1 and c2 must succeed for ac-
tion a to happen.

(a) Sequence node

?

s1 s2

A selector is a node shown as a dashed cir-
cle whose success depends on trying to ex-
ecute its child nodes one-by-one until one
succeeds, ending the selection in success.
Here, sequences s1 and s2 are alternative
plans.

(b) Selector node

n a

A lookup node, shown as a diamond,
serves as a modular construct for look-
ing up a sub-tree by name. Here, if action
a happens depends on the success of the
sub-tree represented by lookup n.

(c) Lookup node

Fig. 20. Behavior Trees (visual variant adapted from Champandard [50, 51])

Language 42 LBehavior Trees generic / engine / practice

Behavior Trees (BTs) is a visual notation for authoring AI behaviors that is said to be under-
standable, easy to use, and scale well in parallel [50, 126, 127]. Behaviors are modeled by hier-
archies of nodes that represent plans whose details are specified in a top-down fashion. More
general plans appear near the top, whereas the leafs at the bottom represent conditions and
“atomic” actions exposing lower-level logic such as moves. Figure 20 shows three node types:
sequence, selector and lookup, which can be composed with conditions and actions in authoring
complex modular behaviors.
Lim et al. apply evolutionary techniques in developing competitive AI-bots that can play video
games, in particular for the real-time strategy game DEFCON. Martens et al. present a formal op-
erational semantics, a type system and an implementation [159]. Variants of BTs are commonly
used in practice, e.g., in Halo 2 and Spore [50, 127], and several implementations and engine
plugins are available, e.g., BTs are a built-in feature of Unreal Engine 41.

1https://docs.unrealengine.com/en-us/Engine/AI/BehaviorTrees (visited May 9th 2019)

publication query publication type research category note

[127] – presentation (audio) practice
[126] language article experience report
[50] – presentation (video) tutorial / practice
[141] language conference paper validation research
[51] – presentation (video) tutorial / practice
[159] –w unpublished validation research

Language 43 LBehavior Transition Networks generic / engine / practice

Fu et al. describe a visual framework for designers, developers and subject-matter experts that
simplifies authoring behavior as Behavior Transition Networks (BTNs), an extension of finite
state machines [93]. In addition to current states and transitions, BTNs support hierarchical
decomposition, variables, communication to other BTNs and code invocation. Figure 21 shows
an example aimed at specifying realistic behavior of NPCs in a first person shooter. SimBionic is

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://docs.unrealengine.com/en-us/Engine/AI/BehaviorTrees

Languages of Games and Play 0:59

Fig. 21. Behavior Transition Network of combat patrol behavior (appears in Fu et al. [93])

a visual editor and a run-time engine for embedding behaviors [94] that is available under the
3-clause BSD licence1.

1http://www.simbionic.com/ (visited March 28th 2019)

publication query publication type research category note

[92] –w journal article proposal of solution BrainFrame
[93] gd conference paper proposal of solution BTNs
[94] gd conference paper proposal of solution Simbionic

Language 44 LPOSH# generic / engine / practice

Gaudl describes POSH# a C# framework for creating behavior-based AI for robust and intuitive
agent development1 ABODEstar is an IDE for behavior oriented design.

1https://github.com/suegy/posh-sharp (Visited November 24th 2018)

publication query publication type research category note

[104] –w conference paper POSH
[105] –w conference paper POSH, ABL
[103] 274n PhD thesis POSH

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://www.simbionic.com/
https://github.com/suegy/posh-sharp

0:60 Riemer van Rozen

<!ELEMENT condition (%basic -condition ;| either

)+>

<!ELEMENT active EMPTY >
<!ATTLIST active flag NMTOKEN #REQUIRED >
<!ELEMENT inactive EMPTY >
<!ATTLIST inactive flag NMTOKEN #REQUIRED >
<!ELEMENT either (%basic -condition ;)+>

<!ENTITY %basic -condition "(active|inactive)"

>

(a) Condition Description

<condition >
<active flag="FirstTaskInitiated"/>

<either >
<inactive flag="UsedSandSack1Container"/>

<inactive flag="UsedSandSack2Container"/>

</either >
<condition >

(b) Condition Example

<!ELEMENT effects ((activate|consume -object|

speak -player|speak -char)*,trigger -

cutscene ?)>

<!ELEMENT activate EMPTY >
<!ATTLIST activate flag NMTOKEN #REQUIRED >
<!ELEMENT consume -object EMPTY >
<!ELEMENT speak -player (# PCDATA)>
<!ELEMENT speak -char (# PCDATA)>
<!ELEMENT trigger -cutscene EMPTY >
<!ATTLIST trigger -cutscene idTarget IDREF #

REQUIRED >

(c) Effects Description

<effects >
<speak -player >Aaaahhhh !!!</speak -player >
<activate flag="PlayerDamaged"/>

<trigger -cutscene idTarget="Ambulance"/>

</effects >

(d) Effects Example

<!ELEMENT resources (condition?, asset+)>

<!ATTLIST resources id ID #IMPLIED >
<!ELEMENT asset EMPTY >
<!ATTLIST asset type CDATA #REQUIRED uri

CDATA #REQUIRED >

(e) Resources Description

<resources >
<asset type="image/jpeg" uri="images/

backround1.jpg"/>

<asset type="audio/mpeg" uri="sounds/working1

.mp3"/>

</resources >

(f) Resources Example

Fig. 22. <e-Game> Examples (adapted from Moreno-Ger et al. [179])

Language 45 LDSL for AI in real-time generic / tool / practice

Hastjarjanto et al. introduce a DSL for modeling the decision making process of the AI in real-
time video games, an embedded DSL in Haskell.

publication query publication type research category note

[114] 138n workshop paper proposal of solution
[113] 155n Master’s thesis proposal of solution

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:61

B.7 Narratives and Storytelling

Language 46 L<e-Game> genre-specific / engine / educative

Moreno-Ger et al. introduce <e-Game>, a textual DSL for describing storyboards of adventure
games [178, 179], which is extended and applied for game based learning [45, 180]. <e-Game>
and <e-Adventure> have an operational semantics, which enables formal analysis and supports
model checking [181]. They describe the structure of storyboards using XML Schemas, which
are abbreviated as Document Type Definitions (DTDs). Figure 22 shows DTDs of conditions (a),
effects (c) and resources (e) and <e-Game> examples (b, d and f). The language also describes
scenes, objects, characters, conversations and actions in a similar way. Marchiori et al. provide
a Writing Environment for Educational Video games (WEEV), a visual language and tool for
educational adventure game authoring that builds on prior work.
The <e-Adventure> project web site1 refers to SourceForge2 for the distribution, which includes
several games and Java sources, released under LGPL.

1http://e-adventure.e-ucm.es (visited January 7th 2019)
2https://sourceforge.net/projects/e-adventure/ (visited January 7th 2019)

publication query publication type research category note

[178] 11n conference paper proposal of solution <e-Game>
[179] 125w journal article proposal of solution <e-Game>
[180] 220n conference paper proposal of solution <e-Adventure>
[45] 227n journal article proposal of solution <e-Adventure>
[181] 122n journal article validation research <e-Adventure>
[155] 126n journal article proposal of solution WEEV

Language 47 LScriptEase genre-specific / tool / practice

McNaughton et al. propose ScriptEase, a tool for game designers intended to reduce the effort in
defining complex AI behaviours for Role Playing Games [168]. ScriptEase is an IDE for pattern-
based script design that offers drop-down lists, checkboxes, etc. for pattern instantiation, adap-
tation and use. For instance, the Guard pattern specifies a guard, a guarded object and a list of
situations, which consists of a name, conditions and actions. Other patterns include Patrol and
Encounter.
Cutumisu et al. propose four metrics to evaluate the effectiveness of pattern catalogues [64], and
Carbonaro et al. evaluate ScriptEase in teaching [49]. Schenk et al. present ScriptEase II, which
adds support for game-specific generators and a drag-and-drop interface that simplifies the story
component [228]. Figure 23 shows a screen shot of the prototype. Its Java sources are available
on GitHub1. The main example and generator target is Neverwinter Nights, a game developed at
Bioware.

1https://github.com/UA-ScriptEase/scriptease (visited March 21st 2019)

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://e-adventure.e-ucm.es
https://sourceforge.net/projects/e-adventure/
https://github.com/UA-ScriptEase/scriptease

0:62 Riemer van Rozen

Fig. 23. ScriptEase II – Treasure Island story (appears in Schenk et al. [228])

do/flirt/conflict

: eros Flirter Flirtee * eros Other Flirtee

-o {eros Flirter Flirtee * eros Flirtee Flirter anger Other Flirter * anger Other

Flirtee }.

Fig. 24. Narrative action that expresses the effect of flirting in Linear Logic (adapted fromMartens et al. [158])

publication query publication type research category note

[168] –w conference paper proposal of solution ScriptEase
[170] –w conference paper proposal of solution ScriptEase
[169] language tool demo proposal of solution ScriptEase
[64] –w conference paper validation research ScriptEase
[63] 145n journal article evaluation research ScriptEase
[49] –w journal article evaluation research ScriptEase
[62] –w PhD thesis evaluation research ScriptEase
[228] –w conference paper proposal of solution ScriptEase II

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:63

Language 48 LCeptre generic / tool / practice

Martens et al. investigate the use of Linear Logic (LL) programming for expressing story worlds,
settings in which the effect of narrative actions may create emergent behaviors [158]. Narrative
actions modify story states consisting of logical predicates. Figure 24 shows a rule that expresses
how flirting between a Flirter and a Flirtee may result in an angry lover (Other). Describing
interactive stories using LL enables an interpretation of stories as logical proofs. To demonstrate
this, the authors describe an example (dramatic) story world in the language Celf, and discuss
how the approach enables generation, analysis, and interactive interpretation of stories.
Martens et al. present Ceptre, a language for rapid prototyping of experimental game mechanics
that builds on prior work [157]. Game designers and researchers can use Ceptre to create, an-
alyze and debug ‘core systems’ and relate logical proofs to gameplay. Ceptre adds interactivity
and modules called stages for structuring independent components. Stages run until no more
actions are available (a quiescence state) allowing a transfer of control to another stage. They
present two case studies. The first is an updated interactive drama. The second specifies actions
and effects of a dungeon-crawler-like game. Ceptre and a tutorial are available on Github1.

1https://github.com/chrisamaphone/ceptre-tutorial (visited August 14th 2019)

publication query publication type research category note

[158] gd workshop paper proposal of solution linear logic
[157] 147w conference paper proposal of solution Ceptre

Language 49 LSAGA genre-specific / engine / practice

Beyak and Carette describe SAGA, a DSL for story management meant to augment the produc-
tivity of artistic teams who create multi-platform narrative-driven RPGs [30, 31]. SAGA (Story as
an Acyclic Graph Assembly) describes story states and transitions as graphs. A meta-language
called AbstractCode is simplifies translating SAGA programs to different target platforms, e.g.,
C++, C# and Java. Figure 25 shows an example story graph and its associated story description.
The Haskell implementation of SAGA is available online1.

1http://www.cas.mcmaster.ca/~carette/SAGA/ (visited August 14th 2019)

publication query publication type research category note

[31] 51n conference paper proposal of solution
[30] 66n Master’s thesis proposal of solution

Language 50 L(P)NFG genre-specific / tool / practice

Picket et al. address a lack of tool support for expressing computer game narratives, and in par-
ticular resolving the inherent logical consistency and playability issues [210]. They present a
textual language and an environment for programming and analyzing structured narratives and
assuring good narrative properties. This language, Programmable NFG, is based on Narrative
Flow Graphs (NFGs). Since NFGs are a class of 1-safe Petri Nets (Language 23), the authors can

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://github.com/chrisamaphone/ceptre-tutorial
http://www.cas.mcmaster.ca/~carette/SAGA/

0:64 Riemer van Rozen

STORY Sealed Fate

INITIAL Tabula Rasa

SECTION A Hero Revealed A Villain Emerged {

Tabula Rase GOES The Right Thing to Do WHEN Keepin '

it Cool ,

Tabula Rasa GOES Cowardice WHEN Afraid of Fire ,

The Right Thing to Do GOES The Good Side WHEN Dead

Weight ,

Cowardice GOES Forgiveness WHEN Repent ,

Cowardice GOES Evil Decision WHEN Fear Sets In,

Forgiveness GOES The Good Side WHEN Bedside Manner ,

Forgiveness GOES The Bad Side WHEN Running Away ,

Evil Decision GOES The Bad Side WHEN Running Again

}

SECTION The Path of Good {

Good is Choice GOES Cute Gift WHEN Teddy Bear ,

Good is Choice GOES Full Stomach WHEN Home -Cooked

Meal ,

Cute Gift Goes Slumber WHEN The Kiss ,

Full Stomach GOES Slumber WHEN Bedtime Story

}

...

(a) Story Description

L. Beyak & J. Carette 57

The domain expert designing the story will most likely not think about the story in this way (and
even less as a finite state machine!). They will simply craft the story just as how a writer writes a book.
They will think about the characters, what happens to them, and what the characters will do in order to
overcome their obstacles. The designer will need to be able to identify the crucial junctures in their story,
and separate these into discrete, named entities. This is where our design task is at its most subtle – we
want to minimize implementation issues exposed to the designer, but still need to be able to use their
work directly into the game.

Appendix A presents the full syntax of the SAGA DSL. We will use the example in Figure 6 to
explain the syntax (and its semantics) rather than using the EBNF, as that is easier to comprehend. The
story description in Figure 6 for the “Sealed Fate” game story produces a story graph seen in Figure 7.

A Hero Revealed A Villain Emerged

The Path of Good The Path of Evil

Tabula Rasa

The Right Thing to Do

Keepin it Cool

Cowardice

Afraid of Fire

The Good Side

Dead Weight Forgiveness

Repent

Evil Decision

Fear Sets In

Good is Choice

Hospital Visit

Bedside Manner

The Bad Side

Running Away Running Again

Evil is Power

The Parking Garage

Cute Gift

Teddy Bear

Full Stomach

Home-Cooked Meal

Slumber

The Kiss Bedtime Story

The Heist

Up the Elevator Murderous Rampage

Stolen Goods

Greed Happens

Trigger Happy

Trigger Happy

Figure 7: “Sealed Fate” Story Graph

A story must be given a name using STORY, and its starting point is given via labeling a node
INITIAL1. SECTION is used to define (named) sections; the contents of a section are currently delimited
by curly braces, but we intend to change this.

Sections contain lists of transitions (see the <trans> production in the grammar). A transition
specifies one or more initial nodes (with OR as separator for multiple nodes), GOES, a (single) destination

1We assume that our games all have a singular starting point (although this would be relatively easy to change).

(b) (Partial) Story Graph

Fig. 25. SAGA excerpt of "Sealed Fate" (adapted from Beyak and Carette [31])

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:65

object cloak { }

room closet {

state {lit , locket}

}

room you {

counter {lives 0 3 }

}

(a) Declaring an object, room with two

states and a lives counter

room lighthousefront {

(you ,go,north) {

"You␣are␣now␣on␣the␣mountain␣pass.";

move you from lighthousefront to

mountainpass;

}

(you ,go,east) {

"You␣are␣now␣behind␣the␣lighthouse.";

move you from lighthousefront to

lighthouseback;

...

}

(b) Room-specific Actions

Fig. 26. (P)NFG code snippets (adapted from Pickett and Verbrugge [210])

"Behold ...␣THE␣PHONE␣BOOTH␣GAME!"

words (objects)

phone 0 1

telephone 1

"rotary␣phone" 2

pre action
"look␣phone" o?phone m=\

"The␣phone␣is␣a␣robust␣contraption␣with␣a␣

rotary␣dial."

(a) .misc file, containing location-independent code

#1 Telephone Booth

You are in a telephone booth.

exit 2

#2 Outside Telephone Booth

You are not in a telephone booth.

enter 1

(b) .wrld file, containing location-dependent code

Fig. 27. Text game featuring a phone booth in Wander (adapted from Aycock [20])

leverage widely available techniques for formal analysis. (P)NFG’s interactive narrative inter-
preter (and runtime) analyzes NFGs using the symbolic model checker NuSMV1. (P)NFG has
specific statements for object, state, room and more general ones such as if, for and thread.
Figure 26 shows examples. As a demonstration, they model several IF games and annalyze narra-
tive properties.

1http://nusmv.fbk.eu (visited August 17th 2019)

publication query publication type research category note

[271] –w conference paper proposal of solution NFG
[210] –w conference paper proposal of solution (P)NFG
[272] –w conference paper validation research (P)NFG

Language 51 LWander genre-specific / tool / practice

In “Retrogame Archeology”, Aycock shares an excerpt of Wander, an early example of a DSL for
textual adventures and ’number games’ from 1974 that ran on mainframe [20]. Figure 27 shows
a game featuring a phone booth.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://nusmv.fbk.eu

0:66 Riemer van Rozen

Location(HM,room)

Location(afrikaaner ,room2)

Location(casion-guard ,room2)

Fire-Alarm(floor7 ,on)

(a) Current World State

Action:
Disguise-As(HM ,casino-guard)

Pre-Conditions:
Inventory(HM,casino-vest)

Add-List:
Disguised(HM,casino-guard)

Delete-List:
Disguised(HM,none)

Disguised(HM,afrikaaner)

Disguised(HM,casino-staff)

(b) Disguise Action

Panel Template:
HM-Disguising

Actors Layer:
Disguised(HM,casino-guard)

Environment Layer:
Location(HM,room)

Atmosphere Layer:
Fire-Alarm(floor7 , on)

(c) Disguising Panel Template In-

stantiation

Fig. 28. Example template instantiation from an action and a current state (adapted from Pizzi et al. [212])

publication query publication type research category note

[20] 186n book chapter historical account

Language 52 LStoryboards and STRIPS genre-specific / tool / practice

Pizzi et al. propose an authoring tool to allow game designers to formalize, visualize, modify
and validate game level solutions in the form of automatically generated storyboards [211, 212].
First, AI programmers represent game worlds as a set of propositions, characterizing its plan-
ning domain, based on the input provided by game designers. Game states are conjunctions of
propositions and transitions between states, or planning operators. These are represented using
a STanford Research Institute Problem Solver (STRIPS)-like formalism. Operators are catego-
rized according to different styles which can be used in the solution generation, which is the
second step. The tooling supports two modes. In the off-line mode a level designer select the
style and the heuristics planner generates a complete storyboard, if one exists, depending on the
constraints. In the on-line mode the level designer can simulate the level (plan) step-by-step and
explore alternatives. The results are visualized in a solution tree. They validate the approach on
a design of a game called Hitman. Figure 28 shows (a) an example world state; (b) a disguise
action; and (c) a template instantiation, which is used to generate an image in the storyboard
image sequence.

publication query publication type research category note

[211] language conference paper proposal of solution
[212] language journal article validation research

Language 53 LVersu and Praxis genre-specific / engine / practice

Versu is a text-based interactive drama and storytelling system that simulates autonomous
agents. Praxis is a DSL for describing social practices as reactive plans that provide affordances
to the agents who participate in them. Prompter is an environment for authoring Praxis that
speeds up the content creation process. Figure 29 shows an example of two agents greeting each
other. Applying exclusion logic, the ’!’ operator expresses that variables can only have one

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:67

process.greet.X(agent).Y(agent)
action "Greet"

preconditions
// They must be co-located

X.in!L and Y.in!L

postconditions
text "[X] says 'Hi ' to [Y obj]"

end

Fig. 29. The social convention of greeting in Praxis (adapted from Evans and Short [83])

value. In the example, agents X and Y must both be at location L. This is a more concise nota-
tion than in STRIPS (see Language 52) or PDDL (see Language 31). Versu was used in the iOS
game Blood and Laurels1.

1https://versu.com/ (visited July 17th 2020)

publication query publication type research category note

[83] –n journal article experience report

Language 54 LTracery generic / engine / practice

Compton et al. present Tracery, a language and tool for authoring stories and art using genera-
tive grammars. Its users have created a wide variety of creative generators, e.g., visual patterns,
poetry, Twitter bots and games [56]. Specifications are JavaScript Object Notation (JSON) objects
consisting of rewrite rules that express how strings of characters can be produced. Features in-
clude recursion and storing results. Figure 30 shows an example of a “Hero and Pet” story. Trac-
ery is implemented in JavaScript. Other versions support platforms such as Python and Ruby.
Users (also non-programmers) can build generators using an online visual interactive authoring
environment1

1tracery.io (visited March 29th 2019)

publication query publication type research category note

[56] –w conference paper validation research

B.8 Analytics and Metrics

Language 55 LGameplay Metrics generic / framework / practice

Canossa and Drachen propose adopting the ‘personas’ framework for improving player expe-
riences. They add gameplay metics, patterns of player behaviors, to the model for analyzing
how different player categories use game mechanics, e.g., by measuring the amount of jumping,
solving and shooting. Designers can use gameplay metrics to compare player behaviors to their
gameplay hypotheses, and use the values to estimate player engagement. The use of data in

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://versu.com/
tracery.io

0:68 Riemer van Rozen

{

"name": ["Yuuma","Darcy","Mia","Chiaki","Izzi","Azra","Lina"],

"animal ": ["eagle","owl","lizard","zebra","duck","kitten"],

"mood": [" impassioned ","wistful","astute","courteous"],

"story": ["# hero# traveled with her pet #heroPet #.

#hero# was never #mood#, for the #heroPet# was always too #

mood #."],

"origin ": ["#[hero:#name #][heroPet :# animal #]story #"]

}

(a) Tracery grammar of “Hero and Pet” in JavaScript Object Notation

(b) Example story output string and production

Fig. 30. Tracery example of “Hero and Pet” stories (adapted from a tutorial on tracery.io)

games has evolved rapidly. In their book, Game Analytics, El-Nasr et al. provide an overview for
a wide audience [184].

publication query publication type research category note

[48] 142w conference paper proposal of solution gameplay metrics
[184] – textbook multiple categories game analytics

Language 56 LLaunchpad genre-specific / engine / practice

Smith et al. describe Launchpad, a level generator for 2d platform games that can generate a
wide variety of game levels. These levels are varied by adjusting rhythm parameters and level
geometry [245]. The expressive range of a level generator is analyzed using two metrics that
measure quantities of level structure associated with its qualities. The first, linearity, measures
the aesthetic ‘profile’ of generated levels by fitting a straight line to the level (under an optimal
angle), and calculating to what extent the geometry fits that line. The second, leniency, mea-
sures how forgiving a level is to player mistakes by aggregating a score of level elements. Gaps,
enemies and falls: -1. Springs and stompers: -0.5. Moving platforms: +0.5 and jumps with no
associated gaps +1.0.

publication query publication type research category note

[242] language conference paper proposal of solution rhythms
[245] language journal article validation research Launchpad

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

tracery.io

Languages of Games and Play 0:69

obj.move(forward , 1)

obj.move(forward , 1, duration =3)
obj.move(forward , 1, speed =4)
obj.move(forward , speed =2)
change of coordinate system

obj.move(forward , 1, AsSeenBy=camera)
different interpolation function

obj.move(forward , 1, style=abruptly)

(a) Object Movements

ArmsOut = DoTogether(
Bunny.Body.LeftArm.Turn(Left , 1/8),

Bunny.Body.RightArm.Turn(Right , 1/8))

ArmsIn = DoTogether(
Bunny.Body.LeftArm.Turn(Right , 1/8),

Bunny.Body.RightArm.Turn(Left , 1/8))

BangTheDrumSIowly = DoInOrder(
ArmsOut ,

Armsln ,

Bunny.PlaySound('bang '))
BangTheDrumSIowly.Loop()

(b) Bunny Drum Script

Fig. 31. Alice script example (adapted from [58])

Language 57 LPlayspecs generic / tool / practice

Osborn et al. introduce PlaySpecs, regular expressions for specifying and analyzing desirable
properties of game play traces, sequences of player actions. PlaySpecs are validated with the Puz-
zleScript engine, which is itself described as Language 91, and Prom Week, a social simulation
puzzle game. The TypeScript sources of PlaySpecs are released under the MIT license1.

1https://github.com/JoeOsborn/playspecs-js

publication query publication type research category note

[204] 930w conference paper validation research
[200] –w PhD thesis validation research

Language 58 LMAD and SAnR generic / engine / practice

Van Rozen and Heijn study Ludoscope (Language 36) and address quality issues of grammar-
based level generation. They propose two techniques for improving grammars to generate better
game levels. The first, Metric of Added Detail (MAD), leverages the intuition that grammar rules
gradually add detail, and uses a detail hierarchy that indicates for calculating the score of rule
applications. The second, Specification Analysis Reporting (SAnR) proposes a language for spec-
ifying level properties, and analyzes level generation histories, showing how properties evolve
over time. LudoScope Lite (LL), a prototype that implements the techniques and demonstrates
their feasibility1.

1https://github.com/visknut/LudoscopeLite (visited April 25th 2019)

publication query publication type research category note

[269] –n workshop paper proposal of solution LL

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://github.com/JoeOsborn/playspecs-js
https://github.com/visknut/LudoscopeLite

0:70 Riemer van Rozen

(a) Visual Kodu Rule

See - purple - move - away
See - apple - move - towards

(b) Textual Kodu Rules

Fig. 32. Visual and Textual Kodu Examples (adapted from MacLaurin [145])

B.9 Education

Language 59 LAlice generic / tool / educative

Alice is intended for authoring interactive 3d animations, and teaching programming constructs
to undergraduates with no prior programming knowledge. Figure 31 shows a textual Alice exam-
ple that uses Logo-style coordination and movement. Whereas the earlier versions were textual
and based on Python, later version of Alice support mediated transfer from block based notation
to script. Alice is available online for free1.

1http://www.alice.org (visited March 27th 2019)

publication query publication type research category note

[57] gd PhD thesis proposal of solution
[58] g conference paper experience report
[273] 108w conference paper proposal of solution Cheshire

Language 60 LGamestar Mechanic genre-specific / tool / educative

Salen presents the overview of the pedagogy and development process of Gamestar Mechanic, an
RPG style online game for teaching the fundamentals of game design to children aged 7 to 14.
Games presents the results of a study into teaching middle school children to think like game de-
signers by repairing broken games and developing games from scratch given specifications [102].
The game is available commercially1.

1http://gamestarmechanic.com/ (visited April 10th 2019)

publication query publication type research category note

[223] 2w journal article proposal of solution
[102] 19w journal article validation research

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://www.alice.org
http://gamestarmechanic.com/

Languages of Games and Play 0:71

Language 61 LKodu application-specific / tool / educative

Kodu is a graphical programming language for helping young children learn through indepen-
dent playful exploration. Kodu expresses rules that control robots in a realtime 3d gaming envi-
ronment. Figure 32a shows a visual rule, which states that when a monster sees a red apple, it
moves towards it. Figure 32b shows two textual rules. Kodu GameLab and educational materials
are available from Microsoft Research1.

1https://www.kodugamelab.com (visited March 27th 2019)

publication query publication type research category note

[246] gd manual practice
[144] 466w invited talk proposal of solution
[145] 466w journal article proposal of solution reprint

Language 62 LSqueak – Croquet generic / engine / practice

Squeak is a dialect of Smalltalk, an object-oriented, class-based, and reflective programming
language1. Its Morphic framework facilitates visual and interactive programming and debugging
of applications for domains such as education, gaming and research. Masuch and Rueger report
experiences on using Squeak for teaching game design [160]. They investigate requirements for
a collaborative learning environment that uses OpenCroquet, an audio-visual 3d environment
that has built-in features supporting collaboration. Because the OpenCroquet project web site no
longer exists, we share a blog with several related frameworks2.

1http://squeak.org (visited January 9th 2019)
2http://planetcroquet.squeak.org (visited March 27th 2019)

publication query publication type research category note

[160] 142w conference paper experience report

Language 63 LScratch generic / engine / educative

Scratch is an visual environment for creating, designing and remixing interactive stories, games,
animations, and simulations, which is intended for children between 6 and 12 years old. Scratch
is a block based language implemented on Squeak (Language 62) whose its syntactic constructs
fit together as puzzle pieces, for learning creative thinking and understanding logic and program-
ming concepts [216]. A web-based editor of the current version and a large collection of projects
contributed by its users are available online1.

1https://scratch.mit.edu/ (visited March 27th 2019)

publication query publication type research category note

[216] gd journal article experience report
[52] 56w short paper evaluation research

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://www.kodugamelab.com
http://squeak.org
http://planetcroquet.squeak.org
https://scratch.mit.edu/

0:72 Riemer van Rozen

Language 64 LStarlogo TNG generic / tool / educative

StarLogo The Next Generation (TNG) is a language, tool and 3d simulation environment for
novices for creating and understanding complex systems such as games. The language is a block-
based extension of Logo, a dialect of Lisp and a successor of StarLogo. Its elements are repre-
sented as colored blocks that fit together like puzzle pieces that do not permit syntax mistakes.
As such, it lends itself teaching introductory game development [28, 276]. A distribution is avail-
able for Windows and MAC OS1. An open source version, OpenStarLogo, is available under the
MIT license2. A successor called StarLogo Nova can be used online3.

1http://web.mit.edu/mitstep/projects/starlogo-tng.html (visited January 8th 2019)
2http://web.mit.edu/mitstep/openstarlogo/index.html (visited January 8th 2019)

3https://www.slnova.org (visited January 8th 2019)

publication query publication type research category note

[28] 170w journal article proposal of solution
[276] 12w extended abstract experience report

Language 65 LAgentSheets and AgentCubes generic / tool / educative

Repenning proposes Agentsheets, a tool for building domain-specific visual environments [215].
Later, AgentSheets becomes a tool for creating agent-based games and simulation, also used
for teaching game design. In conversational programming, when a programmer edits a game or
simulation, an agent executes the program and provides syntactic and semantic feedback [214].
Ioannidou et al. propose AgentCubes, a 3d game-authoring environment for teaching middle
school children modeling, animation and programming. Both are commercial products1.

1http://www.agentsheets.com (visited April 17th 2019)

publication query publication type research category note

[215] game journal article proposal of solution AgentSheets
[125] 151w conference paper proposal of solution AgentCubes
[214] 488w conference paper demo paper AgentSheets
[6] 75w conference paper proposal of solution AgentWeb
[8] 34n conference paper evaluation research AgentSheets
[7] 158n PhD Thesis evaluation research AgentWeb

B.10 Gamification

Language 66 LGamification Language generic / tool / practice

Herzig et al. aim to enrich information systems with game design elements that increase the
engagement and motivation of its users [116]. The Gamification Language (GAML) is a textual
and declarative DSL that helps domain-experts define these elements, and helps IT experts more
easily incorporate them.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://web.mit.edu/mitstep/projects/starlogo-tng.html
http://web.mit.edu/mitstep/openstarlogo/index.html
https://www.slnova.org
http://www.agentsheets.com

Languages of Games and Play 0:73

Matallaoui et al. propose a model-driven architecture for designing and generating building
blocks of serious games, and apply it in the creation of an achievement system [161]. An Xtext
grammar is available under the MIT license1.

1https://github.com/AmirIKM/GamiAsService/ (visited April 10th 2019)

publication query publication type research category note

[116] 5n conference paper proposal of solution
[161] 7n conference paper validation research

Language 67 LGLiSMo genre-specific / tool / educative

Thillainathan et al. aim to enable educators without prior programming skills to create didac-
tically sound serious games [256]. They propose Serious Game Logic and Structure Modeling
Language (GLiSMo), a visual modeling language that applies model-driven development tech-
niques for generating games from visual models.

publication query publication type research category note

[256] 14n conference paper proposal of solution

Language 68 LUAREI generic / tool / practice

Ašeriškis et al. present User-Action-Rule-Entities-Interface (UAREI), a visual language for rep-
resenting game mechanics for software gamification. They use UAREI to simulate and evaluate
the effects of gamified systems on different types of players. UAREI models are directed graphs
consisting of five node types (one for each word in the acronym) with intentionally limited ex-
pressiveness. An operational semantics is not defined. Case studies include OilTrader and the
Trogon Project Management System.

publication query publication type research category note

[19] 120n journal article solution proposal
[18] 127n workshop paper solution proposal
[17] 241n PhD thesis validation research

B.11 General Game Playing

Language 69 LMultigame genre-specific / tool / research

Romein et al. present Multigame, a procedural DSL for expressing the rules of board games
intended to research automatic parallelism and parallel game tree search in particular [217].
Multigame helps programmers focus on choosing parameters that influence behavior instead of
resolving issues in communication, synchronization, work- and data distribution and deadlocks.
The manual describes Chess and Checkers [219]. Figure 33 shows two simpler examples.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://github.com/AmirIKM/GamiAsService/

0:74 Riemer van Rozen

knight_move =

find own knight ,

pickup , orthogonal , step ,
either rotate 45 or rotate -45, step ,
not points at own piece , putdown.

(a) A Knight’s move in Chess

dimensions (3,3)

symmetry all directions
pieces { mark 'X' 'O' }

main =

irreversible , # each move is a conversion

try new_mark else draw.
new_mark =

find empty field ,
replace by mark ,

try [test three_in_a_row , win].

three_in_a_row =

find own piece , # start from any position

any direction ,
repeat 2 times [step , points at own piece].

(b) Tic Tac Toe

Fig. 33. Multigame Examples (adapted from Romein et al. [217] (a) and [219] (b))

publication query publication type research category note

[217] gd conference paper validation research
[219] gd manual validation research
[218] gd PhD thesis validation research

Language 70 LGame Description Language generic / engine / research

General game playing studies how generic AI algorithms and techniques can help computer sys-
tems play more than one game successfully. The Game Description Language (GDL) provides
a formal description of a game’s rules that systems can use as a testbed for intelligent agents
and algorithms. Thielscher translates GDL into action language semantics [255] and introduces
GDL-II, an extension of GDL for incomplete information games [253]. Figure 34 shows a sim-
ple example that explicitly defines turn-taking, next states and sequence. Stanford hosts a web
site, which refers to the annual general game playing competition and also includes additional
examples1.

1http://ggp.stanford.edu (visited March 26th 2019)

publication query publication type research category note

[143] gd technical report report GDL
[253] gd conference paper validation research GDL-II
[254] gd conference paper validation research GDL
[255] 507w book chapter validation research GDL
[222] gd journal article validation research GDL
[221] 217n Master’s thesis validation research GDL-II

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://ggp.stanford.edu

Languages of Games and Play 0:75

role(candidate).
role(random).
init(closed (1)).
init(closed (2)).
init(closed (3)).
init(step (1)).

legal(random ,hide_car (?d))
<= true(step (1)), true(closed (?d)).

legal(random ,open_door (?d))
<= true(step (2)),

true(closed (?d)),
not true(car(?d)),
not true(chosen (?d)).

legal(random ,noop) <= true(step (3)).

legal(candidate ,choose (?d))
<= true(step (1)), true(closed (?d)).

legal(candidate ,noop) <= true(step (2)).
legal(candidate ,noop) <= true(step (3)).
legal(candidate ,switch) <= true(step (2)).
sees(candidate ,?d)

<= does(random ,open_door (?d)).

next(car(?d))
<= does(random ,hide_car (?d)).

next(car(?d)) <= true(car(?d)).
next(closed (?d))

<= true(closed (?d)),
not does(random ,open_door (?d)).

next(chosen (?d))
<= does(candidate ,choose (?d)).

next(chosen (?d))
<= true(chosen (?d)),

not does(candidate ,switch).
next(chosen (?d))

<= does(candidate ,switch),
true(closed (?d)),
not true(chosen (?d)).

next(step (2)) <= true(step (1)).
next(step (3)) <= true(step (2)).
next(step (4)) <= true(step (3)).
terminal <= true(step (4)).
goal(candidate , 100)

<= true(chosen (?d)), true(car(?d)).
goal(candidate , 0)

<= true(chosen (?d)), not true(car(?d)).

There are two players, a candidate and a host. Initially, three doors are closed. The host may first hide a car
behind a door, and open a closed door at step 2 if it does not conceal a car and is not chosen. The candidate
may first choose a closed door, optionally switch doors at step 2, and sees it when the host opens a door.
When a car is hidden behind a door it remains there. Doors remain closed when not opened. When the

candidate choses a door, it remains chosen unless they switch. Steps are sequential and the candidate wins
only when choosing correctly.

Fig. 34. GDL description of the Monty Hall game (adapted from Thielscher [255])

tmax= 28

scoremax= 6

0 Red things, random short

4 Green things, clockwise

9 Blue things, still

//When Red and Green things collide, Red survives and

Green dies, and the score is -1-1 = -2.

collision: Red, Green → none, death, -1, -1

collision: Red, Blue → death, death, 1, 1

collision: Red, Agent → death, death, -1, 0

collision: Green, Blue → none, death, -1, -1

collision: Green, Agent → teleport, none, -1, 1

collision: Blue, Agent → death, none, 1, 1

(a) Race against green: score 6 within 28 time steps

(b) A game’s start state: things and the agent

(cyan) are randomly placed on the fixed grid

Fig. 35. Rule set of a Pac-man-like game (adapted from Togelius and Schmidhuber [257])

Language 71 LRules of Pac-man-like Games application-specific / tool / research

Togelius and Schmidhuber propose automatic game design as a means to generalize AI tech-
niques. They demonstrate playable rule sets can be generated and evolved for the restricted

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:76 Riemer van Rozen

domain of Pac-man-like games [257]. Games consist of a fixed grid of cells populated by an
agent (cyan) and things (red, blue and green) with random start positions. Variable movement
logics allow for the agent and the things to move and collide, i.e. end up on the same cell. The
rule space consists of parameters for limiting the amount of time steps tmax ∈ {0..100} and scor-
ing scoremax ∈ {1..50}, the movement logic, and effects of collisions on things (none, death or
teleportation to random cell) and scoring (limited to −1, 0,+1). Figure 35 shows an evolved rule
set of a game where the objective is to compete with green things to catch blue things.

publication query publication type research category note

[257] 83w conference paper proposal of solution

Language 72 LLudi genre-specific / engine / practice

Browne and Maire examine how to synthesize and evaluate high quality combinatorial games
using evolutionary game design, an approach that combines evolutionary search with quality
measurements in self-play simulations. They describe Ludi, a game system that synthesizes
board games and evaluates their qualities [39]. Ludi’s Game Description Language includes game
facets (called ludemes) for player (name), board (shapes and size), pieces with definitions of
how they can move and end conditions. Figure 36 shows two examples. Yavalath is a novel
commercially published game generated by Ludi where making four-in-a-row is winning, but
making three-in-a-row before is losing. Browne proposes generating context-free grammars by
analyzing the class hierarchies of game systems, in particular Ludii, to obtain so-called class
grammars for varying constructor parameters and evolving games [42]. Ludii is being developed
in the context of the Digital Ludeme Project1, which studies how historical games developed by
means of modern AI techniques.

1http://ludeme.eu (visited March 25th 2019)

publication query publication type research category note

[40] –w PhD thesis evaluation research Ludi
[39] 99w journal article evaluation research Ludi
[41] 803w book evaluation research Ludi
[42] 80n conference paper proposal of solution Ludii

Language 73 LStrategy Game Description Language genre-specific / tool / practice

Mahlmann et al. propose the Strategy Game Description Language (SGDL). Combined with evo-
lutionary algorithms and appropriate fitness functions, SGDL serves as a means to describe and
generate complete new strategy games, and variations of old ones [152, 153]. SGDL visually
models behaviors as trees of conditions and consequences. These are expressions and statements
whose nodes are actions (triangles) comparators and functions (ovals), operators (diamonds) and
constants (circles). Figure 37 shows a simple example of a ’Go North’ action. In its left hand con-
dition, the _Map function takes attributes x and y - 1 as input, and its right hand consequence
y = y - 1 happens if the output equals null. Other examples include complex variations of Rock
Paper Scissors and Dune II [151].

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://ludeme.eu

Languages of Games and Play 0:77

(game Tic -Tac -Toe

(players White Black)

(board
(tiling square i-nbors)

(size 3 3)

)

(end
(All win (in-a-row 3))

)

)

(a) Tic Tac Toe

(game Yavalath

(players White Black)

(board (tiling hex)

(shape hex) (size 5))

(end
(All win (in-a-row 4))

(All lose

(and (in-a-row 3)

(not (in-a-row 4))))

)

)

(b) Yavalath

(c) Yavalath: white forces a win

(adapted from Browne [41])

Fig. 36. Ludi GDL – Source code examples (adapted from Browne and Maire [39])

Fig. 37. Strategy Game Description Language – ”Go North” action (adapted from Mahlmann et al. [153])

publication query publication type research category note

[153] 646w conference paper validation research
[152] –w conference paper validation research
[151] 289n PhD thesis validation research

Language 74 LCard Game Description Language genre-specific / tool / practice

Font et al. present initial findings on generating and analyzing both novel and existing card
games [87]. They present a Card Game Description Language for expressing a wide variety of
card games by formalizing the rules. They evolve playable card games using grammar-guided
genetic programming. They assess playability and balance by measuring the performance of

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:78 Riemer van Rozen

THE ANT AND THE GRASSHOPPER
Stages and rules

Stage 0

COMPUTER COMMAND <Unconditional > GIVE Player:

0 Amount: 89 tokens

COMPUTER COMMAND <Unconditional > DEAL Table:

0 Amount: 1 cards

COMPUTER COMMAND <Unconditional > GIVE Player:

2 Amount: 39 tokens

COMPUTER COMMAND <Unconditional > GIVE Player:

<all > Amount: 87 tokens

Stage 1

if SHOW >= T0 then PLAY IT

COMPUTER COMMAND <Unconditional > DEAL Player:

<all > Amount: 6 cards

COMPUTER COMMAND <Unconditional > GIVE Player:

<all > Amount: 58 tokens

PLAY ONLY ONCE if SHOW SAME RANK T1 then PLAY

IT

Stage 2

if SHOW < T1 then PLAY IT

PLAY ONLY ONCE if SHOW >= T0 then PLAY IT

PLAY ONLY ONCE if SHOW > T0 then PLAY IT

Stage 3

COMPUTER COMMAND <Unconditional > GIVE Player:

0 Amount: 77 tokens

Stage 4

COMPUTER COMMAND <Unconditional > GIVE Player:

0 Amount: 44 tokens

MANDATORY if PLAY 994, > T0 then BET

Stage 5

PLAY ONLY ONCE if DRAW then BET

if SHOW >= T0 then PLAY IT

COMPUTER COMMAND <Unconditional > GIVE Player:

<all > Amount: 63 tokens

PLAY ONLY ONCE if DRAW then BET

Ranking
Card(s) Value

Four of a kind 190

6 + 8 + Jack 212

Winning conditions
5 points for each token.

3 points for finishing the game.

Fig. 38. Card Game Description Language – ”The Ant and the Grasshopper” (adapted from Font et al. [87])

several agents. In addition, they filter games with too many stages and rules [88]. Figure 38
shows an example. Other examples include poker variant Texas hold âĂŹem, Blackjack and
UNO.

publication query publication type research category note

[87] 47w conference paper proposal of solution
[88] 590w conference paper validation research

Language 75 LVideo Game Description Language generic / engine / research

Ebner et al. propose a Video Game Description Language (VGDL) as a means for general video
game playing that expresses a wide range of classic 2d game types in a high-level, concise and
human readable manner [81], e.g., approximations of Pong, Boulder-Dash, Tank Wars, Super
Mario, Lunar Lander and Pac-Man.
Schaul proposes PyVGDL, a Python implementation of VGDL and a game simulation environ-
ment for conducting research [226, 227]. Figure 39 shows an example description (a). This de-
scription maps each game object to an ASCII character (LevelMapping) used in level descriptions
(b). Next, it specifies their behaviors (SpriteSet) by using predefined functions (c). Finally, it
defines the effects of possible collisions (InteractionSet) and win conditions (TerminationSet).

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:79

BasicGame
LevelMapping

G > goal

+ > key

A > nokey

1 > monster

SpriteSet
goal > Immovable color=GREEN

key > Immovable color=ORANGE

sword > Flicker limit=5 singleton=True

movable >

avatar > ShootAvatar stype=sword

nokey >

withkey > color=ORANGE

monster > RandomNPC cooldown =4

InteractionSet
movable wall > stepBack

nokey goal > stepBack

goal withkey > killSprite

monster sowd > killSprite scoreChange =1

avatar monster > killSprite

key avatar > killSprite scoreChange =5

nokey key > transformTo stype=withkey

TerminationSet
SpriteCounter stype=goal win=True

SpriteCounter stype=avatar win=False

(a) VGDL description for a Legend of Zelda-like game

wwwwwwwwwwwww

wA w w

w w w

w w w +ww

www w1 wwwww

w w G w

w 1 ww

w 1 ww

wwwwwwwwwwwww

(b) Side-by-side level description (left) and render-

ing (right) of a Legend of Zelda-like game level,

where the hero Link (A) confined by dungeon

walls (w) must find a key (+) and the exit goal (G)

while killing or avoiding monsters (1).

def killIfFromAbove(s, p, game):

""" Kills the sprite , if the other one is

higher and moving down."""

if (s.lastrect.top > p.lastrect.top and
p.rect.top > p.lastrect.top)

killSprite(s, p, game)

(c) Extension for Super Mario that restricts the

killSprite procedure to downward movement

Fig. 39. Video Game Description Language (adapted from Schaul [227])

PyVGDL is used in The General Video Game AI Competition1 for benchmarking algorithms for
planning, level generation and learning. PyVGDL is available under the 3-clause BSD license2.

1http://www.gvgai.net (visited April 5th 2019) – also maintains a list of related publications
2https://github.com/schaul/py-vgdl (visited April 5th 2019)

publication query publication type research category note

[81] 31w book chapter proposal of solution VGDL
[226] –w conference paper proposal of solution PyVGDL
[26] 56n extended abstract proposal of solution VGDL
[227] 236w journal article proposal of solution PyVGDL

Language 76 LRecycle genre-specific / tool / practice

Bell and Goadrich describe Recycle, a card game description language and its implementation
Cardstock, which can automatically playtest card games with algorithms that represent intelli-
gent players. As a demonstration, they playtest variants of the games Agram, Pairs and War.

publication query publication type research category note

[29] –w journal article proposal of solution

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://www.gvgai.net
https://github.com/schaul/py-vgdl

0:80 Riemer van Rozen

B.12 Script and Programming

Language 77 LPython generic / engine / practice

Python is an interpreted general-purpose programming language originally developed by van
Rossum. Its language features include modules, exceptions, dynamic typing, data types and
classes. Examples of languages built on top of Python include versions of Alice (Language 59)
and PyVGDL (Language 75). The Python Package Index1 hosts many reusable modules for vari-
ous purposes, including game development. The current version (v3) of its portable and embed-
dable C implementation is released under the Python Software Foundation License2.

1https://pypi.org (visited July 14th 2019)
2https://www.python.org (visited July 14th 2019)

publication query publication type research category note

[65] –w article experience report
[270] 10w book practice
[128] 227w short paper / tutorial practice
[209] 377n book practice

Language 78 LLua generic / engine / practice

Lua is an interpreted general-purpose programming language developed by Ierusalimschy
et al. [123, 124]. Originally intended for the petrochemical industry, Lua is now also used for
scripting in Games. Its APIs enable embedding in C and its functional and dynamic features
support constructing embedded DSLs.
Wasty et al. describe ContextLua, a context-oriented programming extension to Lua that is suit-
able for implementing dynamic behavioral variations in computer games [277]. Layers modify
the behaviour of function calls as shown in Figure 40. The proceed method calls the next appro-
priate method in the current layer composition. The with and without statements are used to
activate and deactivate layers respectively.
The sources of Lua1 and ContextLua2 are available online under the MIT license.

1https://www.lua.org (visited March 21st 2019)
2https://www.hpi.uni-potsdam.de/hirschfeld/trac/Cop/wiki/ContextLua (visited May 1st 2019)

publication query publication type research category note

[123] 551w journal paper proposal of solution Lua
[124] 834w conference paper experience report Lua
[277] gd workshop paper proposal of solution ContextLua
[133] 54n workshop paper proposal of solution Lua

Language 79 LVision on Game Programming generic / framework / practice

In an invited talk on “The Next Mainstream Game Programming Language”, Sweeney (Epic
Games) shares a perspective on language constructs for game development with focus on per-
formance, modularity, reliability and concurrency [248]. He argues for productivity, modular

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://pypi.org
https://www.python.org
https://www.lua.org
https://www.hpi.uni-potsdam.de/hirschfeld/trac/Cop/wiki/ContextLua

Languages of Games and Play 0:81

function Monster:getSensingDistance ()

return 10

end

function Monster:Night_getSensingDistance ()

return proceed () - 5

end

(a) Monster behaviour variation

with(Night , function ()
print(monster:getSensingDistance ())

end)

with({Night , Sneak}, function ()
print(monster:getSensingDistance ())

end)

(b) Night Layer Activation

Fig. 40. ContextLua code snippets (adapted from Wasty et al. [277])

libraries, debugging facilities, and reflects briefly on perceived strengths (unions, maybe) and
weaknesses of Haskell.

publication query publication type research category note

[248] 3w abstract and slide deck opinion paper

Language 80 LDisCo generic / tool / practice

Nummenmaa et al. propose simulating gameplay on a logical event level in the early states of
the game development process [196]. As a design tool, simulating long-term dynamics of abstract
and simplified game prototypes can reveal problems early on. They use DisCo1, a software pack-
age for creating and executing formal specifications, which has been extended to for the analysis
and simulation of games. The DisCo language has an action-oriented execution model based on
temporal logic. A simulation model of a game called Tower Bloxx demonstrates the approach.

1http://disco.cs.tut.fi (visited August 15th 2019)

publication query publication type research category note

[194] 298w Master’s thesis proposal of solution
[196] 26w conference paper vision paper simulate prototypes
[195] 662w workshop paper validation research analyze changes

Language 81 LDesign by Contract generic / tool / practice

Paige et al. present qualitative and empirical results showing that light-weight formal meth-
ods are effective for developing a networked, multiplayer game. Their results, obtained in a
pilot study on applying the Design-by-Contract approach, show that contracts (pre- and post-
conditions) indeed help in diagnosing defects.

publication query publication type research category note

[207] 186w journal article evaluation research

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://disco.cs.tut.fi

0:82 Riemer van Rozen

move is choose
pieces are Rock and Paper and Scissors

board starts [[Rock , Paper , Scissors]]

turns synchronize
Beat means player(Rock) && opponent(Scissors)

or player(Scissors) && opponent(Paper)
or player(Paper) && opponent(Rock)

goal is Beat # success!

score increments
3x1 grid

(a) Rock Paper Scissors

turn is player place piece
3x3 grid
pieces are X and O

turns alternate
players are X and O

goal is &Three_in_a_row

Three_in_a_row means
(x-1,y) && (x,y) && (x+1,y)

or (x,y-1) && (x,y) && (x,y+1)

or (x-1,y-1) && (x,y) && (x+1,y+1)

or (x-1,y+1) && (x,y) && (x+1,y-1)

board starts empty

(b) Tic Tac Toe

Fig. 41. EGGG example specifications (adapted from Orwant [198])

Language 82 LGameMaker generic / engine / practice

GameMaker is a commercial graphical game creation tool with a drag and drop interface by
YOYO Games1, which is described by Overmars [205, 206]. The Game Maker Language (GML) is
a C-like language for scripting.

1https://www.yoyogames.com/gamemaker (visited November 19th 2018)

publication query publication type research category note

[205] 14w journal article experience report
[206] 358w journal article experience report

Language 83 LExtensible Graphical Game Generator genre-specific / engine / practice

Orwant describes the Extensible Graphical Game Generator (EGGG), a system for game program-
ming aimed at productivity and reuse. EGGG offers a textual formalism, and leverages an ontol-
ogy that codifies similarities between traditional games such as board- and card games. Examples
include, Rock Paper Scissors, Tic Tac Toe, Poker, Crossword, Deducto, Tetris and Chess [198].
Figure 41 shows the two simplest examples.

publication query publication type research category note

[199] –w journal article proposal of solution
[198] –w PhD thesis proposal of solution

Language 84 LMogemoge genre-specific / tool / practice

Nishimori and Kuno address the lack support in game script languages for interactions among
multiple concurrent activities in a state-dependent manner. They propose a novel event handling
framework called join token as a supplementary mechanism to conventional object orientation,
in which the states of game characters can be expressed as tokens and interactions as handlers.
The language Mogemoge implements join tokens, and is used for creating two simple 2d games,

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://www.yoyogames.com/gamemaker

Languages of Games and Play 0:83

Balloon (defending against bombs) and Descender (climbing down a wall). Its Java sources are
available online1. Copyright is retained by Nishimori.

1http://www.nisnis.jp/mogemoge/ (visited January 10th 2019)

publication query publication type research category note

[191] 76w conference paper proposal of solution
[193] –w conference paper proposal of solution
[192] –w journal article proposal of solution

Language 85 LScalable Game Language generic / engine / practice

White et al. propose the Scalable Game Language (SGL), a declarative language that extends SQL
for improving the quality of games, notably scalability. They describe two patterns: the state-
effect-pattern, which is similar to the well-known game loop, and the restricted iteration pattern,
which prevents out-of-bounds exceptions.

publication query publication type research category note

[281] –w conference paper proposal of solution
[283] –w conference paper proposal of solution
[282] 544w journal article philosophical paper
[284] 457w journal article philosophical paper reprint

Language 86 LNetwork Scripting Language generic / tool / practice

Russell et al. present a novel DSL called Network Scripting Language (NSL) for programming
bandwidth-efficient online games. Developers can use NSL to create the game logic of deter-
ministic, concurrent and distributed games. The system automatically maintains consistency
between the clients and the sever that run the scripts. NSL has a Java-like syntax. In NSL, ob-
jects are lightweight processes that execute a game loop. Scripts contain specialized statements
for sending and receiving messages and handling synchronization. PointWorld is a simulation
that demonstrates the approach.

publication query publication type research category note

[220] 33n workshop paper proposal of solution

Language 87 LHaskell – 4Blocks DSL application-specific / engine / practice

Calleja and Pace propose scripting game-specific AI with embedded DSLs in Haskell. They
demonstrate their approach with the 4Blocks DSL for Tetris.

publication query publication type research category note

[46] gd workshop paper proposal of solution
[47] 52n workshop paper proposal of solution

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://www.nisnis.jp/mogemoge/

0:84 Riemer van Rozen

Language 88 LCasanova generic / engine / practice

Maggiore et al. describe Casanova [146, 147, 148, 149]., a language-extension to F# for engineer-
ing games aimed at consistency and performance. Rules inside entity type declarations deter-
mine how entities change during a tick of the game loop. Additionally, imperative processes
are supported through coroutines integrated with the rules. Game scripts consist of the main
script and pairs of event detection- and event response scripts. Abbadi et al. [2, 3, 4] and di Gia-
como et al. [68, 69, 70, 71] continue work on Casanova, in the context of optimized compilation,
meta-programming and high performance encapsulation. Casanova 2 is available for Unity or
stand-alone under the MIT license on GitHub1. The distribution includes an asteroid game and
several tutorials.

1https://github.com/vs-team/casanova-mk2 (visited November 19th 2018)

publication query publication type research category note

[146] 47n workshop paper proposal of solution Casanova
[147] 34w conference paper validation research Casanova
[148] 95w conference paper proposal of solution Casanova
[149] 308w conference paper validation research Casanova
[68] 177n Master’s thesis validation research Casanova
[4] 60n conference paper proposal of solution Casanova II
[3] 26n conference paper proposal of solution Casanova II
[69] 53n conference paper proposal of solution Metacasanova
[2] 195n PhD thesis validation research Casanova II
[71] 101n conference paper validation research Metacasanova
[70] 86n journal article validation research Casanova II

Language 89 LHaskell – Sound Specification DSL generic / tool / practice

Bäärnhielm et al. describe a sound specification DSL intended for designing immersive and in-
teractive experiences for a Nordic technology-supported Live Action Role Playing (LARP) game.
They demonstrate features of the Haskell-based DSL, by expressing sound scenes of a Nordic
LARP called The Monitor Celestra. In this game, which takes place on a space ship, participants
receive roles such as crew, passengers and refugees. Within a framework of plots, storylines and
clues, supported by sound, they act out a story where choices determine the outcome.

publication query publication type research category note

[22] 196n journal article experience report

Language 90 LMUDDLE application-specific / tool / practice

Bartle gives a historical account of the creation of MUDDLE, a language for the first Mutli-User
Dungeon (MUD) game, which gave the genre its name, also known as Massive Multiuser Online
(MMO) games.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://github.com/vs-team/casanova-mk2

Languages of Games and Play 0:85

title Simple Block Pushing Game

author Stephen Lavelle

homepage www.puzzlescript.net
== ======

OBJECTS
== ======

Background

lightgreen green

11111

01111

11101

11111

10111

Target

darkblue

.....

.000.

.0.0.

.000.

.....

Wall

brown darkbrown

00010

11111

01000

11111

00010

Player

black orange

white blue

.000.

.111.

22222

.333.

.3.3.

Crate

orange

00000

0...0

0...0

0...0

00000

=======

LEGEND
=======

. = Background

= Wall

P = Player

* = Crate

@ = Crate and

Target

O = Target

=======

SOUNDS
=======

Crate MOVE

36772507

== ==============

COLLISIONLAYERS
== ==============

Background

Target

Player , Wall ,

Crate

======

RULES
======

[> Player |

Crate] -> [>

Player |>

Crate]

== ============

WINCONDITIONS
== ============

All Target on
Crate

=======

LEVELS
=======

####..

#.O#..

#..###

#@P..#

#..*.#

#..###

####..

######

#....#

#.#P.#

#.*@.#

#.O@.#

#....#

######

(a) Source code with dynamic dynamic syntax highlighting of sprites

(b) First level

(c) Second level

Fig. 42. PuzzleScript tutorial: “Simple Block Pushing Game” (from puzzlescript.net)

publication query publication type research category note

[27] 303n book chapter historical account

Language 91 LPuzzleScript genre-specific / engine / practice

PuzzleScript is an online textual puzzle game design language and interpreter1 created by
Stephen Lavelle using JavaScript and html5/css. PuzzleScript game levels are tile maps popu-
lated by objects (named sprites of 5x5 pixels) that can move and collide, and whose game logic
is defined as a set of rewrite rules. Figure 42 shows an example where the objective is to push
crates into place. When the player collides with a crate, both directionally move if possible. The
source are released under the MIT license2.
Lim and Harell present an approach for automated evaluation and generation of PuzzleScript
videogames and propose two heuristics [140]. The first, level state heuristics, determines how
close the state of given level is to completion during gameplay. The second, ruleset heuristics,
evaluates rules defining a videogame’s mechanics and assesses them for playability. Osborn et al.
apply Playspecs (Language 57).

1https://www.puzzlescript.net (visited November 24th 2018)
2https://github.com/increpare/PuzzleScript (visited November 24th 2018)

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

puzzlescript.net
https://www.puzzlescript.net
https://github.com/increpare/PuzzleScript

0:86 Riemer van Rozen

publication query publication type research category note

[140] 110w conference paper validation research

B.13 Model-Driven Engineering

Language 92 LUML -Metamodeling generic / engine / practice

Montero Reyno and Carsí Cubel address the increasing complexity of game development by
applying model-driven engineering and UML to the development of 2d platform games [176].
They aim to enhance productivity in terms of quality, time and cost [175]. A prototype tool uses
Platform Independent Models (PIMs) for defining the structure and behaviour of the game, and
Platform Specific Model (PSM) for mapping game actions to hardware control devices for player
interaction [176] and UML metamodels for social context, structure diagram and rule set [175].
The tool generates C++ prototype games for a middleware called HAAF Game Engine. These are
then iteratively play tested and manually completed and fine-tuned.

publication query publication type research category note

[176] 58w conference paper proposal of solution
[175] 27w conference paper proposal of solution
[177] 72w journal article proposal of solution

Language 93 LUML – Class and State Diagrams generic / tool / practice

Tang and Hanneghan investigate how to define a Domain-Specific Modeling Language for seri-
ous game design. They perform an analysis and propose a modeling framework that uses UML
class diagrams and state diagrams for modeling user interactions and in-game components. They
extend state diagrams with UI modeling elements [250].
In later work, they examine the state of the art in model-driven game development from a game-
based learning perspective [251]. We compare this related work in Section 8.
Tang et al. propose a Game Technology Model for modeling serious games [252].

publication query publication type research category note

[250] 1w conference paper proposal of solution
[251] 13n journal article survey
[252] –w journal article proposal of solution

Language 94 LStatecharts generic / tool / practice

Statecharts are visual diagrams for modeling behavior. Several several variants of the notation
exist [61]. We identify two used in model-driven game development.
Kienzle et al. propose visual modeling game AI of NPCs in a Rhapsody Statechart variant to
ease the difficulty of programming consistent, modular and reusable game AI. They demonstrate
the approach in an AI competition of EA Games called Tank Wars.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:87

Brusk and Lager propose applying State Chart XML (SCXML) to the design and implementation
of games, in particular games featuring natural language dialogue [43]. Brusk investigates how
statecharts can be used for describing social interaction and dialogue behavior for believable
characters in game worlds [44]. Various tools and libraries for Statecharts have since become
available. The latest recommendation for v1.0 of SCXML as w3c standard dates from September
1st 20151.

1https://www.w3.org/TR/scxml/ (visited March 27th 2019)

publication query publication type research category note

[67] gd l conference paper proposal of solution Rhapsody Sc.
[131] –w conference paper proposal of solution Rhapsody Sc.
[43] 180w conference paper proposal of solution SCXML
[44] 569w conference paper proposal of solution SCXML

Language 95 LFeature Models generic / tool / practice

Feature Models (FMs) are a visual notation for describing the variability of product features,
e.g., in software product lines for the automotive or aerospace industries. Sarinho et al. propose
an approach that entails using FMs for representing and manipulating the variability of game
features, and an environment that integrates and adapts features of available game engines, e.g.,
for configuring game logic, rules and goals.

publication query publication type research category note

[224] 6n conference paper proposal of solution
[225] language workshop paper proposal of solution

Language 96 LSharpLudus genre-specific / engine / practice

Furtado et al. study how game development can be improved using visual domain-specific mod-
eling languages, software product lines, software factories, generators and semantic validators
aimed at software reuse and productivity [95, 97]. SharpLudus is a software factory intended to
empower game designers in creating 2d adventure video games [97], but over the years targets
also included RPG games, mobile touch-based games and 2d arcade games [95]. For instance, Ar-
cadEx is a factory for 2d arcade games for the PC based on Microsoft XNA and the FlatRedBall
engine [95]. DSLs are provided for describing games, mapping input of Xbox 360 buttons into
XNA Keyboard keys, and modeling variability using feature models. Game descriptions are visual
models of introduction screens and rooms with transitions between them (arrows), sound, enti-
ties, input handling, triggers, events and actions of NPCs. The project web site1 contains videos
and demos of Ultimate Berzerk, Stellar Quest and Tank Brigade, and links a to a distribution2.

1http://cin.ufpe.br/~sharpludus/ (visited march 27th 2019)
2https://archive.codeplex.com/?p=sharpludus (visited March 27th 2019)

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://www.w3.org/TR/scxml/
http://cin.ufpe.br/~sharpludus/
https://archive.codeplex.com/?p=sharpludus

0:88 Riemer van Rozen

Fig. 43. Eberos gml2d showing a model of Pong (appears in Hernandez and Ortega [115])

publication query publication type research category note

[97] 1n workshop paper proposal of solution SharpLudus
[99] 3n Master’s thesis validation research SharpLudus
[96] 87n conference paper tutorial MS DSL tools
[101] 25n journal article validation research SharpLudus
[98] 16n workshop paper experience report SharpLudus
[95] 25w journal article proposal of solution ArcadEx
[100] 93n PhD thesis validation research all the above

Language 97 LEberos GML2D genre-specific / tool / practice

Hernandez and Ortega wish to learn how the game industry can profit from model-driven devel-
opment approaches [115]. Eberos Game Modeling Language 2d (gml2d) is a graphical DSL that
aims for expressiveness, simplicity, platform independence and library independence. Figure 43
shows the UI and a Pong model.

publication query publication type research category note

[115] 2n workshop paper proposal of solution

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:89

Language 98 LFlexibleRules genre-specific / engine / practice

Frapolli et al. present FlexibleRules, a framework for implementing all aspects of digital board
games aimed at customization, adaptability and end-user programming [89, 90, 91]. Its toolkit
offers a logic editor for visually defining a directed graph of game entities (nodes), properties
and relationships (edges). The code editor for a Lisp-like DSL enables programming games as the
behavior specification of those entities. Aside from statements for control flow and messaging
for communicating between entities, it includes rules that are defined as laws and side effects,
similar to point-cuts and advice in aspect oriented programming. Flexible Rules is available
under GPL v31. Examples include Tic Tac Toe, Go and Snakes and Ladders.

1http://flexiblerules.fulviofrapolli.net (visited April 10th 2019)

publication query publication type research category note

[91] 21n conference paper validation research
[89] 57n journal article proposal of solution
[90] 78n conference paper validation research

Language 99 LPhyDSL genre-specific / engine / practice

Guana and Stroulia propose PhyDSL, a textual DSL for rapidly prototyping mobile 2D physics-
based games, and a model-driven environment that generates code for Android devices. PhyDSL
has features for defining actors, environment and layout, activities and scoring rules. PhyDSL-2
is implemented in Xtext and available on GitHub1.

1https://guana.github.io/phydsl (visited September 1st 2019)

publication query publication type research category note

[107] 24n conference paper proposal of solution PhyDSL
[108] 29n workshop paper experience report PhyDSL-2
[106] 209n PhD thesis validation research PhyDSL-2

Language 100 LPong Designer genre-specific / engine / practice

Mayer and Kuncak aim to empower end-users and to simplify modifying running pro-
grams [167]. They explore game programming by demonstration and present Pong Designer, an
environment for developing 2d physics games through direct manipulation of object behaviors.
Internally, a game’s rules are expressed in an embedded DSL implemented in Scala. These rules
are updated whenever a user performs a new demonstration. Sources are available on GitHub
under the Apache 2.0 license1. Examples include Pong, Brick Breaker, Pacman and Tilting maze.

1https://github.com/epfl-lara/pongdesigner (visited July 12th 2019)

publication query publication type research category note

[167] 285n conference paper proposal of solution
[166] 390n PhD thesis validation research

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

http://flexiblerules.fulviofrapolli.net
https://guana.github.io/phydsl
https://github.com/epfl-lara/pongdesigner

0:90 Riemer van Rozen

Language 101 LBoard Game DSL genre-specific / tool / practice

Altunbay et al. describe a model-driven software development approach aimed at addressing
increased complexity in video games, which is illustrated by a DSL for the board game domain
based on UML meta-modeling [9].

publication query publication type research category note

[9] 383w workshop paper proposal of solution

Language 102 LRougeGame Language genre-specific / tool / practice

Féher and Lengyel illustrate the strength of model transformations based on graph rewriting-
based in a case study on Rouge-like games, a genre of 2d dungeon crawlers. In particular,
they study which cells are visible from a specific location on a 2d level map. They define the
RougeGame language, a DSL defined as a meta-model expressing maps and visibility parameters.
A transformation pipeline calculates the cell visibility based on rewrite rules.

publication query publication type research category note

[84] 189n conference paper proposal of solution

Language 103 LReactive AI Language genre-specific / engine / practice

Zhu describes the Reactive AI Language (RAIL), a DSL for modeling behaviors in adventure
games, and a model-driven game development approach that uses meta-modeling and EMF. The
approach is validated in a case study called Orc’s gold, a 2d action adventure game.

publication query publication type research category note

[291] 165n PhD Thesis validation research

B.14 Metaprogramming

Language 104 LWhimsy application-specific / engine / educative

West discusses potential uses for DSLs in games and demonstrates Whimsy, a DSL for creating
whimsical flowery shapes inspired by the works of Rodney Alan Greenblat [278]. Figure 44
shows how SuperEgg, Inner and Petal primitives can be used for generating an image similar to
a painting. Whimsy is an external DSL implemented in C++ that requires the Windows SDK and
DirectX 9. Its sources are available under the MIT license from GDCVault1.

1https://twvideo01.ubm-us.net/o1/vault/GD_Mag_Archives/aug07.zip (visited May 9th 2019)

publication query publication type research category note

[278] gd magazine article philosophical paper practice

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://twvideo01.ubm-us.net/o1/vault/GD_Mag_Archives/aug07.zip

Languages of Games and Play 0:91

superegg 0.15,0.10,3.5 at .3,.7 size 1.2 black distort .01

petals 14 0.05 size 1.8 petalblue

inner .88,.01 tvpurple

superegg .1,.2,2 at .20,.7 size .4 distort .01 tvlime

inner .65,.01 tvyellow

inner .45,.01 tvlightyellow

superegg .1,.2,2 at .3,.7 size .5 distort .01 tvblack

inner .85 tvbrown

inner .80 tvred

inner .75 distort .03 tvorange

inner .70 tvyellow

superegg .1,.2,2 at .4,.7 size .4 distort .05 tvblue

inner .6 distort .2 tvdarkblue

inner .4 petalblue

(a) Source code (b) Generated image

Fig. 44. Whimsy example replicating the style of a painting (adapted from West [278])

Language 105 LLevel Editors in DiaMeta genre-specific / engine / educative

Maier and Volk report teaching experiences on applying DiaMeta, an EMF-based language work-
bench for creating visual domain-specific languages, e.g., for level editors for classic games such
as PacMan and the platform game Pingus [154]. Insights include that meta-modeling has a steep
learning curve and that the proposed approach speeds-up game prototyping.

publication query publication type research category note

[154] 4w conference paper experience report

Language 106 LText Adventures in Racket genre-specific / tool / educative

Flatt demonstrates in a tutorial-like manner how to create languages in Racket. He describes
an illustrative text-adventure DSL for interactive fiction [85, 86]. The Racket metaprogramming
language is distributed under the GNU LFPL1.

1https://racket-lang.org (visited May 9th 2019)

publication query publication type research category note

[85] 181n journal article philosophical paper
[86] 181n journal article philosophical paper reprint

Language 107 LFicticious genre-specific / tool / practice

Palmer reports experiences on developing a set of micro-languages (DSLs) called Ficticious for
describing narrative worlds in Interactive Fiction [208], including rich text markup, virtual world
design and character interaction. The approach demonstrates how Ginger, a language with sup-
port for literate programming through so-called G-expressions, can be used to separate concerns

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://racket-lang.org

0:92 Riemer van Rozen

object Hook extends: FixedItem

set name "hook"

set aliases ("hook" "peg")

set adjective ("small" "brass")

set location 'CloakRoom

action examine

:story It's just a small brass hook ,

if (isIn cloak self)

:story with a cloak hanging on it.

else
:story screwed to the wall.

(a) People, Places and Things

panel GamePageLakeShore extends: GamePage

property Image panel1

property Image panel2

init
setText 10 445 580 250

setImage panel1 "imgs/charonGone.png"

setImage panel2 "imgs/charonWaits.png"

draw
if (eq? 'Boatman.location 'LakeShore)

drawImage panel2 7 7

else:
drawImage panel1 7 7

(b) Page Layout

:story
The sign reads "No␣Loitering" but

ironically a cowboy whittles a small

piece of wood *right beside* the sign.

(c) Rich Text and Grammar

conversation on OldMine

oldMine "Ask␣about␣the␣old␣mine."

:dialog
Sam: I keep seeing an old donkey

at the mine.

donkey "Ask␣about␣the␣donkey." => oldMine

:dialog
Sam: The donkey comes and goes.

(d) Dialogue

Fig. 45. Ficticious microlanguages code snippets (adapted from Palmer [208])

in DSLs. Figure 45 shows code snippets for describing (a) people places and things; (b) page
layout; (c) rich text and grammar; and (d) dialogue.

publication query publication type research category note

[208] 62n conference paper experience report

Language 108 LDialog Script in Xtext genre-specific / tool / educative

In a textbook chapter on engineering DSLs for games, Walter proposes DSLs for bridging the
gap between game design and implementation [274]. He describes a textual language called
Dialog Script, as an introductory example for creating interactive branching narratives [274],
which closely resembles an earlier version [275]. Dialog Script is implemented in Xtext and its
prototype is available on GitHub1 under version 2.0 of the Apache license.

1https://github.com/RobertWalter83/DialogScriptDSL (visited May 9th 2019)

publication query publication type research category note

[275] 4n conference paper proposal of solution
[274] 94n textbook chapter proposal of solution

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://github.com/RobertWalter83/DialogScriptDSL

Languages of Games and Play 0:93

REFERENCES
[1] E. Aarseth et al. “A Multi-Dimensional Typology of Games”. In: Proceedings of the 2003 DiGRA International Conference: Level Up,

DiGRA 2003, Utrecht, The Netherlands, November 4–6, 2003. Ed. by M. Copier and J. Raessens. Utrecht University, 2003.
[2] M. Abbadi. “Casanova 2: A Domain-Specific Language for General Game Development”. PhD thesis. Tilburg University, Sept. 2017.
[3] M. Abbadi et al. “Casanova: A Simple, High-Performance Language for Game Development”. In: Serious Games – Proceedings of the

1st Joint International Conference on Serious Games, JCSG 2015, Huddersfield, UK, June 3–4, 2015. Ed. by S. Göbel et al. Springer, 2015,
pp. 123–134. isbn: 978-3-319-19126-3.

[4] M. Abbadi et al. “High Performance Encapsulation in Casanova 2”. In: Proceedings of the 7th Computer Science and Electronic Engi-
neering Conference, CEEC, Colchester, UK, September 24–25, 2015. IEEE, 2015, pp. 201–206.

[5] E. Adams and J. Dormans. Game Mechanics: Advanced Game Design. 1st ed. Thousand Oaks, CA, USA: New Riders Publishing, 2012.
isbn: 9780321820273.

[6] N. Ahmadi. “Beyond Upload and Download: Enabling Game Design 2.0”. In: End-User Development – Proceedings of the 3rd Inter-
national Symposium, IS-EUD 2011, Torre Canne, Italy, June 7–10, 2011. Ed. by M. F. Costabile et al. Vol. 6654. LNCS. Springer, 2011,
pp. 371–374. isbn: 978-3-642-21530-8.

[7] N. Ahmadi. “Broadening Educational Game Design using the World Wide Web”. PhD thesis. Università della Svizzera Italiana –
Faculty of Informatics, 2012.

[8] N. Ahmadi et al. “Engineering an Open-Web Educational Game Design Environment”. In: Proceedings of the 19th Asia-Pacific Soft-
ware Engineering Conference, APSEC 2012, Hong Kong, China, December 4–7, 2012. IEEE, 2012, pp. 867–876. isbn: 978-1-4673-4930-7.

[9] D. Altunbay et al. “Model-driven Approach for Board Game Development”. In: Proceedings of the 1st Turkish Symposium of Model-
Driven Software Development, TMODELS 2009, Ankara, Turkey, May 20, 2009. Bilkent University, 2009.

[10] V. Alves and L. Roque. “A Pattern Language for Sound Design in Games”. In: Proceedings of the 5th Audio Mostly Conference: A
Conference on Interaction with Sound, AM 2010, Piteå, Sweden, September 15–17, 2010. ACM, 2010, pp. 1–8. isbn: 978-1-4503-0046-9.

[11] V. Alves and L. Roque. “A Deck for Sound Design in Games: Enhancements based on a Design Exercise”. In: Proceedings of the 8th
International Conference on Advances in Computer Entertainment Technology, ACE 2011, Lisbon, Portugal, November 8–11, 2011. ACM,
2011, pp. 1–8. isbn: 978-1-4503-0827-4.

[12] V. Alves and L. Roque. “An Inspection on a Deck for Sound Design in Games”. In: Proceedings of the 6th Audio Mostly Conference:
A Conference on Interaction with Sound, AM 2011, Coimbra, Portugal, September 7–9, 2011. ACM, 2011, pp. 15–22. isbn: 978-1-4503-
1081-9.

[13] V. Alves and L. Roque. “Design Patterns in Games; The Case for Sound Design”. In: Workshop Proceedings of the 8th International
Conference on the Foundations of Digital Games, as part of the 2nd Workshop on Design Patterns in Games, DPG 2013, Chania, Crete,
Greece, May, 14–17, 2013. Society for the Advancement of the Science of Digital Games, 2013.

[14] E. F. Anderson. “On the Definition of Non-Player Character Behaviour for Real-Time Simulated Virtual Environments”. PhD thesis.
Bournemouth University, Apr. 2008.

[15] E. F. Anderson. “Scripted Smarts in an Intelligent Virtual Environment: Behaviour Definition Using a Simple Entity Annotation
Language”. In: Proceedings of the 2008 Conference on Future Play: Research, Play, Share, Future Play 2008, Toronto, Ontario, Canada,
November 3–5, 2008. ACM, 2008, pp. 185–188. isbn: 978-1-60558-218-4.

[16] M. Araújo and L. Roque. “Modeling Gameswith Petri Nets”. In: Proceedings of the 3rd annual DiGRA conference Breaking NewGround:
Innovation in Games, Play, Practice and Theory, DiGRA 2009, London, UK, September 1–4, 2009. Ed. by T. Krzywinska et al. Digital
Games Research Association, 2009.

[17] D. Ašeriškis. “Modeling and Evaluation of Software System Gamification Elements”. PhD thesis. Kaunas University of Technology,
2017. isbn: 978-609-02-1375-9.

[18] D. Ašeriškis and R. Damaševičius. “Player Type Simulation in Gamified Applications”. In: Proceedings of the IVUS International
Conference on Information Technology, Kaunas, Lithuania, April 28, 2017. Ed. by R. Damaševičius et al. Vol. 1856. CEUR-WS, 2017,
pp. 1–7.

[19] D. Ašeriškis et al. “UAREI: A Model for Formal Description and Visual Representation /Software Gamification”. In: DYNA 84.200
(Mar. 2017), pp. 326–334. issn: 0012-7353.

[20] J. Aycock. “Endgame”. In: Retrogame Archeology: Exploring Old Computer Games. Springer, 2016, pp. 205–213. isbn: 978-3-319-30004-
7.

[21] A. Azadegan and C. Harteveld. “Work for or Against Players: On the Use of Collaboration Engineering for Collaborative Games”.
In: Proceedings of Workshops Colocated with the 9th International Conference on the Foundations of Digital Games – as part of the 3rd
Workshop on Design Patterns in Games, DPG 2014, Liberty of the Seas, Caribbean, April 3–7, 2014. Society for the Advancement of the
Science of Digital Games, 2014. isbn: 978-0-9913982-3-2.

[22] H. Bäärnhielm et al. “A Haskell Sound Specification DSL: Ludic Support and Deep Immersion in Nordic Technology-Supported
LARP”. In: The Monad Reader 23 (2014). Ed. by E. Z. Yang.

[23] D. Balas et al. “Hierarchical Petri Nets for Story Plots Featuring Virtual Humans”. In: Proceedings of the 4th Conference on Artificial
Intelligence and Interactive Digital Entertainment Conference, AIIDE 2008, Stanford, California, USA, October 22–24, 2008. Ed. by M.
Mateas and C. Darken. AAAI, 2008, pp. 2–9. isbn: 978-1-57735-392-8.

[24] A. Baldwin et al. “Towards Pattern-BasedMixed-initiative Dungeon Generation”. In: Proceedings of the 12th International Conference
on the Foundations of Digital Games, FDG 2017 as part of the 8th International Workshop on Procedural Content Generation, PCG 2017,
Hyannis, Massachusetts, USA, August 14–17, 2017. ACM, 2017, pp. 1–10. isbn: 978-1-4503-5319-9.

[25] A. Baldwin et al. “Mixed-Initiative Procedural Generation of Dungeons using Game Design Patterns”. In: 2017 IEEE Conference on
Computational Intelligence and Games, CIG 2017, New York, NY, USA, August 22–25, 2017. 2017, pp. 25–32. isbn: 978-1-5386-3233-8.

[26] G. A. B. Barros and J. Togelius. “Exploring a Large Space of Small Games”. In: Proceedings of the 2014 IEEE Conference on Computa-
tional Intelligence and Games, CIG 2014, Dortmund, Germany, August 26–29, 2014. 2014, pp. 1–2. isbn: 978-1-4799-3547-5.

[27] R. A. Bartle.MMOs from the Inside Out: The History, Design, Fun, and Art of Massively-Multiplayer Online Role-Playing Games. Apress,
2016. isbn: 978-1-4842-1723-8.

[28] A. Begel and E. Klopfer. “Starlogo TNG: An Introduction to Game Development”. In: Journal of E-Learning 53 (2005).
[29] C. Bell and M. Goadrich. “Automated Playtesting with RECYCLEd CARDSTOCK”. In: Game & Puzzle Design 2.1 (2016), pp. 71–83.

issn: 2376-5097.
[30] L. Beyak. “SAGA: A Story Scripting Tool for Video Game Development”. MA thesis. McMaster University – Department of Com-

puting and Software, 2011.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:94 Riemer van Rozen

[31] L. Beyak and J. Carette. “SAGA: A DSL for Story Management”. In: Proceedings IFIP Working Conference on Domain-Specific Lan-
guages, DSL 2011, Bordeaux, France, September 6–8, 2011. Ed. by O. Danvy and C. Shan. Vol. 66. EPTCS. arXiv, 2011, pp. 48–67.

[32] S. Björk and J. Holopainen. “Games and Design Patterns”. In: The Game Design Reader: A Rules of Play Anthology. Ed. by K. Salen
and E. Zimmerman. MIT Press, 2006, pp. 410–437. isbn: 0-262-19536-4.

[33] S. Björk et al. “Game Design Patterns”. In: Proceedings of the 2003 DiGRA International Conference: Level Up, DIGRA 2003, Utrecht,
The Netherlands, November 4–6, 2003. Digital Games Research Association, 2003, pp. 180–193.

[34] N. Bojin. “Language Games/Game Languages: Examining Game Design Epistemologies Through a ‘Wittgensteinian’ Lens”. In:
Journal for Computer Game Culture 2.1 (2008), pp. 55–71. issn: 1866-6124.

[35] N. Bojin. “Ludemes and the Linguistic Turn”. In: Proceedings of the International Academic Conference on the Future of Game Design
and Technology, Future Play 2010, Vancouver, British Columbia, Canada, May 6–7, 2010. ACM, 2010, pp. 25–32. isbn: 978-1-4503-0235-
7.

[36] Y. C. Borghini. “An Assessment and Learning Analytics Engine for Games-Based Learning”. PhD thesis. University of the West of
Scotland, Dec. 2015.

[37] C. Brom and A. Abonyi. “Petri Nets for Game Plot”. In: Proceedings of Artificial Intelligence and the Simulation of Behaviour as part
of the Workshop on Narrative AI and Games. AISB, 2006.

[38] C. Brom et al. “Story Manager in ’Europe 2045’ Uses Petri Nets”. In: Virtual Storytelling. Using Virtual Reality Technologies for
Storytelling – Proceedings of the 4th International Conference, ICVS 2007, Saint-Malo, France, December 5–7, 2007. Ed. by M. Cavazza
and S. Donikian. Vol. 4871. LNCS. Springer, 2007, pp. 38–50. isbn: 978-3-540-77039-8.

[39] C. Browne and F. Maire. “Evolutionary Game Design”. In: IEEE Transactions on Computational Intelligence and AI in Games 2.1 (Mar.
2010), pp. 1–16. issn: 1943-068X.

[40] C. Browne. “Automatic Generation and Evaluation of Recombination Games”. PhD thesis. Queensland University of Technology,
Feb. 2008.

[41] C. Browne. Evolutionary Game Design. Ed. by S. Zdonik et al. SpringerBriefs in Computer Science. Springer, 2011. isbn: 978-1-4471-
2178-7.

[42] C. Browne. “A Class Grammar for General Games”. In: Computers and Games – Proceedings of the 9th International Conference on
Computers and Games, CG 2016, Leiden, The Netherlands, June 29–July 1, 2016. Ed. by A. Plaat et al. Vol. 10068. LNCS. Springer, 2016,
pp. 167–182. isbn: 978-3-319-50935-8.

[43] J. Brusk and T. Lager. “Developing Natural Language Enabled Games in (Extended) SCXML”. In: Proceedings of the International
Symposium on Intelligence Techniques in Computer Games and Simulations, GAME-ON-ASIA 2007, Shiga, Japan, March 1–3, 2007.
EUROSIS, 2007.

[44] J. Brusk. “Dialogue Management for Social Game Characters Using Statecharts”. In: Proceedings of the 2008 International Conference
on Advances in Computer Entertainment Technology, ACE 2008, Yokohama, Japan, December 3–5, 2008. ACM, 2008, pp. 219–222. isbn:
978-1-60558-393-8.

[45] D. Burgos et al. “Building Adaptive Game-based Learning Resources: The Integration of IMS Learning Design and <e-Adventure>”.
In: Simulation & Gaming 39.3 (July 2008), pp. 414–431.

[46] A. Calleja and G. J. Pace. “A Domain-Specific Embedded Language Approach for the Scripting of Game Artificial Intelligence”. In:
Proceedings of the 2nd National Workshop in Information and Communication Technology, WICT 2009, Valletta, Malta, November 17,
2009. University of Malta, 2009, pp. 1–7.

[47] A. Calleja and G. J. Pace. “Scripting Game AI: An Alternative Approach using Embedded Languages”. In: Proceedings of the 3rd
National Workshop in Information and Communication Technology, WICT 2010, Valletta, Malta, November 16, 2010. University of
Malta, 2010.

[48] A. Canossa and A. Drachen. “Patterns of Play: Play-Personas in User-Centred Game Development”. In: Proceedings of the 2009
DiGRA International Conference: Breaking New Ground: Innovation in Games, Play, Practice and Theory, DiGRA 2009, West London,
UK, September 1–4, 2009. Brunel University, 2009.

[49] M. Carbonaro et al. “Interactive Story Authoring: A Viable form of Creative Expression for the Classroom”. In: Computers & Educa-
tion 51.2 (Sept. 2008), pp. 687–707. issn: 0360-1315.

[50] A. J. Champandard. Behavior Trees for Next-Gen Game AI. AIGameDev.com. Lecture delivered at the Game Developers Conference,
GDC 2007. Dec. 2007.

[51] A. J. Champandard. Understanding the Second-Generation of Behavior Trees – AltDevConf. AIGameDev.com. Presentation. Feb. 2012.
[52] C. Chang et al. “Relationships between Engagement and Learning Style for using VPL on Game Design”. In: Proceedings of the 4th

IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning, DIGITEL 2012, Takamatsu, Japan, March 27–30,
2012. IEEE, 2012, pp. 153–155. isbn: 978-1-4673-0885-4.

[53] Y. Chaudy et al. “EngAGe: A Link between Educational Games Developers and Educators”. In: Proceedings of the 6th International
Conference on Games and Virtual Worlds for Serious Applications, VS-GAMES 2014, Valletta, Malta, September 9–12, 2014. IEEE, 2014,
pp. 1–7. isbn: 978-1-4799-4056-1.

[54] D. Church. “Formal Abstract Design Tools”. In: Gamasutra (July 1999), pp. 44–50.
[55] D. Church. “Formal Abstract Design Tools”. In: Game Developer (Aug. 1999), pp. 44–50. issn: 1073-922X.
[56] K. Compton et al. “Tracery: An Author-Focused Generative Text Tool”. In: Interactive Storytelling – Proceedings of the 8th Inter-

national Conference on Interactive Digital Storytelling, ICIDS 2015, Copenhagen, Denmark, November 30–December 4, 2015. Ed. by H.
Schoenau-Fog et al. Vol. 9445. LNCS. Springer, 2015, pp. 154–161. isbn: 978-3-319-27035-7.

[57] M. J. Conway. “Alice: Easy-to-Learn 3D Scripting for Novices”. PhD thesis. University of Virginia, Dec. 1997.
[58] M. Conway et al. “Alice: Lessons Learned from Building a 3D System for Novices”. In: Proceedings of the CHI 2000 Conference on

Human factors in computing systems, The Hague, The Netherlands, April 1–6, 2000. Ed. by T. Turner and G. Szwillus. ACM, 2000,
pp. 486–493.

[59] M. Cook et al. “Mechanic Miner: Reflection-Driven Game Mechanic Discovery and Level Design”. In: Applications of Evolutionary
Computation – Proceedings of the 16th European Conference, EvoApplications 2013, Vienna, Austria, April 3–5, 2013. Ed. byA. I. Esparcia-
Alcázar. Vol. 7835. LNCS. Springer, 2013, pp. 284–293. isbn: 978-3-642-37191-2.

[60] M. Cook et al. “Nobody’s A Critic: On The Evaluation Of Creative Code Generators – A Case Study In Video Game Design”. In:
Proceedings of the Fourth International Conference on Computational Creativity, ICCC 2013, Sidney, Australia, June 12–14, 2013. Ed. by
M. L. Maher et al. computationalcreativity.net, 2013, pp. 123–130.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:95

[61] M. L. Crane and J. Dingel. “UML vs. Classical vs. Rhapsody Statecharts: Not all Models are Created Equal”. In: Software and System
Modeling 6.4 (2007), pp. 415–435.

[62] M. Cutumisu. “Using Behaviour Patterns to Generate Scripts for Computer Role-Playing Games”. PhD thesis. University of Alberta,
2009. isbn: 978-0-494-52438-1.

[63] M. Cutumisu et al. “ScriptEase: A Generative/Adaptive Programming Paradigm for Game Scripting”. In: Science of Computer Pro-
gramming 67.1 (June 2007). Special Issue on Aspects of Game Programming, pp. 32–58. issn: 0167-6423.

[64] M. Cutumisu et al. “Evaluating Pattern Catalogs: The Computer Games Experience”. In: Proceedings of the 28th International Con-
ference on Software Engineering, ICSE 2006, Shanghai, China, May 20–28, 2006. ACM, 2006, pp. 132–141. isbn: 1-59593-375-1.

[65] B. Dawson. “GDC 2002: Game Scripting in Python”. In: Gamasutra (Aug. 2002).
[66] O. de Troyer et al. “Creating Story-Based Serious Games Using a Controlled Natural Language Domain SpecificModeling Language”.

In: Serious Games and Edutainment Applications: Volume II. Ed. by M. Ma and A. Oikonomou. Springer, 2017, pp. 567–603. isbn: 978-
3-319-51645-5.

[67] A. Denault et al. “Model-Based Design of Game AI”. In: Proceedings of the 2nd International North American Conference on Intelligent
Games and Simulation, GAME-ON-NA 2006, Monterey, USA, September 19–20, 2006. Ed. by P. McDowell. EUROSIS, 2006, pp. 67–71.
isbn: 90-77381-29-5.

[68] F. di Giacomo. “Design of an Optimized Compiler for Casanova Language”. MA thesis. Università Ca’Foscari Venezia – Corso di
Laurea magistrale in Informatica, 2014.

[69] F. di Giacomo et al. “Building Game Scripting DSLs with the Metacasanova Metacompiler”. In: Intelligent Technologies for Interactive
Entertainment – Proceedings of the 8th International Conference, Revised Selected Papers, INTETAIN 2016, Utrecht, The Netherlands,
June 28–30, 2016. Ed. by R. Poppe et al. Vol. 178. LNICST. Springer, 2016, pp. 231–242. isbn: 978-3-319-49616-0.

[70] F. di Giacomo et al. “High Performance Encapsulation and Networking in Casanova 2”. In: Entertainment Computing 20 (May 2017),
pp. 25–41. issn: 1875-9521.

[71] F. di Giacomo et al. “Metacasanova: An Optimized Meta-Compiler for Domain-Specific Languages”. In: Proceedings of the 10th ACM
SIGPLAN International Conference on Software Language Engineering, SLE 2017, Vancouver, BC, Canada, October 23–24, 2017. ACM,
2017, pp. 232–243. isbn: 978-1-4503-5525-4.

[72] J. Dormans. “Machinations: Elemental Feedback Patterns for Game Design”. In: Proceedings of the 5th International North American
Conference on Intelligent Games and Simulation, GAME-ON-NA 2009, Atlanta, USA, August 26–28, 2009. Ed. by J. Saur and M. Loper.
EUROSIS, 2009, pp. 33–40. isbn: 978-90-77381-49-6.

[73] J. Dormans. “Adventures in Level Design: Generating Missions and Spaces for Action Adventure Games”. In: Proceedings of the 1st
Workshop on Procedural Content Generation in Games, PCG 2010, Monterey, California, USA, June 18, 2010. ACM, 2010, pp. 1–8. isbn:
978-1-4503-0023-0.

[74] J. Dormans. “Level Design as Model Transformation: A Strategy for Automated Content Generation”. In: Proceedings of the 2nd
Workshop on Procedural Content Generation in Games, PCG 2011, Bordeaux, France, June 28, 2011. ACM, 2011, pp. 1–8. isbn: 978-1-
4503-0872-4.

[75] J. Dormans. “Simulating Mechanics to Study Emergence in Games”. In: Workshops at the 7th Artificial Intelligence and Interactive
Digital Entertainment Conference, AIIDE 2011, as part of the workshop on Artificial Intelligence in the Game Design Process, Stanford
University, October 10–14, 2011. Vol. WS-11-19. AAAI Workshops. AAAI, 2011.

[76] J. Dormans. “Engineering Emergence: Applied Theory for GameDesign”. PhD thesis. University of Amsterdam, 2012. isbn: 9789461907523.
[77] J. Dormans. “Generating Emergent Physics for Action-Adventure Games”. In: Proceedings of the 3rd Workshop on Procedural Content

Generation in Games, PCG 2012, Raleigh, NC, USA, May 29–June 01, 2012. ACM, 2012, pp. 1–7. isbn: 978-1-4503-1447-3.
[78] J. Dormans and S. Bakkes. “GeneratingMissions and Spaces for Adaptable Play Experiences”. In: IEEE Transactions on Computational

Intelligence and AI in Games 3.3 (Sept. 2011), pp. 216–228. issn: 1943-068X.
[79] J. Dormans and S. Leijnen. “Combinatorial and Exploratory Creativity in Procedural Content Generation”. In:Workshop Proceedings

of the 8th International Conference on the Foundations of Digital Games, as part of the 4th Workshop on Procedural Content Generation
in Games, PCG 2013, Chania, Crete, Greece, May, 14–17, 2013. Society for the Advancement of the Science of Digital Games, 2013.

[80] C. Dowd. “The Scrabble of Language towards Persuasion: Changing Behaviors in Journalism”. In: Persuasive Technology – Proceed-
ings of the 8th International Conference, PERSUASIVE 2013, Sydney, NSW, Australia, April 3–5, 2013. Ed. by S. Berkovsky and J. Freyne.
Vol. 7822. LNCS. Springer, 2013, pp. 39–50. isbn: 978-3-642-37157-8.

[81] M. Ebner et al. “Towards a Video Game Description Language”. In: Artificial and Computational Intelligence in Games. Ed. by S.M.
Lucas et al. Vol. 6. Dagstuhl Follow-Ups. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013, pp. 85–100. isbn: 978-3-939897-
62-0.

[82] C. Elverdam and E. Aarseth. “GameClassification and GameDesign: Construction Through Critical Analysis”. In:Games and Culture
2.1 (Jan. 2007).

[83] R. Evans and E. Short. “Versu–A Simulationist Storytelling System”. In: IEEE Transactions on Computational Intelligence and AI in
Games 6.2 (June 2014), pp. 113–130. issn: 1943-068X.

[84] P. Féher and L. Lengyel. “The Power of Graph Transformation – Implementing a Shadow Casting Algorithm”. In: Proceedings of the
10th Jubilee International Symposium on Intelligent Systems and Informatics, SISY 2012, Subotica, Serbia, October 25, 2012. IEEE, 2012,
pp. 121–127.

[85] M. Flatt. “Creating Languages in Racket”. In: Queue 9.11 (Nov. 2011), pp. 20–34. issn: 1542-7730.
[86] M. Flatt. “Creating Languages in Racket”. In: Communications of the ACM 55.1 (Jan. 2012), pp. 48–56. issn: 0001-0782.
[87] J.M. Font et al. “ACardGameDescription Language”. In:Applications of Evolutionary Computation – Proceedings of the 16th European

Conference, EvoApplications 2013, Vienna, Austria, April 3–5, 2013. Ed. by A. I. Esparcia-Alcázar. Vol. 7835. LNCS. Springer, 2013,
pp. 254–263. isbn: 978-3-642-37192-9.

[88] J.M. Font et al. “Towards the Automatic Generation of Card Games through Grammar-Guided Genetic Programming”. In: Proceed-
ings of the 8th International Conference on the Foundations of Digital Games, FDG 2013, Chania, Crete, Greece, May 14–17, 2013. Society
for the Advancement of the Science of Digital Games, 2013, pp. 360–363. isbn: 978-0-9913982-0-1.

[89] F. Frapolli et al. “Decoupling Aspects in Board Game Modeling”. In: International Journal of Gaming and Computer-Mediated Simu-
lations 2.2 (Apr. 2010), pp. 18–35. issn: 1942-3888.

[90] F. Frapolli et al. “Exploiting Traditional Gameplay Characteristics to Enhance Digital Board Games”. In: Proceedings of the 2nd
International IEEE Consumer Electronics Society’s Games Innovations Conference, GiC 2010, Hong Kong, China, December 21–23, 2010.
IEEE, 2010, pp. 1–8. isbn: 978-1-4244-7178-2.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:96 Riemer van Rozen

[91] F. Frapolli et al. “FLEXIBLE RULES: A Player Oriented Board GameDevelopment Framework”. In: Proceedings of the 3rd International
Conference on Advances in Computer-Human Interactions, ACHI 2010, Sint Maarten, Netherlands, Antilles, February 10–16, 2010. IEEE,
2010, pp. 113–118. isbn: 978-1-4244-5694-9.

[92] D. Fu and R. T. Houlette. “Putting AI in Entertainment: An AI Authoring Tool for Simulation and Games”. In: IEEE Intelligent Systems
17.4 (July 2002), pp. 81–84. issn: 1941-1294.

[93] D. Fu et al. “A Visual Environment for Rapid Behavior Definition”. In: Prococeedings of the 12th Conference on Behavior Representation
in Modeling and Simulation, BRIMS 2003, Scottsdale, Arizona, USA, May 12–15, 2003. SISO, 2003. isbn: 978-1-61567-168-7.

[94] D. Fu et al. “An AI Modeling Tool for Designers and Developers”. In: IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, March
3–10, 2007. IEEE, 2007, pp. 1–9.

[95] A.W. B. Furtado et al. “Improving Digital Game Development with Software Product Lines”. In: IEEE Software 28.5 (Sept. 2011),
pp. 30–37. issn: 0740-7459.

[96] A.W. B. Furtado and A. L.M. Santos. “Tutorial: Applying Domain-Specific Modeling to Game Development with the Microsoft DSL
Tools”. In: Proceedings of the 5th Brazilian Symposium on Computer Games and Digital Entertainment, SBGames 2006, Recife, Brazil,
November 8–10, 2006. Ed. by B. Feijó et al. UFPE, 2006. isbn: 85-7669-098-5.

[97] A.W. B. Furtado and A. L.M. Santos. “Using Domain-Specific Modeling Towards Computer Games Development Industrialization”.
In: Proceedings of the 6th Workshop on Domain-Specific Modeling, DSM 2006, Portland, Oregon, USA, October 22, 2006. Computer
Science and Information System Reports, Technical Reports, TR-37. University of Jyväskylä, Finland, 2006, pp. 1–14. isbn: 951-39-
2631-1.

[98] A.W. B. Furtado et al. “SharpLudus Revisited: From Ad Hoc and Monolithic Digital Game DSLs to Effectively Customized DSM
Approaches”. In: SPLASH ’11 Workshops: Proceedings of the Compilation of the Co-located Workshops on DSM’11, TMC’11, AGERE!
2011, AOOPES’11, NEAT’11, & VMIL’11 – as part of the 11th workshop on Domain-Specific Modeling, DSM 2011, Portland, Oregon, USA,
October 23–24, 2011. ACM, 2011, pp. 57–62. isbn: 978-1-4503-1183-0.

[99] A.W. B. Furtado. “SharpLudus: Improving Game Development Experience Through Software Factories and Domain-Specific Lan-
guages”. MA thesis. Universidade Federal de Pernambuco (UFPE) – Mestrado em Ciência da Computação – Centro de Informática
(CIN), 2006.

[100] A.W. B. Furtado. “Domain-Specific Game Development”. PhD thesis. Universidade Federal de Pernambuco, 2012.
[101] A.W. B. Furtado et al. “A Computer Games Software Factory and Edutainment Platform for Microsoft.NET”. In: IET Software 1.6

(Dec. 2007), pp. 280–293. issn: 1751-8806.
[102] I. A. Games. “Gamestar Mechanic: Learning a Designer Mindset through Communicational Competence with the Language of

Games”. In: Learning, Media and Technology 35.1 (Mar. 2010), pp. 31–52. issn: 1743-9884.
[103] S. Gaudl. “Building Robust Real-Time Game AI: Simplifying & Automating Integral Process Steps in Multi-Platform Design”. PhD

thesis. University of Bath, May 2016.
[104] S. E. Gaudl et al. “Behaviour Oriented Design for Real-Time-Strategy Games”. In: Proceedings of the 8th International Conference on

the Foundations of Digital Games, FDG 2013, Chania, Crete, Greece, May 14–17, 2013. Ed. by G. N. Yannakakis et al. Society for the
Advancement of the Science of Digital Games, 2013, pp. 198–205.

[105] A. Grow et al. “A Methodology for Requirements Analysis of AI Architecture Authoring Tools”. In: Proceedings of the 9th Interna-
tional Conference on the Foundations of Digital Games, FDG 2014, Liberty of the Seas, Caribbean, April 3–7, 2014. Ed. by M. Mateas
et al. Society for the Advancement of the Science of Digital Games, 2014.

[106] V. Guana. “End-to-end Fine-grained Traceability Analysis in Model Transformations and Transformation Chains”. PhD thesis. De-
partment of Computing Science – University of Alberta, 2017.

[107] V. Guana and E. Stroulia. “PhyDSL: A Code-generation Environment for 2D Physics-based Games”. In: IEEE Games, Entertainment,
and Media Conference, GEM 2014, Toronto ON Canada, October 22–24, 2014. IEEE, 2014, pp. 1–6.

[108] V. Guana et al. “Building a Game Engine: A Tale of Modern Model-Driven Engineering”. In: Proceedings of the 4th International
Workshop on Games and Software Engineering, GAS 2015, Florence, Italy, May 18, 2015. IEEE, 2015, pp. 15–21. isbn: 978-1-4673-7046-
2.

[109] H. Guo. “Concepts and Modelling Techniques for Pervasive and Social Games”. PhD thesis. Norwegian University of Science et al.,
June 2015. isbn: 978-82-326-0944-4.

[110] H. Guo et al. “PerGO: An Ontology Towards Model Driven Pervasive Game Development”. In: On the Move to Meaningful Internet
Systems: OTM 2014 Workshops, as part of Ontologies, DataBases, and Applications of Semantics, ODBASE 2014 Posters, Amantea, Italy,
October 27–31, 2014. Ed. by R. Meersman et al. Vol. 8842. LNCS. Springer, 2014, pp. 651–654. isbn: 978-3-662-45550-0.

[111] H. Guo et al. “AWorkflow forModel Driven Game Development”. In: Proceedings of the IEEE 19th International Enterprise Distributed
Object Computing Conference, EDOC 2015, Adelaide, SA, Australia, September 21–25, 2015. IEEE, 2015, pp. 94–103. isbn: 978-1-4673-
9203-7.

[112] H. Guo et al. “RealCoins: A Case Study of Enhanced Model Driven Development for Pervasive Games”. In: International Journal of
Multimedia and Ubiquitous Engineering 10.5 (2015), pp. 395–410. issn: 1975-0080.

[113] T. Hastjarjanto. “Strategies for Real-Time Video Games”. MA thesis. Utrecht University, Mar. 2013.
[114] T. Hastjarjanto et al. “A DSL for Describing the Artificial Intelligence in Real-time Video Games”. In: Proceedings of the 3rd Interna-

tional Workshop on Games and Software Engineering: Engineering Computer Games to Enable Positive, Progressive Change, GAS 2013,
San Francisco, CA, USA, May 18–26, 2013. IEEE, 2013, pp. 8–14. isbn: 978-1-4673-6263-4.

[115] F. E. Hernandez and F. R. Ortega. “Eberos GML2D: A Graphical Domain-Specific Language for Modeling 2D Video Games”. In:
Proceedings of the 10th Workshop on Domain-Specific Modeling, DSM 2010, Reno/Tahoe, Nevada, USA, October 17–18, 2010. Ed. by M.
Rossi et al. Aalto-Print, 2010, pp. 1–6. isbn: 978-952-60-1043-4.

[116] P. Herzig et al. “GaML: A Modeling Language for Gamification”. In: Proceedings of the IEEE/ACM 6th International Conference on
Utility and Cloud Computing, Dresden, Germany, December 9–12, 2013. IEEE, 2013, pp. 494–499. isbn: 978-0-7695-5152-4.

[118] J. Holopainen and S. Björk. “Game Design Patterns – Lecture Notes”. In: Game Developers Conference, GDC 2003. 2003.
[119] J. Holopainen and S. Björk. “Gameplay Design Patterns for Motivation”. In: Games: Virtual Worlds and Reality – Proceedings of the

39th Conference of the International Simulation And Gaming Association, ISAGA 2008, Kaunas, Lithuania, July 7–11, 2008. Ed. by E.
Bagdonas et al. Kaunas University of Technology, 2008. isbn: 978-9955-25-528-4.

[120] J. Holopainen et al. “TeachingGameplayDesign Patterns”. In:Organizing and Learning throughGaming and Simulation – Proceedings
of the 38th Conference of the International Simulation And Gaming Association, ISAGA 2007, Nijmegen, The Netherlands, July 9–13,
2007. Ed. by I. Mayer and H. Mastik. Eburon, 2007. isbn: 9789059722316.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:97

[121] K. Hullett and J. Whitehead. “Design Patterns in FPS Levels”. In: Proceedings of the Fifth International Conference on the Foundations
of Digital Games, FDG 2010, Monterey, California, USA, June 19–21, 2010. ACM, 2010, pp. 78–85. isbn: 978-1-60558-937-4.

[122] R. Hunicke et al. “MDA: A Formal Approach to Game Design and Game Research”. In: Proceedings of the AAAI workshop on Chal-
lenges in Game Artificial Intelligence. AAAI, 2004, pp. 1–5.

[123] R. Ierusalimschy et al. “The Implementation of Lua 5.0”. In: Journal of Universal Computer Science 11.7 (2005), pp. 1159–1176.
[124] R. Ierusalimschy et al. “The Evolution of Lua”. In: Proceedings of the 3rd ACM SIGPLAN Conference on History of Programming

Languages, HOPL III, San Diego, California, June 9–10, 2007. ACM, 2007, pp. 1–26. isbn: 978-1-59593-766-7.
[125] A. Ioannidou et al. “Using Scalable Game Design to Promote 3D Fluency: Assessing the AgentCubes incremental 3D End-user

Development Framework”. In: Proceedings of the 2008 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC
2008, Herrsching am Ammersee, Germany, September 15–19, 2008. Ed. by P. Bottoni et al. IEEE, 2008, pp. 47–54. isbn: 978-1-4244-2528-
0.

[126] D. Isla. “GDC 2005 Proceeding: Handling Complexity in the Halo 2 AI”. In: Gamasutra (Mar. 2005).
[127] D. Isla. “Managing Complexity in the Halo 2 AI System”. In: Proceedings of the Game Developers Conference, GDC 2005. Audio

recording. Gdcvault.com, 2005.
[128] R. Jones. “Rapid Game Development in Python”. In: OpenSource Developers’ Conference. 2005, pp. 84–90.
[129] D. Karavolos et al. “Mixed-Initiative Design of Game Levels: Integrating Mission and Space into Level Generation”. In: Proceedings

of the 10th International Conference on the Foundations of Digital Games, FDG 2015, Pacific Grove, CA, USA, June 22–25, 2015. Ed. by
J. P. Zagal et al. Society for the Advancement of the Science of Digital Games, 2015.

[130] J. Kessing et al. “Designing Semantic Game Worlds”. In: Proceedings of the 3rd workshop on Procedural Content Generation in Games,
PCG 2012, Raleigh, NC, USA, May 29–June 1, 2012. ACM, 2012, pp. 1–9.

[131] J. Kienzle et al. “Model-Based Design of Computer-Controlled Game Character Behavior”. In: Model Driven Engineering Languages
and Systems – Proceedings of the 10th International Conference, MoDELS 2007, Nashville, USA, September 30–October 5, 2007. Ed. by
G. Engels et al. Vol. 4735. LNCS. Springer, 2007, pp. 650–665. isbn: 978-3-540-75209-7.

[132] P. Klint and R. van Rozen. “Micro-Machinations: a DSL for Game Economies”. In: Software Language Engineering – Proceedings of
the 6th International Conference on Software Language engineering, SLE 2013, Indianapolis, IN, USA, October 26–28, 2013. Ed. by M.
Erwig et al. Vol. 8225. LNCS. Springer, 2013, pp. 36–55. isbn: 978-3-319-02654-1.

[133] P. Klint et al. “Game Developers Need Lua AiR: Static Analysis of Lua Using Interface Models”. In: Entertainment Computing –
Proceedings of the 11th International Conference on Entertainment Computing, ICEC 2012, as part of the 2nd Workshop on Game
Development and Model-Driven Software Development, GD&MDSD 2012, Bremen, Germany, September 26–29, 2012. Ed. by M. Herrlich
et al. Vol. 7522. LNCS. Springer, 2012, pp. 530–535. isbn: 978-3-642-33542-6.

[134] R. Koster. “A Grammar of Gameplay”. In: Game Developers Conference, GDC 2005. Presentation slides. 2005.
[135] R. Koster. Theory of Fun for Game Design. 1st ed. Paraglyph Press, 2005. isbn: 1932111972.
[136] R. Koster. “The Limits of Formalism”. In: Presentation delivered at the BIRS Workshop on Computational Modeling in Games. Raph

Koster’s Website, 2016.
[137] B. Kreimeier. “The Case for Game Design Patterns”. In: Gamasutra (Mar. 2002).
[138] P. Lemay. “Developing a Pattern Language for Flow Experiences in Video Games”. In: Proceedings of the 2007 DiGRA International

Conference: Situated Play, DiGRA 2007, Tokyo, Japan, September 24–28, 2007. The University of Tokyo, 2007.
[139] A. Liapis et al. “Sentient Sketchbook: Computer-Aided Game Level Authoring”. In: Proceedings of the 8th International Conference

on the Foundations of Digital Games, FDG 2013, Chania, Crete, Greece, May 14–17, 2013. Ed. by G. N. Yannakakis et al. Society for the
Advancement of the Science of Digital Games, 2013, pp. 213–220.

[140] C. U. Lim and D. F. Harrell. “An Approach to General Videogame Evaluation and Automatic Generation using a Description Lan-
guage”. In: Proceedings of the 2014 IEEE Conference on Computational Intelligence and Games, CIG 2014, Dortmund, Germany, August
26–29, 2014. IEEE, 2014, pp. 1–8. isbn: 978-1-4799-3547-5.

[141] C. Lim et al. “Evolving Behaviour Trees for the Commercial Game DEFCON”. In: Applications of Evolutionary Computation, EvoAp-
plicatons 2010: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, Proceedings, Part I – as part of
EvoGAMES, Istanbul, Turkey, April 7–9, 2010. Ed. by C. Di Chio et al. Vol. 6024. LNCS. Springer, 2010, pp. 100–110.

[142] A. Lindenmayer. “Mathematical Models for Cellular Interactions in Development”. In: Journal of Theoretical Biology 18.3 (1968),
pp. 280–299. issn: 0022-5193.

[143] N. Love et al. General Game Playing: Game Description Language Specification. Tech. rep. LG-2006-01. Stanford Logic Group, Com-
puter Science Department, Stanford University, Mar. 2008.

[144] M. B. MacLaurin. “The Design of Kodu: A Tiny Visual Programming Language for Children on the Xbox 360”. In: Proceedings of the
38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, Texas, USA, January
26–28, 2011. Invited talk – Video recording accessible via ACM. ACM, 2011, pp. 241–246. isbn: 978-1-4503-0490-0.

[145] M. B. MacLaurin. “The Design of Kodu: A Tiny Visual Programming Language for Children on the Xbox 360”. In: SIGPLAN Notices
46.1 (Jan. 2011), pp. 241–246. issn: 0362-1340.

[146] G. Maggiore et al. “Monadic Scripting in F# for Computer Games”. In: Proceedings of the 5th International Workshop on Harnessing
Theories for Tool Support in Software, TTSS 2011, Oslo Norway, September 13, 2011. UIO, 2011.

[147] G. Maggiore et al. “A Formal Specification for Casanova, a Language for Computer Games”. In: Proceedings of the 4th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, EICS 2012, Copenhagen, Denmark, June 25–26, 2012. ACM, 2012, pp. 287–
292. isbn: 978-1-4503-1168-7.

[148] G. Maggiore et al. “Designing Casanova: A Language for Games”. In: Advances in Computer Games – Proceedings of the 13th Inter-
national Conference, Revised Selected Papers, ACG 2011, Tilburg, The Netherlands, November 20–22, 2011. Ed. by H. J. van den Herik
and A. Plaat. Vol. 7168. LNCS. Springer, 2012, pp. 320–332. isbn: 978-3-642-31866-5.

[149] G. Maggiore et al. “Writing Real-Time .Net Games in Casanova”. In: Entertainment Computing – Proceedings of the 11th International
Conference on Entertainment Computing, ICEC 2012, Bremen, Germany, September 26-29, 2012. Ed. byM.Herrlich et al. Vol. 7522. LNCS.
Springer, 2012, pp. 341–348. isbn: 978-3-642-33542-6.

[150] G. Maggiore. “Casanova: A Language for Game Development”. PhD thesis. Università Ca’ Foscari di Venezia, Dec. 2012.
[151] T. Mahlmann. “Modelling and Generating Strategy Games Mechanics”. PhD thesis. IT University of Copenhagen, Mar. 2013.
[152] T. Mahlmann et al. “Towards Procedural Strategy Game Generation: Evolving Complementary Unit Types”. In: Applications of

Evolutionary Computation – Proceedings of EvoApplications 2011: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM,

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:98 Riemer van Rozen

and EvoSTOC, Torino, Italy, April 27–29, 2011. Ed. by C. Di Chio et al. Vol. 6624. LNCS. Springer, 2011, pp. 93–102. isbn: 978-3-642-
20525-5.

[153] T. Mahlmann et al. “Modelling and Evaluation of Complex Scenarios with the Strategy Game Description Language”. In: Proceedings
of the 2011 IEEE Conference on Computational Intelligence and Games, CIG 2011, Seoul, South Korea, August 31–September 3, 2011. 2011,
pp. 174–181. isbn: 978-1-4577-0011-8.

[154] S. Maier and D. Volk. “Facilitating Language-Oriented Game Development by the Help of Language Workbenches”. In: Proceedings
of the 2008 Conference on Future Play: Research, Play, Share, Future Play 2008, Toronto, Ontario, Canada, November 3–5, 2008. ACM,
2008, pp. 224–227. isbn: 978-1-60558-218-4.

[155] E. J. Marchiori et al. “A Narrative Metaphor to Facilitate Educational Game Authoring”. In: Computers & Education 58.1 (2012),
pp. 590–599. issn: 0360-1315.

[156] B. Marne et al. “A Design Pattern Library for Mutual Understanding and Cooperation in Serious Game Design”. In: Intelligent
Tutoring Systems – Proceedings of the 11th International Conference, ITS 2012, Chania, Crete, Greece, June 14–18, 2012. Ed. by S. A.
Cerri et al. Vol. 7315. LNCS. Springer, 2012, pp. 135–140. isbn: 978-3-642-30950-2.

[157] C. Martens. “Ceptre: A Language for Modeling Generative Interactive Systems”. In: Proceedings of the 11th AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2015, University of California, Santa Cruz, USA, November 14–18,
2015. AAAI, 2015.

[158] C. Martens et al. “Generative Story Worlds as Linear Logic Programs”. In: Proceedings of the 7th Intelligent Narrative Technologies
Workshop, Wisconsin, USA, June 17–18, 2014. AAAI, 2014.

[159] C. Martens et al. “A Resourceful Reframing of Behavior Trees”. In: CoRR abs/1803.09099 (2018).
[160] M. Masuch and M. Rueger. “Challenges in Collaborative Game Design: Developing Learning Environments for Creating Games”. In:

Proceedings of the 3rd International Conference on Creating, Connecting and Collaborating through Computing, C5 2005, Kyoto, Japan,
Japan, January 28–29, 2005. IEEE, 2005, pp. 67–74.

[161] A. Matallaoui et al. “Model-Driven Serious Game Development Integration of the Gamification Modeling Language GaML with
Unity”. In: Proceedings of the 48th Annual Hawaii International Conference on System Sciences, HICSSS 2015, Kauai, HI, USA, January
5–8, 2015. IEEE, 2015, pp. 643–651.

[162] M. Mateas and A. Stern. “A Behavior Language for Story-Based Believable Agents”. In: IEEE Intelligent Systems 17.4 (July 2002),
pp. 39–47. issn: 1541-1672.

[163] M. Mateas andW.-F. Noah. “Defining Operational Logics”. In: Proceedings of the 2009 DiGRA International Conference: Breaking New
Ground: Innovation in Games, Play, Practice and Theory, DiGRA 2009, London, UK, September 1–4, 2009. Ed. by T. Krzywinska et al.
Brunel University and Digital Games Research Association, 2009.

[164] M. Mateas and A. Stern. “Build It to Understand It: Ludology Meets Narratology in Game Design Space”. In: Proceedings of the 2005
DiGRA International Conference: Changing Views: Worlds in Play, DiGRA 2005, Vancouver, Canada, June 16–20, 2005. Digital Games
Research Association, 2005.

[165] M. Mateas and A. Stern. “Structuring Content Within the Façade Interactive Drama Architecture”. In: Proceedings of the 1st AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2005, Marina del Rey, California, USA, June 1–3, 2005.
Ed. by R.M. Young and J. Laird. AAAI, 2005. isbn: 978-1-57735-235-8.

[166] M. Mayer. “Interactive Programming by Example”. PhD thesis. École Polytechnique Fédérale de Lausanne, Apr. 2017.
[167] M. Mayer and V. Kuncak. “Game Programming by Demonstration”. In: Proceedings of the 2013 ACM International Symposium on

New Ideas, New Paradigms, and Reflections on Programming & Software, Onward! 2013, Indianapolis, Indiana, USA, October 29–31,
2013. ACM, 2013, pp. 75–90. isbn: 978-1-4503-2472-4.

[168] M. McNaughton et al. “Pattern-based AI Scripting using ScriptEase”. In: Proceedings of the 16th Canadian Society for Computational
Studies of Intelligence Conference on Advances in Artificial Intelligence, AI 2003, Halifax, Canada, June 11–13, 2003. Springer, 2003,
pp. 35–49. isbn: 3-540-40300-0.

[169] M. McNaughton et al. “ScriptEase: Generating Scripting Code for Computer Role-Playing Games”. In: Proceedings of the 19th In-
ternational Conference on Automated Software Engineering, ASE 2004, Linz, Austria, September 20–24, 2004. IEEE, 2004, pp. 386–387.
isbn: 0-7695-2131-2.

[170] M. McNaughton et al. “ScriptEase: Generative Design Patterns for Computer Role-Playing Games”. In: Proceedings of the 19th Inter-
national Conference on Automated Software Engineering, ASE 2004, Linz, Austria, September 20–24, 2004. IEEE, 2004, pp. 88–99. isbn:
0-7695-2131-2.

[171] F. Mehm. “Authoring of Adaptive Single-Player Educational Games”. PhD thesis. Technische Universität Darmstadt, Jan. 2013.
[172] F. Mehm et al. “Authoring Environment for Story-Based Digital Educational Games”. In: Proceedings of the 1st International Open

Workshop on Intelligent Personalization and Adaptation in Digital Educational Games. Ed. by M.D. Kickmeier-Rust. 2009, pp. 113–124.
[173] F. Mehm et al. “Bat Cave: A Testing and Evaluation Platform for Digital Educational Games”. In: Proceedings of the 4th European

Conference on Games Based Learning, ECGBL 2010, Copenhagen, Denmark, October 21–22, 2010. Academic Conferences International
Limited, 2010, pp. 251–260. isbn: 978-1-62276-708-3.

[174] F. Mehm et al. “Authoring Processes and Tools”. In: Serious Games: Foundations, Concepts and Practice. Ed. by R. Dörner et al.
Springer, 2016, pp. 83–106. isbn: 978-3-319-40612-1.

[175] E. Montero Reyno and J. Á. Carsí Cubel. “A Platform-Independent Model for Videogame Gameplay Specification”. In: Proceedings
of the 2009 DiGRA International Conference: Breaking New Ground: Innovation in Games, Play, Practice and Theory, DiGRA 2009, West
London, UK, September 1–4, 2009. Brunel University, 2009.

[176] E. Montero Reyno and J. Á. Carsí Cubel. “Model Driven Game Development: 2D Platform Game Prototyping”. In: Proceedings of the
9th International Conference on Intelligent Games and Simulation, GAME-ON 2008, Valencia, Spain, November 17–19, 2008. EUROSIS,
2008, pp. 5–7. isbn: 978-90-77381-45-8.

[177] E. Montero Reyno and J. Á. Carsí Cubel. “Automatic Prototyping in Model-driven Game Development”. In: Computers in Entertain-
ment – Special Issue on Media Arts and Games 7.2 (June 2009), pp. 1–9. issn: 1544-3574.

[178] P. Moreno-Ger et al. “Language-Driven Development of Videogames: The <e-Game> Experience”. In: Entertainment Computing –
Proceedings of the 5th International Conference on Entertainment Computing, ICEC 2006, Cambridge, UK, September 20–22, 2006. Ed. by
R. Harper et al. Vol. 4161. LNCS. Springer, 2006, pp. 153–164. isbn: 978-3-540-45261-4.

[179] P. Moreno-Ger et al. “A Documental Approach to Adventure Game Development”. In: Science of Computer Programming – Special
Issue on Aspects of Game Programming 67.1 (June 2007). Ed. by K. de Leeuw, pp. 3–31. issn: 0167-6423.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:99

[180] P. Moreno-Ger et al. “An eLearning Specification Meets a Game: Authoring and Integration with IMS Learning Design and <e-
Adventure>”. In: Organizing and Learning through Gaming and Simulation – Proceedings of the 38th Conference of the International
Simulation And Gaming Association, ISAGA 2007, Nijmegen, The Netherlands, July 9–13, 2007. Ed. by I. Mayer and H. Mastik. Eburon,
2007. isbn: 9789059722316.

[181] P. Moreno-Ger et al. “Model-Checking for Adventure Videogames”. In: Information and Software Technology 51.3 (2009), pp. 564–580.
issn: 0950-5849.

[182] J. B. Mossmann et al. “Project and Preliminary Evaluation of VR-MED, a Domain-Specific Language for Serious Games in Family
Medicine Teaching”. In: Proceedings of the IEEE 40th Annual Computer Software and Applications Conference, COMPSAC 2016, Atlanta,
Georgia, USA, June 10–14 2016. IEEE, 2016, pp. 663–667.

[183] T. Murata. “Petri nets: Properties, analysis and applications”. In: Proceedings of the IEEE 77.4 (Apr. 1989), pp. 541–580. issn: 0018-9219.
[184] M. S. El-Nasr et al. Game Analytics. Springer, 2016. isbn: 978-1-4471-4769-5.
[185] S. Natkin and L. Vega. “Petri Net Modelling for the Analysis of the Ordering of Actions in Computer Games”. In: Proceedings of the

4th International Conference on Intelligent Games and Simulation, GAME-ON 2003, London, UK, November 19–21, 2003. Ed. by Q.H.
Mehdi et al. EUROSIS, 2003, pp. 82–89. isbn: 9-0773-8105-8.

[186] S. Natkin et al. “A new Methodology for Spatiotemporal Game Design”. In: Proceedings of the 5th Game-On International Conference
on Computer Games: Artificial Intelligence, Design and Education, CGAIDE 2004, Reading, UK, November 8–10, 2004. Ed. by Q. Mehdi
and N. Gough. University of Wolverhampton, 2004, pp. 109–113. isbn: 0-9549016-0-6.

[187] K. Neil. “Game Design Tools: Can They Improve Game Design Practice?” PhD thesis. Flinders University, Dec. 2015.
[188] M. J. Nelson and M. Mateas. “Towards Automated Game Design”. In: Artificial Intelligence and Human-Oriented Computing – Pro-

ceedings of the 10th Congress of the Italian Association for Artificial Intelligence, AI*IA 2007, Rome, Italy, September 10–13, 2007. Ed. by
R. Basili and M. T. Pazienza. Vol. 4633. LNCS. Springer, 2007, pp. 626–637. isbn: 978-3-540-74782-6.

[189] M. J. Nelson andM.Mateas. “An Interactive Game-DesignAssistant”. In: Proceedings of the 13th International Conference on Intelligent
User Interfaces, IUI 2008, Gran Canaria, Spain, January 13–16, 2008. ACM, 2008, pp. 90–98. isbn: 978-1-59593-987-6.

[190] M. Nelson and M. Mateas. “Recombinable Game Mechanics for Automated Design Support”. In: Proceedings of the 4th Conference
on Artificial Intelligence and Interactive Digital Entertainment Conference, AIIDE 2008, Stanford, California, USA, October 22–24, 2008.
Ed. by M. Mateas and C. Darken. AAAI, 2008, pp. 84–89. isbn: 978-1-57735-392-8.

[191] T. Nishimori and Y. Kuno. “Mogemoge: A Programming Language Based on Join Tokens”. In: Proceedings of The International
Workshop on Information Science Education & Programming Languages, Korean University & University of Tsukuba. 2006, pp. 22–27.

[192] T. Nishimori and Y. Kuno. “Join Token: A Language Mechanism for Programming Interactive Games”. In: Entertainment Computing
3.2 (May 2012), pp. 19–25. issn: 1875-9521.

[193] T. Nishimori and Y. Kuno. “Join Token-Based Event Handling: A Comprehensive Framework for Game Programming”. In: Software
Language Engineering – Proceedings of the 4th International Conference, SLE 2011, Braga, Portugal, July 3–4, 2011, Revised Selected
Papers. Ed. by A. Sloane and U. Aßmann. Vol. 6940. LNCS. Springer, 2012, pp. 119–138. isbn: 978-3-642-28830-2.

[194] T. Nummenmaa. “Adding Probabilistic Modeling to Executable Formal DisCo Specifications with Applications in StrategyModeling
in Multiplayer Game Design”. MA thesis. University of Tampere – Department of Computer Sciences, June 2008.

[195] T. Nummenmaa et al. “Exploring Games as Formal Models”. In: Proceedings of the 4th South-East European Workshop on Formal
Methods, SEEFM 2009, Thessalonihi, Greece, December 4–5, 2009. IEEE, 2009, pp. 60–65. isbn: 978-0-7695-3943-0.

[196] T. Nummenmaa et al. “Simulation as a Game Design Tool”. In: Proceedings of the International Conference on Advances in Computer
Entertainment Technology, ACE 2009, Athens, Greece, October 29–31, 2009. ACM, 2009, pp. 232–239. isbn: 978-1-60558-864-3.

[197] F. R. Ortega et al. “Exploring Modeling Language for Multi-touch Systems Using Petri Nets”. In: Proceedings of the 2013 ACM Interna-
tional Conference on Interactive Tabletops and Surfaces, ITS 2013, St. Andrews, Scotland, UK, October 6–9, 2013. ACM, 2013, pp. 361–364.
isbn: 978-1-4503-2271-3.

[198] J. Orwant. “EGGG: The Extensible Graphical Game Generator”. PhD thesis. Massachusetts Institute of Technology, Feb. 2000.
[199] J. Orwant. “EGGG: Automated Programming for Game Generation”. In: IBM Systems Journal 39.3 (2000), pp. 782–794. issn: 0018-

8670.
[200] J. C. Osborn. “Operationalizing Operational Logics”. PhD thesis. UC Santa Cruz, June 2018.
[201] J. C. Osborn et al. “Modular Computational Critics for Games”. In: Proceedings of the 9th AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment, AIIDE 2013, Boston, USA, October 14–15, 2013. Ed. by G. Sukthankar and I. Horswill. AAAI,
2013. isbn: 978-1-57735-607-3.

[202] J. C. Osborn et al. “Automated Game Design Learning”. In: IEEE Conference on Computational Intelligence and Games, CIG 2017, New
York, NY, USA, August 22–25, 2017. IEEE, 2017, pp. 240–247.

[203] J. C. Osborn et al. “Refining Operational Logics”. In: Proceedings of the International Conference on the Foundations of Digital Games,
FDG 2017, Hyannis, MA, USA, August 14–17, 2017. Ed. by S. Deterding et al. ACM, 2017, pp. 1–10.

[204] J. Osborn et al. “Playspecs: Regular Expressions for Game Play Traces”. In: Proceedings of the 11th AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, AIIDE 2015, University of California, Santa Cruz November 14–18, 2015. AAAI,
2015.

[205] M. Overmars. “Teaching Computer Science Through Game Design”. In: Computer 37.4 (Apr. 2004), pp. 81–83. issn: 0018-9162.
[206] M. Overmars. “Learning Object-Oriented Design by Creating Games”. In: IEEE Potentials 23.5 (2004), pp. 11–13. issn: 1558-1772.
[207] R. F. Paige et al. “Game Development using Design-by-Contract”. In: Journal of Object Technology 5.7 (Sept. 2006), pp. 57–73.
[208] J. D. Palmer. “Ficticious: MicroLanguages for Interactive Fiction”. In: Proceedings of the ACM International Conference Companion on

Object Oriented Programming Systems Languages and Applications Companion, SPLASH 2010, as part of Onward! 1010, Reno/Tahoe,
Nevada, USA, October 17–21, 2010. ACM, 2010, pp. 61–68. isbn: 978-1-4503-0240-1.

[209] D. Phillips. Creating Apps in Kivy: Mobile with Python. O’Reilly, 2014. isbn: 9781491946671.
[210] C. J. F. Pickett et al. “(P)NFG: A Language and Runtime System for Structured Computer Narratives”. In: Proceedings of the 1st

International North American Conference on Intelligent Games and Simulation, GAME-ON-NA 2005, Montreal, Canada, August 22–23,
2005. EUROSIS, 2005, pp. 23–32. isbn: 90-77381-19-8.

[211] D. Pizzi et al. “Automatic Generation of Game Level Solutions as Storyboards”. In: Proceedings of the 4th Conference on Artificial
Intelligence and Interactive Digital Entertainment Conference, AIIDE 2008, Stanford, California, USA, October 22–24, 2008. Ed. by M.
Mateas and C. Darken. AAAI, 2008, pp. 96–101. isbn: 978-1-57735-392-8.

[212] D. Pizzi et al. “Automatic Generation of Game Level Solutions as Storyboards”. In: IEEE Transactions on Computational Intelligence
and AI in Games 2.3 (Sept. 2010), pp. 149–161. issn: 1943-068X.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

0:100 Riemer van Rozen

[213] T. Pløhn et al. “Extending the Pervasive Game Ontology through a Case Study”. In: NOKOBIT 23.1 (2015).
[214] A. Repenning. “Making Programming More Conversational”. In: Proceedings of the 2011 IEEE Symposium on Visual Languages and

Human-Centric Computing, VL/HCC 2011, Pittsburgh, Pennsylvania, USA, September 18–22, 2011. Ed. by G. Costagliola et al. IEEE,
2011, pp. 191–194.

[215] A. Repenning and T. Sumner. “AgentSheets: A Medium for Creating Domain-Oriented Languages”. In: IEEE Computer 28.3 (Mar.
1995), pp. 17–25.

[216] M. Resnick et al. “Scratch: Programming for All”. In: Communications of the ACM 52.11 (Nov. 2009), pp. 60–67. issn: 0001-0782.
[217] J.W. Romein et al. “An Application Domain Specific Language for Describing Board Games”. In: Parallel and Distributed Processing

Techniques and Applications. CSREA, 1997, pp. 305–314.
[218] J.W. Romein. “Multigame - An Environment for Distributed Game-Tree Search”. PhD thesis. Vrije Universiteit Amsterdam, Jan.

2001.
[219] J.W. Romein et al. The Multigame Reference Manual. Tech. rep. Vrije Univeristeit Amsterdam, 2000.
[220] G. Russell et al. “Tackling Online Game Development Problems with a Novel Network Scripting Language”. In: Proceedings of the

7th ACM SIGCOMM Workshop on Network and System Support for Games, NetGames 2008, Worcester, Massachusetts, October 21–22,
2008. ACM, 2008, pp. 85–90. isbn: 978-1-60558-132-3.

[221] D. V. Sadanand. “Model Checking in General Game Playing: Automated Translation from GDL-II to MCK”. MA thesis. Auckland
University of Technology – School of Engineering, Computer and Mathematical Sciences, Aug. 2017.

[222] A. Saffidine. “The Game Description Language is Turing Complete”. In: IEEE Transactions on Computational Intelligence and AI in
Games 6.4 (Dec. 2014), pp. 320–324. issn: 1943-068X.

[223] K. Salen. “Gaming Literacies: A game Design Study in Action”. In: Journal of Educational Multimedia and Hypermedia 16.3 (July
2007), pp. 301–322. issn: 1055-8896.

[224] V. T. Sarinho and A. L. Apolinário. “A Generative Programming Approach for Game Development”. In: Proceedings of the 8th Brazil-
ian Symposium on Games and Digital Entertainment, SBGAMES 2009, Rio de Janeiro, Brazil, October 8–10, 2009. IEEE, 2009, pp. 83–
92.

[225] V. T. Sarinho et al. “A Feature-Based Environment for Digital Games”. In: Entertainment Computing – Proceedings of the 11th Inter-
national Conference on Entertainment Computing, ICEC 2012, as part of the 2nd Workshop on Game Development and Model-Driven
Software Development, GD&MDSD 2012, Bremen, Germany, September 26–29, 2012. Ed. by M. Herrlich et al. Vol. 7522. LNCS. Springer,
2012, pp. 518–523. isbn: 978-3-642-33542-6.

[226] T. Schaul. “AVideoGameDescription Language forModel-Based or Interactive Learning”. In: Proceedings of the 2013 IEEE Conference
on Computational Intelligence in Games, CIG 2013, Niagara Falls, ON, Canada, August 11–13, 2013. IEEE, 2013, pp. 1–8. isbn: 978-1-
4673-5311-3.

[227] T. Schaul. “An Extensible Description Language for Video Games”. In: IEEE Transactions on Computational Intelligence and AI in
Games 6.4 (Dec. 2014), pp. 325–331. issn: 1943-068X.

[228] K. Schenk et al. “ScriptEase II: Platform Independent Story Creation Using High-Level Patterns”. In: Proceedings of the Ninth AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2013, Boston, Massachusetts, USA, October 14–18,
2013. Ed. by G. Sukthankar and I. Horswill. AAAI, 2013.

[229] C. Simpkins et al. “Towards Adaptive Programming: Integrating Reinforcement Learning into a Programming Language”. In: Pro-
ceedings of the 23rd ACM SIGPLAN Conference on Object-oriented Programming Systems Languages and Applications, OOPSLA 2008,
Nashville, TN, USA, October 19–23, 2008. ACM, 2008, pp. 603–614. isbn: 978-1-60558-215-3.

[230] C. Simpkins et al. “Towards Adaptive Programming: Integrating Reinforcement Learning into a Programming Language”. In: SIG-
PLAN Notices 43.10 (Oct. 2008), pp. 603–614. issn: 0362-1340.

[231] R.M. Smelik et al. “A Declarative Approach to Procedural Modeling of VirtualWorlds”. In: Computers & Graphics 35.2 (2011). Special
issue on Virtual Reality in Brazil Visual Computing in Biology and Medicine Semantic 3D media and content Cultural Heritage,
pp. 352–363. issn: 0097-8493.

[232] R. Smelik et al. “Integrating Procedural Generation and Manual Editing of Virtual Worlds”. In: Proceedings of the 1st Workshop on
Procedural Content Generation in Games, PCG 2010, Monterey, CA, USA, June 19–21, 2010. ACM, 2010, pp. 1–8. isbn: 978-1-4503-0023-
0.

[233] A.M. Smith and M. Mateas. “Variations Forever: Flexibly Generating Rulesets from a Sculptable Design Space of Mini-Games”. In:
Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games, CIG 2010, Dublin, Ireland, August 18–21, 2010. IEEE,
2010, pp. 273–280. isbn: 978-1-4244-6296-4.

[234] A.M. Smith and M. Mateas. “Answer Set Programming for Procedural Content Generation: A Design Space Approach”. In: IEEE
Transactions on Computational Intelligence and AI in Games 3.3 (Sept. 2011), pp. 187–200. issn: 1943-068X.

[235] A.M. Smith et al. “LUDOCORE: A Logical Game Engine for Modeling Videogames”. In: Proceedings of the 2010 IEEE Conference on
Computational Intelligence and Games, CIG 2010, Dublin, Ireland, August 18–21, 2010. IEEE, 2010, pp. 91–98. isbn: 978-1-4244-6296-4.

[236] A.M. Smith. “The Intelligent Game Designer: Game Design as a New Domain for Automated Discovery”. PhD thesis proposal. UC
Santa Cruz, 2009.

[237] A.M. Smith. “Mechanizing Exploratory Game Design”. PhD thesis. University of California, Santa Cruz, 2012.
[238] A.M. Smith and M. Mateas. “Towards Knowledge-Oriented Creativity Support in Game Design”. In: Proceedings of the 2nd Inter-

national Conference on Computational Creativity, ICCC 2011, Mexico City, April 27–29, 2011. Ed. by D. Ventura et al. Universidad
Autónoma Metropolitana, 2011, pp. 129–131. isbn: 978-607-477-487-0.

[239] A.M. Smith et al. “Computational Support for Play Testing Game Sketches”. In: Proceedings of the 5th AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, AIIDE 2009, Stanford, California, USA, October 14–16, 2009. Ed. by C. J. Darken and
G.M. Youngblood. Research poster. AAAI, 2009, pp. 167–172. isbn: 978-1-57735-431-4.

[240] A.M. Smith et al. “PrototypingGameswith BIPED”. In: Proceedings of the 5th AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, AIIDE 2009, Stanford, California, USA, October 14–16, 2009. Ed. by C. J. Darken and G.M. Youngblood. Demo.
AAAI, 2009, pp. 167–172. isbn: 978-1-57735-431-4.

[241] A.M. Smith et al. An Inclusive Taxonomy of Player Modeling. Tech. rep. UCSC-SOE-11-13. Santa Cruz, California., 2011.
[242] G. Smith et al. “Rhythm-Based Level Generation for 2D Platformers”. In: Proceedings of the 4th International Conference on Founda-

tions of Digital Games, FDG 2009, Orlando, Florida, April 26–30, 2009. ACM, 2009, pp. 175–182. isbn: 978-1-60558-437-9.
[243] G. Smith et al. “Tanagra: AMixed-Initiative Level Design Tool”. In: Proceedings of the 5th International Conference on the Foundations

of Digital Games, FDG 2010, Monterey, CA, USA, June 19–21, 2010. ACM, 2010, pp. 209–216. isbn: 978-1-60558-937-4.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

Languages of Games and Play 0:101

[244] G. Smith et al. “Tanagra: An Intelligent Level Design Assistant for 2D Platformers”. In: Proceedings of the 6th Conference on Artificial
Intelligence and Interactive Digital Entertainment, AIIDE 2010, Stanford, California, USA, October 11-13, 2010. Ed. by G.M. Youngblood
and V. Bulitko. Demo. AAAI, 2010. isbn: 978-1-57735-479-6.

[245] G. Smith et al. “Launchpad: A Rhythm-Based Level Generator for 2-D Platformers”. In: IEEE Transactions on Computational Intelli-
gence and AI in Games 3.1 (Mar. 2011), pp. 1–16. issn: 1943-068X.

[246] K. T. Stolee. Kodu Language and Grammar Specification. Microsoft Research. 2010.
[247] A. Summerville et al. “From Mechanics to Meaning”. In: IEEE Transactions on Games 11.1 (Mar. 2019). Online first: October 23rd

2017, pp. 69–78. issn: 2475-1510.
[248] T. Sweeney. “The Next Mainstream Programming Language: a Game Developer’s Perspective”. In: Conference record of the 33rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2006, Charleston, South Carolina, USA, January
11–13, 2006. Invited talk – Slides available on https://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt (Accessed October 15
2018). ACM, 2006, pp. 269–269. isbn: 1-59593-027-2.

[249] N. Szilas. “BEcool: Towards an Author Friendly Behaviour Engine”. In: Virtual Storytelling. Using Virtual Reality Technologies for
Storytelling – Proceedings of the 4th International Conference, ICVS 2007, Saint-Malo, France, December 5-7, 2007. Ed. by M. Cavazza
and S. Donikian. Vol. 4871. LNCS. Springer, 2007, pp. 102–113. isbn: 978-3-540-77039-8.

[250] S. Tang and M. Hanneghan. “Towards a Domain Specific Modelling Language for Serious Game Design”. In: Proceedings of the 6th
International Game Design and Technology Workshop and Conference, GDTW 2008, Liverpool, UK, November 12–13, 2008. Liverpool
John Moores University, 2008. isbn: 9781902560212.

[251] S. Tang and M. Hanneghan. “State-of-the-Art Model Driven Game Development: A Survey of Technological Solutions for Game-
Based Learning”. In: Journal of Interactive Learning Research 22.4 (Dec. 2011), pp. 551–605. issn: 1093-023X.

[252] S. Tang et al. “A Platform Independent Game Technology Model for Model Driven Serious Games Development”. In: The Electronic
Journal of e-Learning 11.1 (Feb. 2013), pp. 61–79. issn: 1479-4403.

[253] M. Thielscher. “A General Game Description Language for Incomplete Information Games”. In: Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11–15, 2010. Ed. by M. Fox and D. Poole. AAAI,
2010.

[254] M. Thielscher. “The General Game Playing Description Language is Universal”. In: Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence, IJCAI 2010, Barcelona, Spain, July 16–22, 2011. AAAI, 2011, pp. 1107–1112.

[255] M. Thielscher. “Translating General GameDescriptions into an Action Language”. In: Logic Programming, Knowledge Representation,
and Nonmonotonic Reasoning: Essays Dedicated to Michael Gelfond on the Occasion of His 65th Birthday. Ed. by M. Balduccini and
T. C. Son. Vol. 6565. LNCS. Springer, 2011, pp. 300–314. isbn: 978-3-642-20832-4.

[256] N. Thillainathan and J.M. Leimeister. “Serious Game Development for Educators - A Serious Game Logic and Structure Modeling
Language”. In: EDULEARN14 Proceedings – 6th International Conference on Education and New Learning Technologies, EDULEARN
2014, Barcelona, Spain, July 7–9, 2014. IATED, 2014, pp. 1196–1206. isbn: 978-84-617-0557-3.

[257] J. Togelius and J. Schmidhuber. “An Experiment in Automatic Game Design”. In: Proceedings of the 2008 IEEE Symposium On Com-
putational Intelligence and Games, CIG 2008, Perth, WA, Australia, December 15–18, 2008. 2008, pp. 111–118. isbn: 978-1-4244-2973-8.

[258] M. Treanor et al. “Proceduralist Readings: How to find meaning in games with graphical logics”. In: Proceedings of the 6th Interna-
tional Conference on the Foundations of Digital Games, FDG 2011, Bordeaux, France, June 28–July 1, 2011. Ed. by M. Cavazza et al.
ACM, 2011, pp. 115–122.

[259] M. Treanor et al. “Game-O-Matic: Generating Videogames That Represent Ideas”. In: Proceedings of the 3rd Workshop on Procedural
Content Generation in Games, PCG 2012, Raleigh, NC, USA, May 29–June 01, 2012. ACM, 2012, pp. 1–8. isbn: 978-1-4503-1447-3.

[260] M. Treanor et al. “The Micro-Rhetorics of Game-o-Matic”. In: Proceedings of the 7th International Conference on the Foundations of
Digital Games, FDG 2012, Raleigh, North Carolina, USA, May 29–June 01, 2012. ACM, 2012, pp. 18–25. isbn: 978-1-4503-1333-9.

[261] T. Tutenel et al. “A Semantic Scene Description Language for Procedural Layout Solving Problems”. In: Proceedings of the 6th
Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2010, Stanford, California, USA, October 11–13, 2010.
Ed. by G.M. Youngblood and V. Bulitko. 2010. isbn: 978-1-57735-479-6.

[262] F. van Broeckhoven and O. de Troyer. “ATTAC-L: AModeling Language for Educational Virtual Scenarios in the Context of Prevent-
ing Cyber Bullying”. In: Proceedings of the IEEE 2nd International Conference on Serious Games and Applications for Health, SeGAH
2013, Algarve, Portugal, May 2–3, 2013. IEEE, 2013, pp. 1–8. isbn: 978-1-4673-6165-1.

[263] F. van Broeckhoven et al. “Using a Controlled Natural Language for Specifying the Narratives of Serious Games”. In: Interactive
Storytelling – Proceedings of the 8th International Conference on Interactive Digital Storytelling, ICIDS 2015, Copenhagen, Denmark,
November 30–December 4, 2015. Ed. by H. Schoenau-Fog et al. Vol. 9445. LNCS. Springer, 2015, pp. 142–153. isbn: 978-3-319-27036-4.

[264] F. van Broeckhoven et al. “Mapping between Pedagogical Design Strategies and Serious Game Narratives”. In: Proceedings of the 7th
International Conference on Games and Virtual Worlds for Serious Applications, VS-GAMES 2015, Skovde, Sweden, September 16–18,
2015. 2015, pp. 1–8. isbn: 978-1-4799-8102-1.

[265] S. van Hoecke et al. “Enabling Control of 3D Visuals, Scenarios and Non-linear Gameplay in Serious Game Development Through
Model-Driven Authoring”. In: Serious Games, Interaction, and Simulation – Proceedings of the 5th International Conference, SGAMES
2015, Novedrate, Italy, September 16–18, 2015. Ed. by C. Vaz de Carvalho et al. Vol. 161. LNICST. Springer, 2016, pp. 103–110. isbn:
978-3-319-29060-7.

[266] C. van Nimwegen et al. “A Test Case for GameDNA: Conceptualizing a Serious Game to Measure Personality Traits”. In: Proceedings
of the 16th International Conference on Computer Games, CGAMES 2011, Louisville, KY, USA, July 27–30, 2011. IEEE, 2011, pp. 217–222.
isbn: 978-1-4577-1452-8.

[267] R. van Rozen. “A Pattern-Based Game Mechanics Design Assistant”. In: Proceedings of the 10th International Conference on the
Foundations of Digital Games, FDG 2015, Pacific Grove, CA, USA, June 22–25, 2015. Ed. by J. P. Zagal et al. Society for the Advancement
of the Science of Digital Games, 2015.

[268] R. van Rozen and J. Dormans. “Adapting Game Mechanics with Micro-Machinations”. In: Proceedings of the 9th International Con-
ference on the Foundations of Digital Games, FDG 2014, Liberty of the Seas, Caribbean, April 3–7, 2014. Ed. by M. Mateas et al. Society
for the Advancement of the Science of Digital Games, 2014. isbn: 978-0-9913982-2-5.

[269] R. van Rozen and Q. Heijn. “Measuring Quality of Grammars for Procedural Level Generation”. In: Proceedings of the 13th Inter-
national Conference on Foundations of Digital Games, FDG 2018, as part of the 9th Workshop on Procedural Content Generation, PCG
2018, Malmö, Sweden, August 7–10, 2018. Ed. by S. Dahlskog et al. ACM, 2018, pp. 1–8. isbn: 978-1-4503-6571-0.

[270] A. Varanese. Game Scripting Mastery. Ed. by A. LaMothe. Premier Press, 2003. isbn: 9781931841573.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

https://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt

0:102 Riemer van Rozen

[271] C. Verbrugge. “A Structure for Modern Computer Narratives”. In: Proceedings of the 3rd international conference on Computers and
Games, CG 2002, Edmonton, Canada, July 25-27, 2002, Revised Papers. Ed. by J. Schaeffer et al. Vol. 2883. LNCS. Springer, 2003, pp. 308–
325.

[272] C. Verbrugge and P. Zhang. “Analyzing Computer Game Narratives”. In: Entertainment Computing – Proceedings of the 9th Inter-
national Conference on Entertainment Computing, ICEC 2010, Seoul, Korea, September 8–11, 2010. Ed. by H. S. Yang et al. Vol. 6243.
LNCS. Springer, 2010, pp. 224–231. isbn: 978-3-642-15399-0.

[273] K. Villaverde et al. “Cheshire: Towards an Alice Based Game Development Tool”. In: Proceedings of the International Conference on
Computer Games, Multimedia & Allied Technology, CGAT 2009, Singapore, May 11–12, 2009. Research Pub. Services, 2009, pp. 321–328.
isbn: 9789810831905.

[274] R. Walter. “Engineering Domain-Specific Languages for Games”. In: Game Development Tool Essentials. Ed. by P. Berinstein et al.
Apress, 2014, pp. 173–188. isbn: 978-1-4302-6701-0.

[275] R. Walter and M. Masuch. “How to Integrate Domain-Specific Languages into the Game Development Process”. In: Proceedings of
the 8th International Conference on Advances in Computer Entertainment Technology, ACE 2011, Lisbon, Portugal, November 8–11, 2011.
ACM, 2011, pp. 1–8. isbn: 978-1-4503-0827-4.

[276] K. Wang et al. “3D Game Design with Programming Blocks in StarLogo TNG”. In: Proceedings of the 7th International Conference
on Learning Sciences, ICLS 2006, Bloomington, Indiana, June 27–July 01, 2006. International Society of the Learning Sciences, 2006,
pp. 1008–1009. isbn: 0-8058-6174-2.

[277] B. H. Wasty et al. “ContextLua: Dynamic Behavioral Variations in Computer Games”. In: Proceedings of the 2nd International Work-
shop on Context-Oriented Programming, COP 2010, Maribor, Slovenia, June 22, 2010. ACM, 2010, pp. 1–6. isbn: 978-1-4503-0531-0.

[278] M. West. “Domain-Specific Languages”. In: Game Developer 14.7 (Aug. 2007), pp. 33–36. issn: 1073-922X.
[279] R. Wetzel. “A Case for Design Patterns Supporting the Development of Mobile Mixed Reality Games”. In: Workshop Proceedings of

the 8th International Conference on the Foundations of Digital Games – as part of the 2nd Workshop on Design Patterns in Games, DPG
2013, Chania, Crete, Greece, May, 14–17, 2013. Society for the Advancement of the Science of Digital Games, 2013.

[280] R. Wetzel. “Introducing Pattern Cards for Mixed Reality Game Design”. In: Proceedings of Workshops Colocated with the 9th Interna-
tional Conference on the Foundations of Digital Games – as part of the 3rd Workshop on Design Patterns in Games, DPG 2014, Liberty
of the Seas, Caribbean, April 3–7, 2014. Society for the Advancement of the Science of Digital Games, 2014. isbn: 978-0-9913982-3-2.

[281] W. White et al. “Scaling Games to Epic Proportions”. In: Proceedings of the 2007 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2007, Beijing, China, June 11–14, 2007. ACM, 2007, pp. 31–42. isbn: 978-1-59593-686-8.

[282] W. White et al. “Better Scripts, Better Games”. In: Queue 6.7 (Nov. 2008), pp. 18–25. issn: 1542-7730.
[283] W. White et al. “Declarative Processing for Computer Games”. In: Proceedings of the 2008 ACM SIGGRAPH Symposium on Video

Games, Sandbox 2008, Los Angeles, California, USA, August 9–10, 2008. ACM, 2008, pp. 23–30. isbn: 978-1-60558-173-6.
[284] W. White et al. “Better Scripts, Better Games”. In: Communications of the ACM 52.3 (Mar. 2009), pp. 42–47. issn: 0001-0782.
[285] G. J. Winters and J. Zhu. “Attention Guiding Principles in 3D Adventure Games”. In: SIGGRAPH 2013 Posters. ACM, 2013, pp. 71–71.
[286] G. J. Winters and J. Zhu. “Guiding Players through Structural Composition Patterns in 3D Adventure Games”. In: Proceedings of the

9th International Conference on the Foundations of Digital Games, FDG 2014, Liberty of the Seas, Caribbean, April 3–7, 2014. Ed. by
M. Mateas et al. Society for the Advancement of the Science of Digital Games, 2014.

[287] J. P. Zagal. Ludoliteracy: Defining Understanding and Supporting Games Education. ETC Press, 2010. isbn: 978-0-557-27791-9.
[288] J. P. Zagal et al. “Towards an Ontological Language for Game Analysis”. In: Proceedings of the 2005 DiGRA International Conference:

Changing Views: Worlds in Play, DiGRA 2005, Vancouver, Canada, June 16–20, 2005. Digital Games Research Association, 2005.
[289] J. P. Zagal et al. “Towards an Ontological Language for Game Analysis”. In: Worlds in Play, International Perspectives on Digital

Games Research. Ed. by S. de Castell and J. Jenson. Peter Lang, 2007, pp. 21–35. isbn: 978-0-8204-8643-7.
[290] J. P. Zagal et al. “Dark Patterns in the Design of Games”. In: Proceedings of the 8th International Conference on the Foundations of

Digital Games, FDG 2013, Chania, Crete, Greece, May 14–17, 2013. Ed. by G. N. Yannakakis et al. Society for the Advancement of the
Science of Digital Games, 2013, pp. 39–46. isbn: 978-0-9913982-0-1.

[291] M. Zhu. “Model-Driven Game Development Addressing Architectural Diversity and Game Engine-Integration”. PhD thesis. Nor-
wegian University of Science et al., Mar. 2014.

[293] A. Zook andM.O. Riedl. “Automatic GameDesign viaMechanic Generation”. In: Proceedings of the 28th AAAI Conference onArtificial
Intelligence, AAAI 2014, Québec City, Canada, July 27–31, 2014. AAAI, 2014, pp. 530–537. isbn: 978-1-57735-661-5.

[294] A. Zook and M.O. Riedl. “Generating and Adapting Game Mechanics”. In: Proceedings of the 5th Workshop on Procedural Content
Generation, PCG 2014, Liberty of the Seas, Caribbean, April 3–7, 2014. Society for the Advancement of the Science of Digital Games,
2014.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: December 2020.

	Abstract
	1 Introduction
	2 Research Vision
	2.1 Games and Play
	2.2 Languages of Games and Play
	2.3 Domain-Specific Languages
	2.4 Need for a Mapping Study

	3 Methodology
	3.1 Scope
	3.2 Research questions
	3.3 Sources
	3.4 Queries
	3.5 Inclusion and exclusion criteria

	4 Review Protocol
	4.1 Research areas and publication venues
	4.2 Language analysis and summary

	5 Research Areas
	5.1 Software Engineering and Programming Languages
	5.2 Artificial Intelligence and Games
	5.3 Game Development Practice
	5.4 Social Sciences and Humanities and Storytelling
	5.5 Multi-disciplinary Games Research

	6 Research Perspectives
	6.1 Ontologies and Typologies
	6.2 Pattern Languages and Design Patterns
	6.3 Applied Game Design
	6.4 Game Mechanics
	6.5 Virtual Worlds and Levels
	6.6 Behaviors
	6.7 Narratives and Storytelling
	6.8 Analytics and Metrics
	6.9 Education
	6.10 Gamification
	6.11 General Game Playing
	6.12 Script and Programming
	6.13 Model-Driven Engineering
	6.14 Metaprogramming

	7 Challenges and Opportunities
	7.1 General Analysis
	7.2 Success Factors
	7.3 Automated Game Design

	8 Related Work
	9 Threats to Validity
	10 Conclusion
	Acknowledgments
	A Related Dissertations
	B Language Summaries
	B.1 Ontologies and Typologies
	B.2 Pattern Languages and Design Patterns
	B.3 Applied Game Design
	B.4 Game Mechanics
	B.5 Virtual Worlds and Levels
	B.6 Behaviors
	B.7 Narratives and Storytelling
	B.8 Analytics and Metrics
	B.9 Education
	B.10 Gamification
	B.11 General Game Playing
	B.12 Script and Programming
	B.13 Model-Driven Engineering
	B.14 Metaprogramming

